首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have found that a novel dioxygenation product of arachidonic acid, 8(S),15(S)-dihydroxy-5,11-cis-9,13-trans-eicosatetraenoic acid (8,15-diHETE), possesses chemotactic activity for human polymorphonuclear leukocytes comparable to that of leukotriene B4. Authentic 8,15-diHETE, identified by gas chromatography-mass spectrometry, was prepared by treating arachidonic acid with soybean lipoxygenase and was purified by reverse-phase high performance liquid chromatography. Using a "leading front" assay, 8,15-diHETE exhibited significant chemotactic activity at a concentration of 5.0 ng/ml. Maximum chemotactic activity was observed at a concentration of 30 ng/ml. The 8,15-diHETE generated by mixed human leukocytes after stimulation with arachidonic acid and the calcium ionophore, A23187, exhibited quantitatively similar chemotactic activity. Two synthetic all-trans conjugated isomers of 8,15-diHETE, however, were not chemotactic at concentrations up to 500 ng/ml. In contrast to its potent chemotactic activity, 8,15-diHETE (at concentrations up to 10 micrograms/ml) was relatively inactive with respect to its ability to provoke either degranulation or generation of superoxide anion radicals by cytochalasin B-treated leukocytes. Both leukotriene B4 and 8,15-diHETE may be important mediators of inflammation.  相似文献   

2.
In stable state asthmatic patients (AP) without any airway obstruction, the capacity of peripheral blood polymorphonuclear neutrophils (PMN) to produce 5-lipoxygenase metabolites and to migrate, was investigated and compared with the response in healthy subjects (HS). After calcium-ionophore A23187 stimulation, PMN from AP and HS produced LTB4, its hydroxylated derivatives: omega-OH-and omega-CO2H-LTB4) (omega-LTB4, i.e 6-trans-LTB4 and 5,6-diHETE isomers, and 5-HETE. We found an increase in LTB4 (+59%), omega-LTB4 (+39%), 6-trans-LTB4 (+128%), and free 5-HETE (+63%) generation of AP as compared with HS. Unstimulated migration was enhanced in AP (122 +/- 27 PMN/10 high power fields (hpf) in AP versus 74 +/- 25 PMN/10 hpf in HS, p less than 0.025) and suggested a greater capacity of PMN from AP to migrate. This was confirmed by the PAF-induced chemotaxis studies which showed, in AP, a greater PAF-sensitivity of PMN (10(-6) M versus 10(-5) M in HS) and a greater chemotaxis response (600 +/- 50 PMN versus 200 +/- 35 PMN in HS). In AP, we compared the capacity of PMN to generate LTB4 and 5-HETE with their capacity to migrate. We found an inverse correlation (r = 0.86, p less than 0.007) of intracellular free 5-HETE with chemotaxis to PAF.  相似文献   

3.
We have purified and characterized the guinea pig eosinophil chemotactic factor of anaphylaxis (ECF-A), an activity previously described in diffusates from sensitized lung challenged with specific Ag that appeared to selectively attract eosinophils from mixed leukocyte populations. Time course studies showed that the release of ECF-A from challenged presensitized guinea pig lung fragments closely paralleled the release of immunoreactive leukotriene B4 (iLTB4) and histamine. However, the majority of ECF-A (greater than 80%) and iLTB4 (greater than 79%) was extractable with the lipid fraction from the methanol wash of Sep-Pak-extracted diffusate, whereas histamine remained in the aqueous phase. A comparable neutrophil chemotactic activity was also found in the methanol extracts of the anaphylactic diffusates. By using a combination of HPLC and specific RIA, greater than 60% of ECF-A was attributable to LTB4. A second eosinophil chemotactic activity was also identified and coeluted (on both reverse phase and straight phase HPLC) with the synthetic standard 8(S),15(S)-dihydroxy-5,9,11,13(Z,E,Z,E)eicosatetraenoic acid (8(S),15(S)-diHETE). This was confirmed as 8(S),15(S)-diHETE by gas chromatography-mass spectrometry. Platelet-activating factor and histamine had negligible activity for guinea pig eosinophils, compared with synthetic LTB4 (p less than 0.05, 10(-9) and 10(-8) M; p less than 0.01, 10(-7) to 5 x 10(-6) M). In addition, synthetic 8(S),15(S)-diHETE had 3 times less activity than LTB4 at optimal chemotactic concentrations (10(-6) and 10(-7) M, respectively). Thus, guinea pig ECF-A appears to be largely attributable to lipoxygenase products of arachidonic acid, namely LTB4 and 8(S),15(S)-diHETE. Because guinea pig ECF-A was equally active on neutrophils (greater than 96% purity), it can no longer be considered a selective eosinophil chemoattractant.  相似文献   

