首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tubular secretion of the organic cation, creatinine, limits its value as a marker of glomerular filtration rate (GFR) but the molecular determinants of this pathway are unclear. The organic anion transporters, OAT1 and OAT3, are expressed on the basolateral membrane of the proximal tubule and transport organic anions but also neutral compounds and cations. Here, we demonstrate specific uptake of creatinine into mouse mOat1- and mOat3-microinjected Xenopus laevis oocytes at a concentration of 10 μM (i.e., similar to physiological plasma levels), which was inhibited by both probenecid and cimetidine, prototypical competitive inhibitors of organic anion and cation transporters, respectively. Renal creatinine clearance was consistently greater than inulin clearance (as a measure of GFR) in wild-type (WT) mice but not in mice lacking OAT1 (Oat1-/-) and OAT3 (Oat3-/-). WT mice presented renal creatinine net secretion (0.23 ± 0.03 μg/min) which represented 45 ± 6% of total renal creatinine excretion. Mean values for renal creatinine net secretion and renal creatinine secretion fraction were not different from zero in Oat1-/- (-0.03 ± 0.10 μg/min; -3 ± 18%) and Oat3-/- (0.01 ± 0.06 μg/min; -6 ± 19%), with greater variability in Oat1-/-. Expression of OAT3 protein in the renal membranes of Oat1-/- mice was reduced to ~6% of WT levels, and that of OAT1 in Oat3-/- mice to ~60%, possibly as a consequence of the genes for Oat1 and Oat3 having adjacent chromosomal locations. Plasma creatinine concentrations of Oat3-/- were elevated in clearance studies under anesthesia but not following brief isoflurane anesthesia, indicating that the former condition enhanced the quantitative contribution of OAT3 for renal creatinine secretion. The results are consistent with a contribution of OAT3 and possibly OAT1 to renal creatinine secretion in mice.  相似文献   

2.
The tripeptide GSH is important in maintenance of renal redox status and defense against reactive electrophiles and oxidants. Previous studies showed that GSH is transported across the basolateral plasma membrane (BLM) into the renal proximal tubule by both sodium-coupled and sodium-independent pathways. Substrate specificity and inhibitor studies suggested the function of several carriers, including organic anion transporter 3 (Oat3). To test the hypothesis that rat Oat3 can function in renal GSH transport, the cDNA for rat Oat3 was expressed as a His6-tagged protein in E. coli, purified from inclusion bodies and by Ni2+-affinity chromatography, and reconstituted into proteoliposomes. cDNA-expressed and reconstituted Oat3 transported both GSH and p-aminohippurate (PAH) in exchange for 2-oxoglutarate (2-OG) and 2-OG and PAH in exchange for GSH, and PAH uptake was inhibited by both probenecid and furosemide, consistent with function of Oat3. mRNA expression of Oat3 and several other potential carriers was detected by RT-PCR in rat kidney cortex but was absent from NRK-52E cells, a rat proximal tubular cell line. Basolateral uptake of GSH in NRK-52E cells showed little PAH- or 2-OG-stimulated uptake. We conclude that Oat3 can function in GSH uptake and that NRK-52E cells possess a low background rate of GSH uptake, making these cells a good model for overexpression of specific, putative GSH carriers.  相似文献   

3.
The flounder renal organic anion transporter (fOat) has substantial sequence homology to mammalian basolateral organic anion transporter orthologs (OAT1/Oat1 and OAT3/Oat3), suggesting that fOat may have functional properties of both mammalian forms. We therefore compared uptake of various substrates by rat Oat1 and Oat3 and human OAT1 and OAT3 with the fOat clone expressed in Xenopus oocytes. These data confirm that estrone sulfate is an excellent substrate for mammalian OAT3/Oat3 transporters but not for OAT1/Oat1 transporters. In contrast, 2,4-dichlorophenoxyacetic acid and adefovir are better transported by mammalian OAT1/Oat1 than by the OAT3/Oat3 clones. All three substrates were well transported by fOat-expressing Xenopus oocytes. fOat K(m) values were comparable to those obtained for mammalian OAT/Oat1/3 clones. We also characterized the ability of these substrates to inhibit uptake of the fluorescent substrate fluorescein in intact teleost proximal tubules isolated from the winter flounder (Pseudopleuronectes americanus) and killifish (Fundulus heteroclitus). The rank order of the IC(50) values for inhibition of cellular fluorescein accumulation was similar to that for the K(m) values obtained in fOat-expressing oocytes, suggesting that fOat may be the primary teleost renal basolateral Oat. Assessment of the zebrafish (Danio rerio) genome indicated the presence of a single Oat (zfOat) with similarity to both mammalian OAT1/Oat1 and OAT3/Oat3. The puffer fish (Takifugu rubripes) also has an Oat (pfOat) similar to mammalian OAT1/Oat1 and OAT3/Oat3 members. Furthermore, phylogenetic analyses argue that the teleost Oat1/3-like genes diverged from a common ancestral gene in advance of the divergence of the mammalian OAT1/Oat1, OAT3/Oat3, and, possibly, Oat6 genes.  相似文献   

