首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brush border membrane trehalase was purified from monkey small intestine by a procedure which includes solubilisation by Triton X-100, ammonium sulphate fractionation, and chromatography on DE-52 and hydroxyapatite. The purified enzyme had a specific activity of 11 units/mg protein and was purified 140-fold. The enzyme showed a single protein band on Polyacrylamide gel electrophoresis. It had aK m value of 17.4 mM for trehalose and a Vmax of 1.33 units. Sucrose and Tris acted as competitive inhibitors of the enzyme.  相似文献   

2.
3.
Four forms of renal trehalase were isolated and purified to homogeneity. Hydrophobic interaction chromatography separated two forms; A-form and B-form. Both forms were subdivided further on Con A-Sepharose and were stained with periodic acid-Schiff reagent, indicating that they are glycoproteins. The four forms of renal trehalase showed no significant difference in Km values for trehalose and K1 values for various inhibitors. The optimum pH of the four forms was pH 6.0 in phosphate buffer. Apparent molecular weights on gel filtration of the four forms were the same, 175,000. Furthermore, the four forms showed the same antigenicity on double immunodiffusion. However, isoelectric point (pI), susceptibility to HgCl2, stability at -80 degrees C and Na+ activation behavior were different. Glycoprotein forms were more susceptible to HgCl2 and showed lower Na+ activation than nonglycoprotein forms. The pI of less hydrophobic forms (A1, A2) was more acidic than that of more hydrophobic forms (B1, B2). On the basis of these results, it is likely that four forms of renal trehalase are "isozymes."  相似文献   

4.
Acid trehalase was purified from the yeast suc2 deletion mutant. After hydrophobic interaction chromatography, the enzyme could be purified to a single band or peak by a further step of either polyacrylamide gel electrophoresis, gel filtration, or isoelectric focusing. An apparent molecular mass of 218,000 Da was calculated from gel filtration. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate suggested a molecular mass of 216,000 Da. Endoglycosidase H digestion of the purified enzyme resulted after sodium dodecyl sulfate gel electrophoresis in one distinct band at 41,000 Da, representing the mannose-free protein moiety of acid trehalase. The carbohydrate content of the enzyme was 86%. Amino acid analysis indicated 354 residues/molecule of enzyme including 9 cysteine moieties and only 1 methionine. The isoelectric point of the enzyme was estimated by gel electrofocusing to be approximately 4.7. The catalytic activity showed a maximum at pH 4.5. The activity of the enzyme was not inhibited by 10 mM each of HgCl2, EDTA, iodoacetic acid, phenanthrolinium chloride or phenylmethylsulfonyl fluoride. There was no activation by divalent metal ions. The acid trehalase exhibited an apparent Km for trehalose of 4.7 +/- 0.1 mM and a Vmax of 99 mumol of trehalose min-1 X mg-1 at 37 degrees C and pH 4.5. The acid trehalase is located in the vacuoles. The rabbit antiserum raised against acid trehalase exhibited strong cross-reaction with purified invertase. These cross-reactions were removed by affinity chromatography using invertase coupled to CNBr-activated Sepharose 4B. Precipitation of acid trehalase activity was observed with the purified antiserum.  相似文献   

5.
Neutral trehalase was purified from stationary yeast ABYS1 mutant cells deficient in the vacuolar proteinases A and B and the carboxypeptidases Y and S. The purified electrophoretically homogeneous preparation of phosphorylated neutral trehalase exhibited a molecular mass of 160,000 Da on nondenaturing gel electrophoresis and of 80,000 Da on sodium dodecyl sulfate-gel electrophoresis. Maximal activity (114 mumol of trehalose min-1 x mg-1 at 37 degrees C) was observed at pH 6.8-7.0. The apparent Km for trehalose was 34.5 mM. Among seven oligosaccharides studied, the enzyme formed glucose only from trehalose. Neutral trehalase is located in the cytosol. A polyclonal rabbit antiserum raised against neutral trehalase precipitates the enzyme in the presence of protein A. The antiserum does not react with acid trehalase. Dephosphorylation by alkaline phosphatase from Escherichia coli of the active phosphorylated enzyme is accompanied by greater than or equal to 90% inactivation. Rephosphorylation by incubation with the catalytic subunit of beef heart protein kinase is accompanied by reactivation and incorporation of 0.85 mol of phosphate/mol subunit (80,000 Da). The phosphorylated amino acid residue was identified as phosphoserine.  相似文献   