4.
Human neutrophils biosynthesize the chemoattractant leukotriene B4 (LTB4) and metabolize LTB4 to omega oxidative products 20-hydroxy-LTB4 (20-OH-LTB4) and 20-carboxy-LTB4 (20-COOH-LTB4). In this study, we prepared the C-1 methyl ester and N-methyl amide of LTB4 and then examined neutrophil chemotaxis and metabolism of these derivatives of LTB4. The results show that chemical modification of LTB4 at carbon atom 1 dramatically affects metabolism of the lipid molecule. The free acid form of LTB4 was taken up and metabolized by human neutrophils, while the methyl ester and N-methyl amide derivatives were poor substrates for omega oxidation. Although human neutrophils were poorly attracted to the methyl ester of LTB4, the amide derivative was a complete agonist of the neutrophil chemotactic response and displayed an ED50 for chemotaxis identical to that of LTB4. Therefore, we concluded that omega oxidation is not a requirement for the neutrophil chemotactic response induced by LTB4. These results also indicate that the N-methyl amide of LTB4 may be a useful ligand for the elucidation of molecular mechanisms operative in neutrophil chemotaxis to LTB4, since the C-1 derivative is not further metabolized. Two separate responses of human neutrophils are elicited by LTB4, resulting in both cellular activation and generation of omega oxidation products. It appears that putative receptors on the neutrophils can distinguish between LTB4 and certain derivatives that are structurally identical except for modification at the C-1 position (i.e., the methyl ester). LTB4 derivatives modified at the C-1 position do not undergo conversion to omega oxidation products by the neutrophil.  相似文献   

5.
A "late phase" antigen-induced bronchoalveolar eosinophilia has been demonstrated in ovalbumin sensitized guinea pigs (1,2). This in vivo response to antigen inhalation can be inhibited by a 2,6-disubstituted pyridine analog of LTB4, U-75,302(2) (3). In the present study, the mechanism of the drug action was studied by assessing the activity of U-75,302 and a second analog, U-75,485 to displace [3H]-leukotriene B4 binding at the guinea pig eosinophil membrane, as well as their action as chemoattractants or inhibitors of the directional migration of guinea pig eosinophils in vitro. Radioligand competition experiments demonstrated that both analogs interacted strongly with the high affinity LTB4 binding sites on guinea pig eosinophil membrane. Both analogs are powerful chemoattractants for guinea pig eosinophils since they induced directional migration of guinea pig eosinophils when administered alone. In addition, when the cells were treated with either analog and their chemotaxis response was measured in response to a natural chemoattractant, both U-75,302 and U-75,485 at concentrations of 0.1 to 100 microM dose dependently inhibited the LTB4 induced chemotaxis response. The EC50s obtained for U-75,302 and U-75,485 as inhibitors of LTB4 induced guinea pig eosinophil chemotaxis were estimated to be 11.5 +/- 5.5 microM and 5.4 +/- 2.5 microM respectively. Under the same conditions, they had no significant effect upon eosinophil migration induced by zymosan activated plasma at concentrations below 100 microM. We suggest that the inhibition of antigen-induced eosinophil infiltration in guinea pig airway in vivo by U-75,302 or U-75,485 may be a result of partial antagonism or desensitization at the LTB4 receptor level of guinea pig eosinophils.  相似文献   