4.
The primary site of mercury-induced injury is the kidney due to uptake of the reactive Hg(2+)-conjugated organic anions in the proximal tubule. Here, we investigated the in vivo role of Oat1 (organic anion transporter 1; originally NKT (Lopez-Nieto, C. E., You, G., Bush, K. T., Barros, E. J., Beier, D. R., and Nigam, S. K. (1997) J. Biol. Chem. 272, 6471-6478)) in handling of known nephrotoxic doses of HgCl(2). Oat1 (Slc22a6) is a multispecific organic anion drug transporter that is expressed on the basolateral aspects of renal proximal tubule cells and that mediates the initial steps of elimination of a broad range of endogenous metabolites and commonly prescribed pharmaceuticals. Mercury-induced nephrotoxicity was observed in a wild-type model. We then used the Oat1 knock-out to determine in vivo whether the renal injury effects of mercury are mediated by Oat1. Most of the renal injury (both histologically and biochemically as measured by blood urea nitrogen and creatinine) was abolished following HgCl(2) treatment of Oat1 knock-outs. Thus, acute kidney injury by HgCl(2) was found to be mediated mainly by Oat1. Our findings raise the possibility that pharmacological modulation of the expression and/or function of Oat1 might be an effective therapeutic strategy for reducing renal injury by mercury. This is one of the most striking phenotypes so far identified in the Oat1 knock-out. (Eraly, S. A., Vallon, V., Vaughn, D. A., Gangoiti, J. A., Richter, K., Nagle, M., Monte, J. C., Rieg, T., Truong, D. M., Long, J. M., Barshop, B. A., Kaler, G., and Nigam, S. K. (2006) J. Biol. Chem. 281, 5072-5083).  相似文献   

5.
Organic anion transporters (OATs, SLC22) interact with a remarkably diverse array of endogenous and exogenous organic anions. However, little is known about the structural features that determine their substrate selectivity. We examined the substrate binding preferences and transport function of olfactory organic anion transporter, Oat6, in comparison with the more broadly expressed transporter, Oat1 (first identified as NKT). In analyzing interactions of both transporters with over 40 structurally diverse organic anions, we find a correlation between organic anion potency (pKi) and hydrophobicity (logP) suggesting a hydrophobicity-driven association with transporter-binding sites, which appears particularly prominent for Oat6. On the other hand, organic anion binding selectivity between Oat6 and Oat1 is influenced by the anion mass and net charge. Smaller mono-anions manifest greater potency for Oat6 and di-anions for Oat1. Comparative molecular field analysis confirms these mechanistic insights and provides a model for predicting new OAT substrates. By comparative molecular field analysis, both hydrophobic and charged interactions contribute to Oat1 binding, although it is predominantly the former that contributes to Oat6 binding. Together, the data suggest that, although the three-dimensional structures of these two transporters may be very similar, the binding pockets exhibit crucial differences. Furthermore, for six radiolabeled substrates, we assessed transport efficacy (Vmax) for Oat6 and Oat1. Binding potency and transport efficacy had little correlation, suggesting that different molecular interactions are involved in substrate binding to the transporter and translocation across the membrane. Substrate specificity for a particular transporter may enable design of drugs for targeting to specific tissues (e.g. olfactory mucosa). We also discuss how these data suggest a possible mechanism for remote sensing between OATs in different tissue compartments (e.g. kidney, olfactory mucosa) via organic anions.  相似文献   

