首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because hyperoxia induces early injury to lung endothelial cells and since tolerance to hyperoxia is correlated with increased lung antioxidant enzyme activity, we measured superoxide dismutase, catalase and glutathione peroxidase in both fresh isolates and primary cultures of endothelial cells from pig pulmonary artery and aorta. Cultured endothelial cells were studied at confluency and up to 5 days thereafter under control or hyperoxic conditions. In both types of confluent cell, total and cyanide-insensitive superoxide dismutase increased when compared to fresh cells. The most conspicuous postconfluency change in both types of endothelial cell was a marked decrease in gluthathione peroxidase, which could be prevented by the addition of selenomethionine to culture media. A 5-day exposure to hyperoxia resulted in a 2-fold increase in cyanide-insensitive superoxide dismutase in both aortic and pulmonary artery endothelial cells. In view of a similar decrease in DNA in both types of cells despite some differences in enzyme levels, oxygen cytotoxicity could not be related to a particular antioxidant enzyme profile.  相似文献   

2.
We compared the effects of 95% O2 (hyperoxia) alone, endotoxin (20 ng/ml) alone, and 95% O2 plus endotoxin on the release of lactate dehydrogenase (LDH), uptake of 5-hydroxytryptamine (5-HT), and antioxidant enzyme activities in porcine pulmonary arterial and aortic endothelial cells in monolayer culture. Hyperoxia increased LDH release and decreased 5-HT in both endothelial cell types. Hyperoxia also caused a decrease in catalase (CAT) activity and an increase in total superoxide dismutase (SOD) and glutathione reductase (GSH-Red) activities in both cell types. Endotoxin alone had no effect on LDH release, 5-HT uptake, or antioxidant enzyme activities. However, endotoxin prevented the hyperoxic increase in LDH release and the hyperoxic decrease in 5-HT uptake. Endotoxin plus 95% O2 had no consistent effect on the antioxidant enzyme profile in pulmonary artery or aortic endothelial cells. These results indicate that (1) hyperoxia injures both pulmonary artery and aortic endothelial cells in culture and causes changes in the antioxidant enzyme profile that are similar in the two cell types; (2) hyperoxia-induced decreases in CAT activity and increases in SOD activity may be responsible for increased sensitivity of endothelial cells to O2 toxicity; and (3) endotoxin protects against hyperoxic injury to endothelial cells in vitro, but increases in antioxidant enzyme activities are not the mechanism for this protection.  相似文献   

3.
Prolonged continuous exposure of adult (3–4 months) and old (21 months) mice to hyperoxia did not lead to significant changes in the activities of superoxide dismutase and catalase in liver or blood. Lung superoxide dismutase activity increased by 25% during initial exposure to 100% O2, but then fell progressively to below control level. Exposure of mice to 60% or 80% O2 increased their susceptibility to further exposure to 100% O2. The results clearly show that both adult and old mice are incapable of coping with the high oxygen environment and that antioxidant enzyme induction and the associated partial protection from pulmonary O2 toxicity are not the general rule in mammalian lung exposed to subtoxic oxygen levels.  相似文献   

4.
The time course and nature of the pulmonary inflammatory and antioxidant responses, both during and after hyperoxic-induced acute lung injury were studied in the preterm guinea pig. Three-day preterm (65 days gestation) guinea pigs were randomly exposed to either 21% O2 (control) or 95% O2 (hyperoxia) for 72 hours. All pups were then maintained in ambient conditions for up to a further 11 days, during which time lung damage was monitored. In animals exposed to hyperoxia, evidence of acute lung injury and inflammation was characterized by a marked increase in microvascular permeability and elevated numbers of neutrophils in bronchoalveolar lavage fluid. Protein concentration, elastase-like activity and elastase-inhibitory capacity in lavage fluid were at a maximum at the end of the 72 hours hyperoxic exposure. Four days later, all values had returned to control levels. In contrast, increased numbers of neutrophils, macrophages and lymphocytes were recovered in the lavage fluid during this early recovery period. Coinciding with the influx of inflammatory cells, there was a significant increase in glutathione peroxidase, manganese superoxide dismutase and catalase activities in immature lung. Lung copper/zinc superoxide dismutase activity remained unchanged during both experimental periods. The strong temporal relationship between the influx of inflammatory cells to the lung and the induction of pulmonary antioxidant enzyme defences suggests that a common mechanism underlies both responses. These findings have led us to regard inflammation in the hyperoxic-injured immature lung as a beneficial event and not, as previously suggested, as part of the injurious process.  相似文献   