6.
L-selectin is an adhesion molecule with constitutive expression located on the membrane of granulocytes, monocytes and lymphocytes. It is involved in the early stages of migration of these cells toward either the sites of inflammation or lymphoid tissues. After the cells are activated, L-selectin is down-regulated with shedding of a soluble fragment. Flow cytometry was used to measure L-selectin expression levels on the granulocyte surface, after incubation with a phorbol esther (PMA), two chemotactic factors (fMLP and LTB4) and a cytokine (GM-CSF). Under basal conditions, the expression of L-selectin was found in a high percentage (95.0 +/- 0.7) of granulocytes; PMA stimulation led to a marked decrease in expression (3.2 +/- 0.6). Chemotactic factors also led to a significant decrease in L-selectin expression (69.9 +/- 5.0 for LTB4, and 53.70 +/- 4.3 for fMLP), whereas the incubation with GM-CSF produced no significant changes (89.1 +/- 4.8). When all the conditions were compared, the PMA effect was significantly higher than those observed with other stimuli; furthermore, the expression upon incubation with fMLP and LTB4 was statistically significant. These results suggest that the level of activation reached by granulocytes is directly related to their capacity for shedding L-selectin from the cell surface, and that these levels are lowered after the stimulation by chemotactic factors. GM-CSF activates several important functions of granulocyte cells, however it does not induce L-selectin shedding.  相似文献   

7.
The changes in arterial plasma concentrations of immunoreactive leukotriene B (LTB) were compared after antigen challenge of two groups of sensitized, mepyramine-treated, and mechanically ventilated guinea pigs, one fed a diet enriched with fish oil and the other a control diet enriched with beef tallow. The lung tissue of animals fed a fish oil-enriched diet (FFD) for 9 to 10 wk incorporated eicosapentaenoic acid (EPA) and docosahexaenoic acid to constitute 8 to 9% of total fatty acid content, whereas these alternative fatty acids constituted less than 1% of the total fatty acid content of the lung tissue of animals on a beef tallow-supplemented diet (BFD). The maximum increase after antigen challenge in immunoreactive LTB4 from 0.16 +/- 0.04 ng/ml to 0.84 +/- 0.25 ng/ml in BFD animals and from 0.47 +/- 0.11 to 5.1 +/- 1.4 ng/ml immunoreactive LTB (LTB4 and LTB5) in FFD animals was significant (p less than 0.02) for each. Furthermore, the increase in total immunoreactive LTB in mepyramine-treated FFD animals was significantly greater than the increase in LTB4 in mepyramine-treated BFD guinea pigs at 2 to 8 min after antigen challenge (p less than 0.05). Resolution of arterial plasma immunoreactive LTB from pooled samples by reverse-phase high-performance liquid chromatography demonstrated that the sum of LTB4 and LTB5 in FFD animals exceeded that of LTB4 in BFD animals and that the quantity of LTB4 in the FFD animals was at least as great as that in the BFD animals during anaphylaxis. The products eluting at the retention times of LTB4 and LTB5 exhibited the chemotactic activity of their respective synthetic standards. The combination of indomethacin and mepyramine markedly augmented the antigen-induced increase in arterial plasma immunoreactive LTB4 concentrations in BFD animals, but had no effect on immunoreactive LTB levels in FFD animals. Limited in vivo measurements showing a lesser increase of plasma immunoreactive thromboxane B2 in the FFD relative to the BFD animals during anaphylaxis and ex vivo measurements showing a decreased LTB4-stimulated (cyclooxygenase product-dependent) contractile response of pulmonary parenchymal strips from the FFD relative to the BFD animals provide evidence for blockade in the cyclooxygenase pathway in the FFD animals. The measurements of arterial plasma LTB indicate that indomethacin treatment alone, which inhibits cyclooxygenase activity, and FFD treatment each augment the metabolism of arachidonic acid by the 5-lipoxygenase pathway in animals pretreated with mepyramine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Structural requirements for chemotactic activity of leukotriene B4 (LTB4)   总被引:3,自引:0,他引:3  
LTB4 (5s, 12R dihdroxy-6, 14-CIS-8, 10-trans-eicosatetraenoic acid) formed in activated neutrophils by lipoxygenation of arachidonic acid is an extremely potent chemotaxin. We examined structural requirements for chemotactic and aggregatory activity of the ligand using synthetic LTB4 and several of its isomers. Additionally we examined the potency of two analogs, nor- and homo-LTB4. Dose response curves for neutrophil chemotaxis to these compounds were obtained using a modified Boyden chamber. The mean distance cells moved into the filter was determined after 30 minutes. Peak chemotactic activity of LTB4 was at 10(-7)M. At higher concentrations, chemotactic activity was decreased. The shape of the dose response curve was similar to that of FMLP except that maximum chemotaxis to LTB4 was consistently greater than chemotaxis to FMLP. A mixture of the two epimers at c-5 and c-12 shifted the response curve to the right but did not lower maximum activity. Increasing or decreasing the chain by one carbon between the first hydroxyl group and the carboxyl group also shifted the response curve to the right without lowering maximal activity. Changing the 6 double bond from cis to trans has a greater effect. Activity was only detectable at high concentrations and maximum activity achieved was less than 50% that of LTB4. Thus the chain length between the carboxyl and C-5 hydroxyl groups, the c-5 and c-12 absolute stereochemistry and the stereochemistry of the delta6 double bond are all important structural features for chemotactic activity with delta6 stereochemistry apparently having the greatest contribution. The relative potencies of these compounds in inducing aggregation were comparable to their chemotactic potencies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A leukotriene B4 (LTB4) analog, 20-trifluoromethyl LTB4 (20CF3-LTB4), has been synthesized and evaluated with human neutrophils for effects on chemotaxis and degranulation. 20CF3-LTB4 was equipotent to LTB4 as a chemoattractant (EC50, 3 nM), produced 50% of maximal activity of LTB4, and competed with [H] LTB4 for binding to intact human neutrophil LTB4 receptors. In contrast to chemotactic activity, 20CF3-LTB4 in nanomolar concentrations exhibited antagonist activity without agonist activity up to 10 microM on LTB4-induced degranulation. The analog had no significant effect on degranulation induced by the chemoattractant peptide, N-formyl-methionyl-leucyl-phenylalanine (fMLP). Like LTB4, 20CF3-LTB4 induced neutrophil desensitization to degranulation by LTB4. The results indicate that hydrogen atoms at C-20 of LTB4 are critical for its intrinsic chemotactic and degranulation activities. The fact that 20CF3-LTB4 is a partial agonist for chemotaxis and an antagonist for degranulation suggests that different LTB4 receptor subtypes are coupled to these neutrophil functions. Desensitization of the neutrophil degranulation response to LTB4 can result from receptor occupancy by an antagonist, and therefore, the desensitization is not specific for an agonist.  相似文献   

