首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
LDOC1, a novel MZF-1-interacting protein, induces apoptosis   总被引:2,自引:0,他引:2  
  相似文献   

2.
In order to identify novel genes expressed in skeletal muscle we performed a subtractive hybridization for genes expressed in human skeletal muscle but not in other tissues. We identified a novel scalloped interaction domain (SID) containing protein in humans and in the mouse, which we named VITO-1. Highest homology of VITO-1 was found with the Drosophila vestigial and the human TONDU proteins in the SID (54 and 40%, respectively). Using whole-mount hybridzation and Northern blot analysis, we showed that VITO-1 is expressed in the somitic myotome from E8.75 mouse embryos onwards and later on in skeletal muscle but not in the heart. Additional expression domains during development were detected in the pharyngeal pouches and clefts starting at E8.0 as well as in the cranial pharynx and in Rathkes pouch. By Northern blot analysis, we found VITO-1 to be up-regulated in C2C12 myotubes although some expression can be detected in proliferating C2C12 myoblasts. No expression was spotted in other adult mouse tissues. Likewise, expression of human Vito-1 during fetal and adult human development was found exclusively in skeletal muscle preferentially in fast skeletal muscles. These data suggest a role of VITO-1 for the development of skeletal muscles and of pharyngeal clefts/Rathkes' pouch derived structures.  相似文献   

3.
In order to identify novel genes expressed in skeletal muscle we performed a subtractive hybridization for genes expressed in human skeletal muscle but not in other tissues. We identified a novel scalloped interaction domain (SID) containing protein in humans and in the mouse, which we named VITO-1. Highest homology of VITO-1 was found with the Drosophila vestigial and the human TONDU proteins in the SID (54 and 40%, respectively). Using whole-mount hybridzation and Northern blot analysis, we showed that VITO-1 is expressed in the somitic myotome from E8.75 mouse embryos onwards and later on in skeletal muscle but not in the heart. Additional expression domains during development were detected in the pharyngeal pouches and clefts starting at E8.0 as well as in the cranial pharynx and in Rathkes pouch. By Northern blot analysis, we found VITO-1 to be up-regulated in C2C12 myotubes although some expression can be detected in proliferating C2C12 myoblasts. No expression was spotted in other adult mouse tissues. Likewise, expression of human Vito-1 during fetal and adult human development was found exclusively in skeletal muscle preferentially in fast skeletal muscles. These data suggest a role of VITO-1 for the development of skeletal muscles and of pharyngeal clefts/Rathkes' pouch derived structures.  相似文献   

4.
BACKGROUND: Inhibitors of apoptosis (IAPs) are a family of cell death inhibitors found in viruses and metazoans. All IAPs have at least one baculovirus IAP repeat (BIR) motif that is essential for their anti-apoptotic activity. IAPs physically interact with a variety of pro-apoptotic proteins and inhibit apoptosis induced by diverse stimuli. This allows them to function as sensors and inhibitors of death signals that emanate from a variety of pathways. RESULTS: Here we report the characterization of ML-IAP, a novel human IAP that contains a single BIR and RING finger motif. ML-IAP is a powerful inhibitor of apoptosis induced by death receptors and chemotherapeutic agents, probably functioning as a direct inhibitor of downstream effector caspases. Modeling studies of the structure of the BIR domain revealed it to closely resemble the fold determined for the BIR2 domain of X-IAP. Deletion and mutational analysis demonstrated that integrity of the BIR domain was required for anti-apoptotic function. Tissue survey analysis showed expression in a number of embryonic tissues and tumor cell lines. In particular, the majority of melanoma cell lines expressed high levels of ML-IAP in contrast to primary melanocytes, which expressed undetectable levels. These melanoma cells were significantly more resistant to drug-induced apoptosis. CONCLUSIONS: ML-IAP, a novel human IAP, inhibits apoptosis induced by death receptors and chemotherapeutic agents. The BIR of ML-IAP possesses an evolutionarily conserved fold that is necessary for anti-apoptotic activity. Elevated expression of ML-IAP renders melanoma cells resistant to apoptotic stimuli and thereby potentially contributes to the pathogenesis of this malignancy.  相似文献   

5.
Cytoskeletal adaptor proteins serve vital functions in linking the internal cytoskeleton of cells to the cell membrane, particularly at sites of cell-cell and cell-matrix interactions. The importance of these adaptors to the structural integrity of the cell is evident from the number of clinical disease states attributable to defects in these networks. In the heart, defects in the cytoskeletal support system that surrounds and supports the myofibril result in dilated cardiomyopathy and congestive heart failure. In this study, we report the cloning and characterization of a novel cytoskeletal adaptor, obscurin-like 1 (OBSL1), which is closely related to obscurin, a giant structural protein required for sarcomere assembly. Multiple isoforms arise from alternative splicing, ranging in predicted molecular mass from 130 to 230 kDa. OBSL1 is located on human chromosome 2q35 within 100 kb of SPEG, another gene related to obscurin. It is expressed in a broad range of tissues and localizes to the intercalated discs, to the perinuclear region, and overlying the Z lines and M bands of adult rat cardiac myocytes. Further characterization of this novel cytoskeletal linker will have important implications for understanding the physical interactions that stabilize and support cell-matrix, cell-cell, and intracellular cytoskeletal connections.  相似文献   