6.
We have characterized the expression of organic anion transporter 6, Oat6 (slc22a20), in olfactory mucosa, as well as its interaction with several odorant organic anions. In situ hybridization reveals diffuse Oat6 expression throughout olfactory epithelium, yet olfactory neurons laser-capture microdissected from either the main olfactory epithelium (MOE) or the vomeronasal organ (VNO) did not express Oat6 mRNA. These data suggest that Oat6 is expressed in non-neuronal cells of olfactory tissue, such as epithelial and/or other supporting cells. We next investigated interaction of Oat6 with several small organic anions that have previously been identified as odortype components in mouse urine. We find that each of these compounds, propionate, 2- and 3-methylbutyrate, benzoate, heptanoate, and 2-ethylhexanoate, inhibits Oat6-mediated uptake of a labeled tracer, estrone sulfate, consistent with their being Oat6 substrates. Previously, we noted defects in the renal elimination of odortype and odortype-like molecules in Oat1 knockout mice. The finding that such molecules interact with Oat6 raises the possibility that odorants secreted into the urine through one OAT-mediated mechanism (Eraly et al., JBC 2006) are transported through the olfactory mucosa through another OAT-mediated mechanism. Oat6 might play a direct or indirect role in olfaction, such as modulation of the availability of odorant organic anions at the mucosal surface for presentation to olfactory neurons or facilitation of delivery to a distal site of chemosensation, among other possibilities that we discuss.  相似文献   

7.
Takeda M  Sekine T  Endou H 《Life sciences》2000,67(9):1087-1093
The organic anion transporter 3 (rOAT3) is a multispecific OAT localized at the basolateral membrane of the proximal tubule. The purpose of this study was to elucidate the role of protein kinase C (PKC) in the regulation of organic anion transport driven by rOAT3 and its mechanism of action. For this purpose, we established and utilized cells derived from the second segment of proximal tubule from mice stably expressing rOAT3 (S2 rOAT3). Phorbol 12-myristate 13-acetate (PMA), a PKC stimulator, attenuated the cellular uptake of estrone sulfate (ES), a prototype organic anion for rOAT3, in a dose- and time-dependent manner. PMA treatment resulted in a decrease in the Vmax, but not the Km of uptake of ES in S2 rOAT3. Treatment of S2 rOAT3 with other PKC stimulators or diacylglycerols also inhibited the uptake of ES, whereas that with an inactive phorbol ester did not. Chelerythrine chloride, a PKC inhibitor, reversed the PMA-induced decrease in uptake of ES in S2 rOAT3. These results suggest that PKC activation downregulates rOAT3-mediated organic anion transport. This down-regulation may be due to the inhibition of translocation or internalization of the rOAT3 protein, resulting in the decrease in the Vmax of rOAT3-mediated organic anion transport.  相似文献   

8.
The mechanism and membrane localization of choroid plexus (CP) organic anion transport were determined in apical (or brush border) membrane vesicles isolated from bovine choroid plexus and in intact CP tissue from cow and rat. Brush border membrane vesicles were enriched in Na(+),K(+)-ATPase (20-fold; an apical marker in CP) and demonstrated specific, sodium-coupled transport of proline, glucose, and glutarate. Vesicular uptake of the anionic herbicide 2, 4-dichlorophenoxyacetic acid (2,4-D) was markedly stimulated by an inward sodium gradient but only in the presence of glutarate, indicating the presence of apical dicarboxylate/organic anion exchange. Consistent with this interpretation, an imposed outward glutarate gradient stimulated 2,4-D uptake in the absence of sodium. Under both conditions, uptake was dramatically slowed and overshoot was abolished by probenecid. Likewise, apical accumulation of 2,4-D by intact bovine choroid plexus tissue in vitro was stimulated by external glutarate in the presence of sodium. Glutarate stimulation was abolished by 5 mM LiCl. Identical findings were obtained using rat CP tissue, which showed both sodium/glutarate-stimulated 2,4-D (tissue/medium (T/M) approximately 8) and p-aminohippurate (T/M = 2) transport. Finally, since the renal exchanger (rROAT1) has been cloned in rat kidney, a rROAT1-green fluorescent protein construct was used to analyze exchanger distribution directly in transiently transfected rat CP. As predicted by the functional studies, the fluorescently tagged transporter was seen in apical but not basolateral membranes of the CP.  相似文献   