10.
Leukotriene B4 (LTB4), 20-OH-LTB4, and 20-COOH-LTB4 were studied for their relative activities towards guinea pig peritoneal eosinophils and neutrophils during in vitro chemotaxis in modified Boyden chambers. The leukotrienes were also injected into guinea pig skin, and the cellular infiltrate in 4 hour biopsies was evaluated histologically. Eosinophils migrated more actively than neutrophils towards LTB4 in vitro, while in vivo, more neutrophils were observed. 20-OH-LTB4 was markedly less active than LTB4 in vivo and in vitro, and 20-COOH-LTB was barely active at all. Crude ionophore-stimulated neutrophil supernatants (ECF) were more active towards eosinophils than towards neutrophils, both in vivo and in vitro, compared to the pure leukotrienes. The data confirm the potent chemotactic properties of LTB4 for eosinophils and neutrophils, with less activity of its w-metabolites.  相似文献   

11.
Studies were undertaken to define the role of 5-lipoxygenase (5-LO) products and, in particular, of leukotriene (LT) B4 in the polymorphonuclear leukocyte (PMN) emigration process using a rabbit model of dermal inflammation. Our results show that i.v. administration to rabbits of MK-0591, a compound that inhibits LT biosynthesis in blood and tissues when administered in vivo, significantly reduced 51Cr-labeled PMN accumulation in response to intradermally injected chemotactic agonists, including IL-8, FMLP, C5a, and LTB4 itself. In addition, pretreatment of the labeled PMN with MK-0591 ex vivo before their injection in recipient animals was equally effective in reducing 51Cr-labeled PMN emigration to dermal inflammatory sites. These results support a role for de novo synthesis of 5-LO metabolites by PMN for their chemotactic response to inflammatory mediators. Other studies demonstrated that elevated intravascular concentration of LTB4 interferes with PMN extravasation inasmuch as a continuous i.v. infusion of LTB4, in the range of 5-300 ng/min/kg, dose-dependently inhibited extravascular PMN accumulation to acute inflammatory skin sites elicited by the chemoattractants LTB4, FMLP, C5a, and IL-8 and by TNF-alpha, IL-1beta, and LPS; such phenomena may constitute a natural protective mechanism from massive tissue invasion by activated PMN in specific pathologic conditions such as ischemia (and reperfusion). These studies demonstrate additional functions of 5-LO products in the regulation of PMN trafficking, distinct from the well-characterized chemotactic activity of LTB4 present in the extravascular compartment.  相似文献   