6.
In this study, alpha-bisabolol, a sesquiterpene alcohol present in natural essential oil, was found to have a strong time- and dose-dependent cytotoxic effect on human and rat glioma cells. After 24 h of treatment with 2.5-3.5 microM alpha-bisabolol, the viability of these cells was reduced by 50% with respect to untreated cells. Furthermore, the viability of normal rat glial cells was not affected by treatment with alpha-bisabolol at the same concentrations as above. Glioma cells treated with high concentration of alpha-bisabolol (10 microM) resulted in a 100% cell death. Judging from hypo-G1 accumulation, poly(ADP-ribose) polymerase cleavage, and DNA ladder formation, the cytotoxicity triggered by alpha-bisabolol resulted from apoptosis induction. Moreover, the dissipation of mitochondrial-inner transmembrane potential and the release of cytochrome c from mitochondria indicated that, in these glioma cells, apoptosis occurred through an intrinsic pathway. As pointed out by the experimental results, alpha-bisabolol may be considered a novel compound able to inhibit glioma cell growth and survival.  相似文献   

7.
Spz1, a novel bHLH-Zip protein, is specifically expressed in testis   总被引:3,自引:0,他引:3  
  相似文献   

8.
9.
Zhang Y  Venugopal SK  He S  Liu P  Wu J  Zern MA 《Cellular signalling》2007,19(11):2339-2350
Ethanol abuse is one of the major etiologies of cirrhosis. Ethanol has been shown to induce apoptosis via activation of oxidative stress, mitogen-activated protein kinases (MAPK), and tyrosine kinases. However, there is a paucity of data that examine the interplay among these molecules. In the present study we have systematically elucidated the role of novel protein kinase C isoforms (nPKC; PKCdelta and PKCepsilon) in ethanol-induced apoptosis in hepatocytes. Ethanol enhanced membrane translocation of PKCdelta and PKCepsilon, which was associated with the phosphorylation of p38MAPK, p42/44MAPK and JNK1/2, and the nuclear translocation of NF-kappaB and AP-1. This resulted in increased apoptosis in primary rat hepatocytes. Inhibition of both PKCdelta and PKCepsilon resulted in a decreased MAPK activation, decreased nuclear translocation of NF-kappaB and AP-1, and inhibition of apoptosis. In addition, ethanol activated the tyrosine phosphorylation of PKCdelta via tyrosine kinase in hepatocytes. The tyrosine phosphorylated PKCdelta was cleaved by caspase-3 and these fragments were translocated to the nucleus. Inhibition of ethanol-induced oxidative stress blocked the membrane translocation of PKCdelta and PKCepsilon, and the tyrosine phosphorylation of PKCdelta in hepatocytes. Inhibition of oxidative stress, tyrosine kinase or caspase-3 activity caused a decreased nuclear translocation of PKCdelta in response to ethanol, and was associated with less apoptosis. Conclusion: These results provide a newly-described mechanism by which ethanol induces apoptosis via activation of nPKC isoforms in hepatocytes.  相似文献   

10.
11.
12.
Sarcomas are rare cancers and the current treatments in inoperable or metastatic disease have not been shown to prolong survival. In order to develop novel targeted therapies, we tested the efficacy of polo-like kinase 1 (PLK-1) inhibitor (TAK-960) in sarcoma. All the sarcoma cell lines were sensitive to TAK-960 with IC50s in the low nanomolar range. We chose MPNST, CHP100 and LS141 for our studies and of which MPNST cells exclusively underwent polyploidy after a delay in mitosis for about 18 hours; CHP100 cells, after a 24h mitotic delay, died of apoptosis; LS141, after a delay in mitosis stayed at 4N with mild apoptosis. Apoptosis induced by TAK-960 in CHP100 was associated with down-regulation of Mcl-1 and the effect was recapitulated by down-regulating PLK1 by siRNA, confirming that the effect of TAK-960 on Mcl-1 expression is target specific. With suppression of Mcl-1 by siRNA, TAK-960 induced apoptosis in MPNST cells as well. These effects were confirmed in vivo, such that TAK-960 more effectively inhibited CHP100 than MPNST xenografts. In the setting of PLK-1 inhibition, Mcl-1 down regulation is shown to be an important determinant of apoptosis. Collectively, the net effect of this is to drive cells to apoptosis, resulting in a greater anti-tumor effect in vivo. Therefore, targeting PLK-1 should have a greater impact in treating sarcomas provided there is concomitant suppression of Mcl-1. These results further indicate that Mcl-1 could be an important biomarker to predict sensitivity to the induction of apoptosis by PLK-1 targeted therapy in sarcoma.  相似文献   