5.
A newborn rat model of retinopathy of prematurity was used to test the hypothesis that a lack of superoxide dismutase contributes to the retinal vaso-attenuation seen during exposure of the animals to hyperoxic conditions. To determine the endogenous superoxide dismutase activity of the retina under hyperoxic conditions, litters of albino rats were placed in either constant 80% ambient oxygen (constant hyperoxia), or placed in 21% oxygen (room air) immediately after birth. Every other day, for 14 days, several rat pups were sacrificed and their retinas removed for the determination of total superoxide dismutase (SOD) activity and manganese-associated SOD activity. An attempt was made to increase retinal SOD activity by intraperitoneal administration of exogenous SOD encapsulated in polyethylene glycol-modified liposomes. Additional litters were exposed to the same oxygen treatments and supplemented twice daily with either liposome-encapsulated superoxide dismutase in saline or liposomes containing saline without SOD. Animals were sacrificed at various time points for the determination of total superoxide dismutase activity and computer-assisted analysis of vessel density and avascular area. Animals raised in an atmosphere of constant 80% oxygen had significantly reduced levels of retinal superoxide dismutase activity through 6 days of life when compared to their room air-raised littermates. At 6 days of age, daily supplementation with liposome-encapsulated SOD had significantly increased retinal superoxide dismutase activity and reduced oxygen-induced vaso-attenuation as evidenced by increased vessel density and decreased avascular area, when compared to littermates exposed to constant hyperoxia that received control liposomes. Superoxide dismutase had no adverse effects on any of the animals regardless of treatment. Tracing experiments demonstrated that liposomes entered the retina and were found in cells morphologically resembling mi-croglia. Delivery of SOD to the retina via long-circulating liposomes proved beneficial, suggesting that restoration and/or supplementation of endogenous antioxidants in oxygen-damaged retinal tissue is a potentially valuable therapeutic strategy.  相似文献   

6.
Reactive oxygen species (ROS) such as superoxide and hydrogen peroxide are known to play an important role in the proliferation and viability of vascular smooth muscle cells. In this study, we determined the effects of increased superoxide dismutase and catalase activity on fetal pulmonary arterial smooth muscle cell (FPASMC) proliferation and viability using EUK-134, a superoxide dismutase/catalase mimetic. Treatment of FPASMC with EUK-134 or with a combination of superoxide dismutase and catalase enzymes decreased superoxide and hydrogen peroxide levels as detected by the fluorescent dyes dihydroethidium and dichlorodihydrofluorescein diacetate, respectively. EUK-134 (5 microM) attenuated serum-induced FPASMC proliferation, whereas 50 microM EUK-134 decreased the number of viable cells, suggesting cell death. Conversely, combined superoxide dismutase and catalase enzyme activity equivalent to 50 microM EUK-134 prevented proliferation but did not reduce the number of viable FPASMC. The loss of mitochondrial membrane potential after 18 h, an increase in caspase-9 and caspase-3 activity after 24 h, and the subsequent appearance of TdT-mediated dUTP nick end labeling-positive nuclei were detected in FPASMC after treatment with 50 microM EUK-134. This indicates an induction of programmed rather than necrotic cell death and suggests that prolonged removal of ROS is required to stimulate apoptosis. Compounds such as EUK-134 may, therefore, prove more effective than enzymic antioxidants over longer periods, especially when the aim is to decrease the number of smooth muscle cells in diseases resulting from excessive muscularization.  相似文献   