12.
Rat PMN isolated from peripheral blood show a small amount of high-affinity (specific) binding of [3H]-LTB4 at nanomolar concentrations. This binding is reversible and has a stereospecificity similar to rat PMN aggregation in response to several LTB4 analogs. This population of binding sites shares many characteristics with a population of high-affinity binding sites in human PMN; however, human PMN bind a significantly greater amount of [3H]-LTB4 to a second population of specific binding sites that is not present in rat PMN. The aggregation responses of human and rat peripheral blood PMN to LTB4 are similar in magnitude and specificity, but unlike human PMN, LTB4 fails to elicit a chemotactic response in rat PMN at concentrations from 10(-10) M to 10(-6) M. Rat PMN also fail to metabolize exogenous LTB4 when compared with human PMN. These data suggest that different PMN functions, such as chemotaxis and aggregation, may involve different classes of specific receptors. The finding that rat PMN do not exhibit chemotaxis to LTB4 calls for a reevaluation of the relevance to inflammation in humans of studies of inflammation performed in rat models.  相似文献   

13.
Peripheral blood neutrophils and eosinophils from 70 patients and controls were studied for their in vitro chemotactic and chemokinetic responses towards synthetic leukotriene B4 (LTB4), 20-OH-LTB4 and 20-COOH-LTB4. All three factors induced chemotaxis and chemokinesis of cells. 20-OH-LTB4 was always less and 20-COOH-LTB4 even less active than the parent compound. Cells from patients with atopic eczema and T cell lymphoma moved less than cells from normal controls or from patients with psoriasis. In the presence of LTB4, 20-OH-LTB4 and buffer alone, more eosinophils than neutrophils moved to the lower side of the filter, while this did not occur with platelet activating factor as chemoattractant. Studies of neutrophil and eosinophil chemotaxis in the presence of LTB4 should therefore always take into account a high variability of the quantitative response which is donor and disease dependent.  相似文献   

14.
The chemotactic activity of leukotriene B4 (5S, 12R Dihydroxy 6, 14 cis, 8, 10 trans eicosatetraenoic acid) (LTB4) was examined by using a sensitive Boyden-chamber assay. The activity of LTB4 was compared to other biosynthetic stereoisomers: 5S, 12R Dihydroxy 6, 8, 10 trans 14 cis eicosatetraenoic acid (6-trans LTB4); 5S, 12S Dihydroxy 6, 8, 10 trans 14 cis eicosatetraenoic acid (12-epi-6-trans LTB4), 5S, 12S DiHETE; the metabolic product 20-Hydroxy LTB4 (20-OH LTB4); methylated LTB4 (Methyl-LTB4), and the related monoHETE 5-HETE and 12-HETE. The compounds were purified by several steps of reverse phase and straight phase HPLC. The LTB4 exhibits measurable chemotactic activity at 10(-9) M with maximal activity at 10(-7) M and an ED50 of 10(-8) M. The LTB4 isomers and monoHETE were less chemotactic than previously reported. The monoHETE (5-HETE and 12-HETE), the isomer 12-epi-6-trans LTB4, and 5S, 12S DiHETE fail to attract neutrophils at levels between 10(-6) and 10(-5) M. If these compounds are chemotactic, then activity is at least four orders of magnitude less than that of LTB4. The isomer 6-trans LTB4 at 10(-6) to 10(-5) M induced chemotaxis with an extrapolated ED50 value of 10(-5) M, indicating that a trans for cis change in configuration at position 6 reduces the chemotactic activity of LTB4 by 1000-fold. Conversely, the metabolic product 20-OH LTB4 is at least as active as the native compound LTB4. Methylation of the carboxyl group of LTB4 reduces its chemotactic activity by two orders of magnitude. These results indicate a high degree of stereospecificity for the LTB4 receptor with strict dependence on hydroxyl group, and triene configuration and considerable dependence on the carboxyl group. Modification at the aliphatic omega end of the LTB4 molecule has a minimal effect on function, suggesting that the hydrophobicity of this portion of the molecule is not important for optimal activity. Furthermore, we propose that metabolic products of LTB4 may be of greater importance than LTB4 as physiologic inflammatory mediators in vivo.  相似文献   