13.
Protein acetylation is increasingly recognized as an important post-translational modification. Although a lot of protein acetyltransferases have been identified, a few putative acetyltransferases are yet to be studied. In this study, we identified a novel protein acetyltransferase, Patt1, which belongs to GNAT family. Patt1 exhibited histone acetyltransferase activity and auto-acetylation activity. Deletion and mutation analysis of the predicted acetyltransferase domain in Patt1 showed that the conserved Glu139 was an important residue for its protein acetyltransferase activity. Furthermore, we found that Patt1 was highly expressed in liver and significantly downregulated in hepatocellular carcinoma tissues. In addition, we showed that overexpression of Patt1 enhanced the apoptosis of hepatoma cells dependent on its acetyltransferase activity, whereas knockdown of Patt1 significantly protected Chang liver cells from apoptosis. These data suggest that Patt1 might be involved in the development of hepatocellular carcinoma, and could be served as a potential therapy target for hepatocellular carcinoma.  相似文献   

14.
The barley nucellin gene was reported to be nucellus specific in its expression and was hypothesized to play a role in the programmed cell death of the nucellus as an aspartic protease. Here we provide direct evidence that the rice ortholog encodes an active aspartic protease, but we prefer the name aspartic protease1 (OsAsp1) to nucellin after a detailed analysis of its expression pattern in rice and barley. Northern blots, RT-PCR and RNA in situ hybridization showed that OsAsp1 is expressed most abundantly in zygotic embryos 1-2 d after fertilization. It is also expressed in pollen, nucellus, ovary wall, shoot and root meristem, coleoptiles of immature seeds, and somatic embryos. A parallel study in barley showed that the barley nucellin gene was expressed not only in the nucellus but also strongly in embryos. Recombinant protein proOsAsp1 expressed in the bacterium Escherichia coli refolded and autolysed at acidic pH 3.5 in vitro, and the mature peptide displayed protease activity. Nucellin has three close homologs in rice on chromosomes 11 and 12 and in Arabidopsis on chromosomes 1 and 4. They lack the plant-specific insert that distinguishes the typical plant aspartic protease from aspartic proteases of other organisms. They constitute a new class of aspartic protease that is present in both monocots and dicots but whose function remains to be explored further.  相似文献   

15.
Wnt5a is one of the so-called non-canonical Wnt ligands which do not act through β-catenin. In normal development, Wnt5a is secreted and directs the migration of target cells along concentration gradients. The effect of Wnt5a on target cells is regulated by many factors, including the expression level of inhibitors and receptors. Dysregulated Wnt5a signalling facilitates invasion of multiple tumor types into adjacent tissue. However, the expression and distribution of Wnt5a in cutaneous squamous cell carcinoma (SCC) and basal cell carcinoma (BCC), as well as the effect of Wnt5a on keratinocyte migration has not been studied in detail to date. We here report that Wnt5a is upregulated in SCC and BCC and localised to the leading edge of tumors, as well as tumor-associated fibroblasts. The Wnt5a-triggered bundling of its receptor Fzd3 provides evidence of Wnt5a concentration gradients projecting into the tumor. In vitro migration assays show that Wnt5a concentration gradients determine its effect on keratinoctye migration: While chemotactic migration is inhibited by Wnt5a present in homogenous concentrations, it is enhanced in the presence of a Wnt5a gradient. Expression profiling of the Wnt pathway shows that the upregulation of Wnt5a in SCC is coupled to repression of canonical Wnt signalling. This is confirmed by immunohistochemistry showing lack of nuclear β-catenin, as well as absent accumulation of Axin2. Since both types of Wnt signalling act mutually antogonistically at multiple levels, the concurrent repression of canonical Wnt signalling suggests hyper-active Wnt5a signal transduction. Significantly, this combination of gene dysregulation is not observed in the benign hyperproliferative inflammatory skin disease psoriasis. Collectively, our data strongly suggest that Wnt5a signalling contributes to tissue invasion by non-melanoma skin cancer.  相似文献   