9.
Hagos Y  Braun IM  Krick W  Burckhardt G  Bahn A 《Biochimie》2005,87(5):421-424
With the cloning of pig renal organic anion transporter 1 (pOAT1) (Biochimie 84 (2002) 1219) we set up a model system for comparative studies of cloned and natively isolated membrane located transport proteins. Meanwhile, another transport protein involved in p-aminohippurate (PAH) uptake on the basolateral side of the proximal tubule cells was identified, designated organic anion transporter 3 (OAT3). To explore the contribution of pOAT1 to the PAH clearance in comparison to OAT3, it was the aim of this study to extend our model by cloning of the pig ortholog of OAT3. Sequence comparisons of human organic anion transporter 3 (hOAT3) with the expressed sequence tag (EST) database revealed a clone and partial sequence of the pig renal organic anion transporter 3 (pOAT3) ortholog. Sequencing of the entire open reading frame resulted in a protein of 543 amino acid residues encoded by 1632 base pairs (EMBL Acc. No. AJ587003). It showed high homologies of 81%, 80%, 76%, and 77% to the human, rabbit, rat, and mouse OAT3, respectively. A functional characterization of pOAT3 in Xenopus laevis oocytes yielded an apparent Km (Kt) for [3H]estrone sulfate of 7.8 +/- 1.3 microM. Moreover, pOAT3 mediated [3H]estrone sulfate uptake was almost abolished by 0.5 mM of glutarate, dehydroepiandosterone sulfate, or probenecid consistent with the hallmarks of OAT3 function.  相似文献   

10.
11.
12.
Untargeted metabolomics on the plasma and urine from wild-type and organic anion transporter-1 (Oat1/Slc22a6) knockout mice identified a number of physiologically important metabolites, including several not previously linked to Oat1-mediated transport. Several, such as indoxyl sulfate, derive from Phase II metabolism of enteric gut precursors and accumulate in chronic kidney disease (CKD). Other compounds included vitamins (pantothenic acid, 4-pyridoxic acid), urate, and metabolites in the tryptophan and nucleoside pathways. Three metabolites, indoxyl sulfate, kynurenine, and xanthurenic acid, were elevated in the plasma and interacted strongly and directly with Oat1 in vitro with IC50 of 18, 12, and 50 μM, respectively. A pharmacophore model based on several identified Oat1 substrates was used to screen the NCI database and candidate compounds interacting with Oat1 were validated in an in vitro assay. Together, the data suggest a complex, previously unidentified remote communication between the gut microbiome, Phase II metabolism in the liver, and elimination via Oats of the kidney, as well as indicating the importance of Oat1 in the handling of endogenous toxins associated with renal failure and uremia. The possibility that some of the compounds identified may be part of a larger remote sensing and signaling pathway is also discussed.  相似文献   

13.
Hagos Y  Bahn A  Asif AR  Krick W  Sendler M  Burckhardt G 《Biochimie》2002,84(12):29-1224
A pig kidney cDNA library was screened for the porcine ortholog of the multispecific organic anion transporter 1 (pOAT1). Several positive clones were isolated resulting in two alternatively spliced cDNA clones of pOAT1 (pOAT1 and pOAT1A). pOAT1-cDNAs consist of 2126 or 1895 base pairs (EMBL Acc. No. AJ308234 and AJ308235) encoding 547 or 533 amino acid residue proteins with 89, 87, 83 and 81% homology to the human, rabbit, rat, and mouse OAT1, respectively. Heterologous expression of pOAT1 in Xenopus laevis oocytes revealed an apparent K(m) for [3H]PAH of 3.75 +/- 1.6 microM. [3H]PAH uptake mediated by pOAT1 was abolished by 0.5 mM glutarate or 1 mM probenecid. Functional characterization of pOAT1A did not show any affinity for [3H]PAH. In summary, we cloned two alternative splice variants of the pig ortholog of organic anion transporter 1. One splice form (pOAT1) showed typical functional characteristics of organic anion transporter 1, whereas the second form appears not to transport PAH.  相似文献   