15.
Incubation of cultured human umbilical vein endothelial cells with [1-14C]arachidonic acid, followed by reverse-phase high-pressure liquid chromatography analysis, results in the appearance of two principal radioactive products besides 6-keto-prostaglandin F1 alpha. The first peak is 12-L-hydroxy-5,8,10-heptadecatrienoic acid, a hydrolysis product of the prostaglandin endoperoxide. The second peak was esterified, converted to the trimethylsilyl ether derivative, and analyzed by gas chromatography-mass spectrometry and shown to be the lipoxygenase product 15(S)-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE). Incubation of the 15-HETE precursor 15(S)-hydroperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE) with endothelial cells results in the formation of four distinct UV absorbing peaks. UV and gas chromatography-mass spectrometry analysis showed these peaks to be 8,15(S)-dihydroxy-5,8,11,13-eicosatetraenoic acids (8,15-diHETE) differing only in their hydroxyl configuration and cis trans double-bond geometry. Formation of 8,15-diHETE molecules suggests the prior formation of the unstable epoxide molecule 14(S),15(S)-trans-oxido-5,8-Z-14,15-leukotriene A4 or an attack at C-10 of 15-HPETE by an enzyme with mechanistic features in common with a 12-lipoxygenase. The observation that endothelial cells can synthesize both 15-HETE and 8,15-diHETE molecules suggests that this cell type contains both a 15-lipoxygenase and a system that can synthesize 14,15-leukotriene A4.  相似文献   

16.
We examined the role of circulating granulocytes in the pulmonary microvascular response to leukotriene B4 (LTB4) by prior depletion of circulating granulocytes using hydroxyurea. LTB4 (2 micrograms/kg injection followed by infusion of 2 micrograms/kg over 15 min) produced transient increases in pulmonary arterial pressure and pulmonary vascular resistance, indicating that neutrophils were not required for the pulmonary hemodynamic effects of LTB4. Infusion of LTB4 in granulocyte-depleted sheep also resulted in transient increases in pulmonary lymph flow (QL) with no significant change in the lymph-to-plasma protein concentration ratio (L/P), findings similar to those in control animals. In vitro studies indicated that LTB4 (10(-7) or 10(-9) M) produced a transient adherence of neutrophils to cultured pulmonary artery endothelial monolayers. Maximal responses occurred at 10 min after the addition of LTB4 to the endothelial cell-neutrophil coculture system, and the adherence decreased to base line within 60 min. LTB4 infusion in sheep also produced a transient uptake of autologous 111In-oxine-labeled neutrophils. The results indicate that LTB4-mediated increase in pulmonary transvascular protein clearance (QL x L/P) is independent of circulating granulocytes.  相似文献   

17.
We have investigated the effect of the heat shock response on the leukotriene generation, chemotaxis, and generation of oxygen radicals of human polymorphonuclear granulocytes (PMNs) by preincubating the PMNs at 42 degrees C. Subsequently, the different test systems were performed at 37 degrees C. As we confirmed by the release of lactate dehydrogenase and beta-glucuronidase the elevated temperatures did not result in cytotoxic or degranulating processes. After heat shock treatment the generation of leukotrienes induced by the Ca(++)-ionophore A23187, fMLP or opsonized zymosan was inhibited in a time and temperature dependent manner (preincubation phase) as was measured by HPLC-analysis. In contrast, the conversion of 14C-arachidonic acid revealed the generation of LTB4, 5-HPETE and 5-HETE solely as a result of the preincubation at 42 degrees C without any further stimulation. In addition, the chemiluminescence response induced by opsonized zymosan and the chemotaxis against C5a and LTB4 was clearly inhibited after heat shock treatment. With regard to enzyme activities of the heat treated PMNs the protein kinase C activities were enhanced whereas the LTD4-dipeptidase and the LTB4-omega-hydroxylase were not affected.  相似文献   