6.
7.
8.
9.
10.
Crude soluble mucus from sheep small intestine was freed of nearly all the nucleic acid contaminants by precipitation with protamine sulphate and treatment with nucleases. After removal of non-covalently bound proteins by equilibrium density-gradient centrifugation in CsCl, a high-Mr glycoprotein was isolated by repeated h.p.l.c. from the partially purified mucin. The high degree of purity of the high-Mr mucin was borne out by (a) the observation of a single boundary on analytical ultracentrifugation in the presence of 5M-guanidinium chloride and (b) the observation of apparent monodispersity on sedimentation-equilibrium analysis. The Mr of the highly purified mucin, determined by sedimentation equilibrium, was 5.0 (+/- 0.1) X 10(6) and was concentration-independent. Finally, only goblet cells and the mucus blanket lining the intestinal epithelial cells were immunofluorescent when guinea-pig anti-(highly purified mucin) serum was used in an indirect immunofluorescence assay. The above antiserum reacted with apparently equal strength with goblet cells and with free mucin in abomasum, caecum and colon. The chemical composition of the glycoprotein was 66% carbohydrate and 34% protein, 45% of the latter being composed of valine and threonine. The glycoprotein migrated anodally on immunoelectrophoresis and contained 7.1% (w/w) sulphate. Neutral hexoses accounted for nearly half of the total carbohydrate content, followed by galactosamine and glucosamine. Whereas fucose and sialic acid were present in only small amounts, uronic acid was not detectable in the highly purified mucus glycoprotein.  相似文献   

11.
Trehalase from the culture filtrate ofLentinula edodes was purified and characterized. Molecular masses were estimated to be 158 kDa and 79–91 kDa by gel filtration and SDS-PAGE under the reduced condition, respectively. The enzyme was composed of two identical subunits and contained carbohydrate molecules. The optimum temperature and pH were obtained at around 40°C and pH 5.0, respectively. The enzyme was stable up to 40°C and in a range pH of 4–10 at 30°C. It cleaved α-1,1 linkages of trehalose, but not α-1,4, α-1,6 or β-1,4 glycosyl linkages, and was defined as an acid trehalase.  相似文献   

12.
Purification and characterization of Pz-peptidase from rabbit muscle   总被引:2,自引:0,他引:2  
Pz-peptidase was purified from rabbit muscle by acid precipitation of tissue homogenate followed by cation- and anion-exchange chromatography, gel chromatography, and immunoadsorption. In analytical gel chromatography, one single peak of protein with corresponding Pz-peptidase activity was obtained. The enzyme had an apparent Mr of 74,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and was eluted at pH 4.8 in chromatofocusing. No metals were detectable in the protein by neutron activation analysis. Purified Pz-peptidase hydrolyzed Dnp-Pro-Leu-Gly-Pro-Trp-D-Lys (Km 7.2 microM) most effectively in the presence of 5 mM 2-mercaptoethanol and 10 mM CaCl2. No inhibition was observed with inhibitors of serine proteinases, aspartic proteinases, or metalloproteinases, apart from some nonspecific reversible inhibition by 1,10-phenanthroline. The activation by Ca2+ was reversed by EDTA. The enzyme was not inhibited by E-64, cystatin, or leupeptin, but was irreversibly inactivated by iodoacetate, iodoacetamide, and N-ethylmaleimide. It was therefore concluded that rabbit muscle Pz-peptidase is not a typical member of any of the four recognized catalytic classes of proteinases, but may be an atypical cysteine endopeptidase. The peptidase was not bound by alpha 2-macroglobulin. No hydrolysis of gelatin or fibronectin by the enzyme was detected, nor was there any activation of latent collagenase.  相似文献   