14.
Feng B  Dresser MJ  Shu Y  Johns SJ  Giacomini KM 《Biochemistry》2001,40(18):5511-5520
Organic anion transporters (OATs) and organic cation transporters (OCTs) mediate the flux of xenobiotics across the plasma membranes of epithelia. Substrates of OATs generally carry negative charge(s) whereas substrates of OCTs are cations. The goal of this study was to determine the domains and amino acid residues essential for recognition and transport of organic anions by the rat organic anion transporter, rOAT3. An rOAT3/rOCT1 chimera containing transmembrane domains 1-5 of rOAT3 and 6-12 of rOCT1 retained the specificity of rOCT1, suggesting that residues involved in substrate recognition reside within the carboxyl-terminal half of these transporters. Mutagenesis of a conserved basic amino acid residue, arginine 454 to aspartic acid (R454D), revealed that this amino acid is required for organic anion transport. The uptakes of p-aminohippurate (PAH), estrone sulfate, and ochratoxin A were approximately 10-, approximately 48-, and approximately 32-fold enhanced in oocytes expressing rOAT3 and were only approximately 2-, approximately 6-, and approximately 5-fold enhanced for R454D. Similarly, mutagenesis of the conserved lysine 370 to alanine (K370A) suggested that K370 is important for organic anion transport. Interestingly, the charge specificity of the double mutant, R454DK370A, was reversed in comparison to rOAT3-R454DK370A preferentially transported the organic cation, MPP(+), in comparison to PAH (MPP(+) uptake/PAH uptake = 3.21 for the double mutant vs 0.037 for rOAT3). These data indicate that arginine 454 and lysine 370 are essential for the anion specificity of rOAT3. The studies provide the first insights into the molecular determinants that are critical for recognition and translocation of organic anions by a member of the organic anion transporter family.  相似文献   

15.
16.
Kwak JO  Kim HW  Song JH  Kim MJ  Park HS  Hyun DK  Kim DS  Cha SH 《IUBMB life》2005,57(2):109-117
The rat organic anion transporter 3 (rOAT3) has recently been identified as the third isoform of the OAT family. The mechanisms that regulate rOAT3's functions remain to be elucidated. rOAT3 contributes for moving a number of negatively charged organic compounds between cells and their extracellular milieu. Caveolin (Cav) also plays a role as a membrane transporter. To address the relationship of these two proteins, we investigated the protein-protein interaction between rOAT3 and Cav-1. The rOAT3 mRNA and protein expression were observed in the rat kidney, and the expressions of Cav-1 mRNA and protein were also detected in the kidney. Confocal microscopy of the immuno-cytochemistry experiments using primary cultured renal proximal tubular cells showed that rOAT3 and Cav-1 were co-localized at the plasma membrane. This finding was confirmed by Western blot analysis using isolated caveolae-enriched membrane fractions from the rat kidney and immuno-precipitation experimentation. When rOAT3's synthesized cRNA of rOAT3 along with the antisense oligo deoxynucleotide ofXenopusCav-1 were co-injected intoXenopusoocytes, the [(3)H] estrone sulfate uptake was significantly decreased. These findings suggest that rOAT3 and caveolin-1 share a cellular expression in the plasma membrane and Cav-1 up-regulates the organic anionic compound uptake via rOAT3 under normal physiological conditions.  相似文献   

17.
18.
19.
20.
Acute kidney injury (AKI) is a high frequent and common complication following acute myocardial infarction (AMI). This study examined and identified the effect of AMI-induced AKI on organic anion transporter 1 (Oat1) and Oat3 transport using clinical setting of pre-renal AKI in vivo. Cardiac ischaemia (CI) and cardiac ischaemia and reperfusion (CIR) were induced in rats by 30-min left anterior descending coronary artery occlusion and 30-min occlusion followed by 120-min reperfusion, respectively. Renal hemodynamic parameters, mitochondrial function and Oat1/Oat3 expression and function were determined along with biochemical markers. Results showed that CI markedly reduced renal blood flow and pressure by approximately 40%, while these parameters were recovered during reperfusion. CI and CIR progressively attenuated renal function and induced oxidative stress by increasing plasma BUN, creatinine and malondialdehyde levels. Correspondingly, SOD, GPx, CAT mRNAs were decreased, while TNFα, IL1β, COX2, iNOS, NOX2, NOX4, and xanthine oxidase were increased. Mitochondrial dysfunction as indicated by increasing ROS, membrane depolarisation, swelling and caspase3 activation were shown. Early significant detection of AKI; KIM1, IL18, was found. All of which deteriorated para-aminohippurate transport by down-regulating Oat1 during sudden ischaemia. This consequent blunted the trafficking rate of Oat1/Oat3 transport via down-regulating PKCζ/Akt and up-regulating PKCα/NFκB during CI and CIR. Thus, this promising study indicates that CI and CIR abruptly impaired renal Oat1 and regulatory proteins of Oat1/Oat3, which supports dysregulation of remote sensing and signalling and inter-organ/organismal communication. Oat1, therefore, could potentially worsen AKI and might be a potential therapeutic target for early reversal of such injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号