18.
Neutrophils (PMN) treated with cAMP elevating agents were evaluated for their chemotactic responsiveness to FMLP and leukotriene B4 (LTB4). PGE1 and isoproterenol, increased PMN cyclic AMP production and inhibited chemotaxis to both FMLP and LTB4. In contrast, forskolin, which activates adenylate cyclase directly, inhibited chemotaxis to FMLP but not to LTB4. The phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX), was required for inhibition of PMN chemotaxis to FMLP by forskolin, PGE1, and isoproterenol. Isoproterenol and PGE1 inhibited PMN chemotaxis to LTB4 in the absence of IBMX and chemotaxis was further inhibited in the presence of IBMX. PMN cAMP levels were stimulated 2- to 3-fold with isoproterenol, 6- to 10-fold with PGE1, and 5- to 7-fold with forskolin over basal levels in the presence of IBMX. These observations demonstrate that total cellular cAMP concentration is not correlated with inhibition of PMN chemotaxis to all stimuli; forskolin, which increased cyclic AMP 5- to 7-fold over basal levels, did not inhibit chemotaxis to LTB4, whereas isoproterenol, which increased cyclic AMP only 2- to 3-fold over basal levels, inhibited chemotaxis to LTB4. PMN cAMP extrusion was determined under basal conditions and in the presence of PGE1, isoproterenol, or forskolin. PMN extruded cAMP under all conditions examined.  相似文献   

19.
The protein kinase inhibitor, 1-(5-isoquinolinesulfonyl) piperazine (C-I), inhibits superoxide release from human neutrophils (PMN) stimulated with phorbol myristate acetate or synthetic diacylglycerol, without inhibiting superoxide release from PMN stimulated with the chemoattractants C5a or N-formyl-methionyl-leucyl-phenylalanine (f-Met-Leu-Phe). In this study, we investigated the effect of C-I on human PMN chemotaxis to C5a, f-Met-Leu-Phe, leukotriene B4 (LTB4), and fluoresceinated N-formyl-methionyl-leucyl-phenylalanine-lysine (f-Met-Leu-Phe-Lys-FITC). PMN, preincubated for 5 min at 37 degrees C with 0 to 200 microM C-I, were tested for their migratory responses to the chemoattractants. C-I (greater than or equal to 1 microM) significantly inhibited PMN chemotaxis to f-Met-Leu-Phe, f-Met-Leu-Phe-Lys-FITC, and C5a without affecting random migration. Maximal inhibition of chemotaxis to these attractants occurred with greater than or equal to 50 microM C-I, at which chemotaxis was inhibited by 80 to 95%. The C-I inhibition was reversible. In contrast, 200 microM C-I did not inhibit the number of PMN migrating to LTB4, although, the leading front of PMN migration to LTB4 was inhibited by C-I. C-I inhibited PMN orientation to C5a and f-Met-Leu-Phe without affecting orientation to LTB4. C-I did not inhibit the binding of radiolabeled f-Met-Leu-Phe or f-Met-Leu-Phe-Lys-FITC to PMN. These findings suggest that the chemotactic responses of PMN to f-Met-Leu-Phe and C5a involve a protein kinase-dependent reaction which is inhibited by C-I.  相似文献   

20.
Leukotriene B4 (LTB4) is a potent chemotactic compound for neutrophils and is thought to be an important mediator of myocardial ischemia-reflow injury. We have measured LTB4 in rabbit cardiac tissue following ischemia-reflow using a sensitive and specific gas chromatographic-mass spectrometric (GC-MS) assay. The concentration of LTB4 in rabbit myocardium following 45 min ischemia and 3 h reflow was 48.7 +/- 12.5 pg/g, significantly higher than in non-ischemic tissue from the same animal (17.5 +/- 3.9 pg/g). These concentrations were at least an order of magnitude lower than previously reported values assessed by radioimmunoassay (RIA). Compared with the GC-MS method, RIA greatly overestimated LTB4 concentrations in cardiac tissue. The capacity of post-ischemic myocardium to produce lipoxygenase products, LTB4, 5-, 12- and 15-HETEs was also assessed following incubation of myocardium ex vivo with calcium ionophore. In all animals ischemic cardiac tissue produced greater amounts of LTB4, 5-, and 12-HETEs than non-ischemic myocardium and 12-HETE was the major product. Neutrophils that have accumulated in the injured tissue may be a major source of these products. However, in contrast to cardiac tissue, isolated rabbit neutrophils stimulated with A23187 produced 5-HETE as the major product with very little 12-HETE formed. These latter findings suggest that cells other than neutrophils may contribute to the production of lipoxygenase products during myocardial ischemia-reflow injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号