13.
Acid trehalase (EC 3.2.1.28) was isolated from muscle of Ascaris suum by fractionating with ammonium sulfate, acetone and column chromatography on DEAE-cellulose and phenyl sepharose CL-4B. The purified homogeneous preparation of native acid trehalase exhibited a molecular mass of 76 kDa and of 38 kDa on SDS-PAGE. The enzyme has the optimum pH 4.9, pI 4.3, Km of 6.6 mM and Vmax=34.5 nM min(-1) x mg(-1). Besides trehalose, it hydrolyses sucrose, isomaltose and maltose and, to a lesser degree melezitose, and it does not act on cellobiose and lactose. Acid trehalase was activated by MgCl2, KNO3, NaCl, CaCl2, CH2ICOOH and p-chloromercuribenzoate and inhibited by EDTA, ZnSO4 and FeCl3.  相似文献   

14.
Trehalase found to be associated with the brush border membrane vesicles and the Ca2+ aggregated basolateral membrane vesicles were purified to homogeneity. They were found to differ in their molecular weight, subunit structure, heal stability, N-terminal residues, amino acid composition and also the active site residues. Chemical modification showed the presence of a histidine and tyrosine at the active site of brush border membrane vesicle trehalase and two histidines at the active site of basolateral membrane vesicle.  相似文献   

15.
16.
17.
beta-D-Galactosidase has been purified to apparent homogeneity from rabbit spleen. The purification steps involved ammonium sulphate precipitation, DEAE-cellulose, concanavalin A-Sepharose, Sephadex G-200, and Sepharose 4B-(epsilon-aminocaproyl)-2-deoxy-beta-D-glucosylamine affinity chromatographies. In the DEAE-cellulose step, the beta-D-galactosidase was separated into two molecular forms, designated I and II, with similar pH optimum, Km, substrate specificity, and sensitivity to substrate analogues and other substances. Form I was purified 1,800-fold with a yield of about 2% of the total activity. This form is heat-labile, it has an acid optimal pH (4.0), an isoelectric point of 6.7 and a molecular weight of 75,000 daltons. Form II has an optimal pH of 3.6 and three different pI values (5.3, 5.7, and 6.7) whose relative proportions can be modified by treatment with neuraminidase. Form II appeared to be a multimeric form (IIA) of about 600,000 daltons at pH 4.0, which was reversibly dissociated to an oligomeric form (IIB) with an apparent molecular weight of 120,000 at neutral pH values. Both IIA and IIB were purified separately and showed an acid pH optimum and an heterogeneous pI (from 4.6 to 7.2). The dissociation of IIA into IIB can be generated spontaneously, but is increased by the presence of urea in the elution buffer, suggesting that both are aggregates of a common subunit.  相似文献   

18.
Kidney and intestinal brush border membranes were isolated from 14-day-old rabbits and papa?n solubilized maltase-glucoamylase was purified to almost homogeneity from both membranes. Maltase-glucoamylase from kidney and intestine have the same molecular weight (669,000 daltons by AcA 22 gel filtration) and the same Km (4 mM, for maltose). Tris (Ki = 12.5 mM, for maltose) is a non-competitive inhibitor for both enzymes. In intestine, maltase and glucoamylase have low activity during the first two postnatal weeks and then undergo a sharp increase during the next 2 weeks. In contrast, for trehalase, adult levels are reached about 6 days after birth. Hydrocortisone injection to 10 days rabbits causes precocious increases in the specific activities of trehalase (3.6 x), maltase (5.2 x) and glucoamylase (7.4 x). Conversely, kidney maltase, glucoamylase and trehalase activities rise gradually from birth, reaching adult levels by the end of the third week. Administration of hydrocortisone to suckling rabbit does not affect either trehalase or maltase and glucoamylase in kidney brush border membrane.  相似文献   

19.
20.
Two forms of adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4), differing in molecular size, have been purified and obtained in homogeneous form from rabbit intestine. The purification procedures involved extraction with acetate buffer, pH 5.5, precipitation and fractional reextraction with (NH4)2SO4, ion-exchange chromatography on DEAE-cellulose and gel filtration on Sephadex G-75 and Sephadex G-200. Gel filtrations analysis gave molecular weight estimates of 265 000 and 32 000 for the large and small deaminases respectively. The two enzymes forms had similar pH optima and pH stability ranges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号