16.
Cellular stress induced by nutrient deprivation, hypoxia, and exposure to many chemotherapeutic agents activates an evolutionarily conserved cell survival pathway termed autophagy. This pathway enables cancer cells to undergo self-digestion to generate ATP and other essential biosynthetic molecules to temporarily avoid cell death. Therefore, disruption of autophagy may sensitize cancer cells to cell death and augment chemotherapy-induced apoptosis. Chloroquine and its analog hydroxychloroquine are the only clinically relevant autophagy inhibitors. Because both of these agents induce ocular toxicity, novel inhibitors of autophagy with a better therapeutic index are needed. Here we demonstrate that the small molecule lucanthone inhibits autophagy, induces lysosomal membrane permeabilization, and possesses significantly more potent activity in breast cancer models compared with chloroquine. Exposure to lucanthone resulted in processing and recruitment of microtubule-associated protein 1 light chain 3 (LC3) to autophagosomes, but impaired autophagic degradation as revealed by transmission electron microscopy and the accumulation of p62/SQSTM1. Microarray analysis, qRT-PCR, and immunoblotting determined that lucanthone stimulated a large induction in cathepsin D, which correlated with cell death. Accordingly, knockdown of cathepsin D reduced lucanthone-mediated apoptosis. Subsequent studies using p53(+/+) and p53(-/-) HCT116 cells established that lucanthone induced cathepsin D expression and reduced cancer cell viability independently of p53 status. In addition, lucanthone enhanced the anticancer activity of the histone deacetylase inhibitor vorinostat. Collectively, our results demonstrate that lucanthone is a novel autophagic inhibitor that induces apoptosis via cathepsin D accumulation and enhances vorinostat-mediated cell death in breast cancer models.  相似文献   

17.
We have characterized a novel human gene (C14orf1) which codes for a polypeptide homologous to the yeast protein Yer044c. Both the human and yeast proteins are predicted to be highly basic and to present several potential, evolutionarily conserved, transmembrane domains. C14orf1 mRNA was found to be particularly abundant in the adult testis and in several cancer cell lines. The gene maps to chromosome band 14q24. Further investigations should be performed to understand the role of C14orf1 in the testis and the significance of its strong expression in the cell lines studied here.  相似文献   

18.
Protein kinases play an important role in the signaling pathway of growth factors in most of the higher organisms. During the study of protein kinase profiles of mosquitoes using RT-PCR and degenerate primers for consensus catalytic domain motifs to amplify protein kinase genes, we have noticed that a novel mosquito kinase, AaPK-38, shares a stretch of amino acids identical to the corresponding domain in Tousled gene ofArabidopsis thaliana that is required for leaf and flower development. A 2.1-kb cDNA encoding human HsHPK gene, which is a homolog of AaPK-38, was isolated from human testis cDNA library. This cDNA contains an open reading frame of 563 amino acids, with a complete kinase domain in its carboxyl terminus. The expressed Flag-tagged HsHPK was shown to have kinase activity based on in vitro autophosphorylation. Northern blot analysis revealed that human HsHPK mRNA is most abundant in testes, much less in heart and skeletal muscle and almost undetectable in liver and lung. Finally, we found that the expression of HsHPK in 4 out of 6 human hepatoma tissues is much higher than that in the adjacent normal counterpart. This result suggests HsHPK may play a role in the development of human hepatoma.  相似文献   

19.
20.
In this study we describe the identification and structure-function analysis of a novel death-associated protein (DAP) kinase-related protein, DRP-1. DRP-1 is a 42-kDa Ca(2+)/calmodulin (CaM)-regulated serine threonine kinase which shows high degree of homology to DAP kinase. The region of homology spans the catalytic domain and the CaM-regulatory region, whereas the remaining C-terminal part of the protein differs completely from DAP kinase and displays no homology to any known protein. The catalytic domain is also homologous to the recently identified ZIP kinase and to a lesser extent to the catalytic domains of DRAK1 and -2. Thus, DAP kinase DRP-1, ZIP kinase, and DRAK1/2 together form a novel subfamily of serine/threonine kinases. DRP-1 is localized to the cytoplasm, as shown by immunostaining and cellular fractionation assays. It binds to CaM, undergoes autophosphorylation, and phosphorylates an exogenous substrate, the myosin light chain, in a Ca(2+)/CaM-dependent manner. The truncated protein, deleted of the CaM-regulatory domain, was converted into a constitutively active kinase. Ectopically expressed DRP-1 induced apoptosis in various types of cells. Cell killing by DRP-1 was dependent on two features: the status of the catalytic activity, and the presence of the C-terminal 40 amino acids shown to be required for self-dimerization of the kinase. Interestingly, further deletion of the CaM-regulatory region could override the indispensable role of the C-terminal tail in apoptosis and generated a "superkiller" mutant. A dominant negative fragment of DAP kinase encompassing the death domain was found to block apoptosis induced by DRP-1. Conversely, a catalytically inactive mutant of DRP-1, which functioned in a dominant negative manner, was significantly less effective in blocking cell death induced by DAP kinase. Possible functional connections between DAP kinase and DRP-1 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号