7.
Root-colonizing, saprophytic fluorescent pseudomonads of the Pseudomonas putida-P. fluorescens group express similar levels of catalase and superoxide dismutase activities during growth on a sucrose- and amino acid-rich medium. Increased specific activities of catalase but not superoxide dismutase were observed during growth of these bacteria on components washed from root surfaces. The specific activities of both enzymes were also regulated during contact of these bacteria with intact bean roots. Increased superoxide dismutase and decreased catalase activities were observed rapidly, by 10 min upon inoculation of cells onto intact bean roots. Catalase specific activity increased with time to peak at 12 h before declining. By 48 h, the cells displayed this low catalase but maintained high superoxide dismutase specific activities. Catalase with a low specific activity and a high superoxide dismutase activity also were present in extracts of cells obtained from 7-day-old roots colonized from inoculum applied to seed. This specific activity of superoxide dismutase of root-contacted cells was about fourfold-higher in comparison to cells grown on rich medium, whereas the specific activity for catalase was reduced about fivefold. A single catalase isozyme, isozyme A, and one isozyme of superoxide dismutase, isozyme 1, were detected during growth of the bacteria on root surface components and during exposure of cells to intact bean roots for 1 h. An additional catalase, isozyme B, was detected from bacteria after exposure to the intact bean roots for 12 h. Catalase isozyme A and superoxide dismutase isozyme 1 were located in the cytoplasm and catalase band B was located in the membrane of P. putida.  相似文献   

8.
Summary Cultured type II pneumocyte responses to in vitro normoxia (95% air: 5% CO2) or hyperoxia (95% O2:5% CO2) were quantified. Normoxic culture (0 to 96 h) of rabbit type II cells resulted in enhanced cell-monolayer protein and DNA content. During this same time, cellular activities of superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH Px) decreased. Compared to cultures maintained in normoxia, hyperoxic exposure of cultures resulted in decreased cell-associated protein and DNA content. Exposure to hyperoxia also resulted in cytotoxicity as demonstrated by elevated cellular release of DNA, lactate dehydrogenase (LDH), and preincorporated 8-[14C]adenine. Cellular catalase and GSH Px activities in hyperoxic cells decreased similarly to normoxic controls. In contrast, cellular SOD activity in hyperoxic cells decreased less than in normoxic cultures. Cellular SOD activity in hyperoxic cultures, when normalized for cellular protein, but not DNA, was greater than normoxic values after 24 to 96 h of exposure. Unlike the decrease in cellular antioxidant enzymes during normoxic and hyperoxic culture, cellular LDH activity increased during both these exposures. Cellular LDH activity in 24 to 96 h hyperoxia-exposed cells increased to a lesser extent than normoxic controls. The extent of depression in LDH activity was dependent on whether the activity was normalized for cellular protein or DNA. Type II pneumocytes, which normally undergo hyperplasia and hypertrophy during hyperoxia in vivo, exhibited oxygen sensitivity in vitro. Exposure of type II cells to hyperoxia in vitro resulted in alterations in cellular SOD and LDH activities, but recognition of such changes were dependent on whether enzymatic activities were normalized for cellular DNA or protein. This work was supported by a grant from the Health Effects Institute, grant HL40458 from the National Institutes of Health, Bethesda, MD, and a grant from the American Lung Association, New York, NY.  相似文献   

9.
We studied the level of lipid peroxidation and the activity of antioxidant enzymes (superoxide dismutase and catalase) in various tissues of adult Xenopus laevis after an initial exposure to hyperbaric oxygenation at the developmental stage 38. We have found that irrespective to the mode of treatment, the level of lipid peroxidation and activity of antioxidant enzymes in the brain, lungs, and blood of these animals were higher as compared to control animals. We demonstrate that, after the exposure of adult animals to hyperoxia, if they were earlier subjected to hyperbaric oxygenation (0.2 MPa) at stage 38, there was no intensification of lipid peroxidation or changes in the activity of superoxide dismutase and catalase. In adult animals initially subjected to hyperbaric oxygenation at the same stage of development but at the pressure--0.7 MPa, the second exposure to hyperoxia led to a drastic intensification of lipid peroxidation in the brain; in some animals, an increased level of lipid peroxidation products in the lungs was observed.  相似文献   

10.
The administration of very low doses of bacterial endotoxin protects rats during exposure to hyperoxia and is associated with the induction of lung antioxidant enzyme activities. Copper-deficient rats have increased susceptibility to O2 toxicity, which may be related to their decreased lung superoxide dismutase activity (SOD) or decreased plasma ceruloplasmin concentrations. To determine whether endotoxin can protect against hyperoxia in this susceptible model, we exposed copper-deficient and control rats to a fractional inspiratory concentration of O2 greater than 0.95 for 96 h after pretreatment with 500 micrograms/kg of bacterial endotoxin or phosphate-buffered saline (PBS). Mortality in the copper-deficient and control rats given PBS and exposed to O2 for 96 h was 100%. Copper-deficient rats died significantly earlier during the exposure than controls. No mortality occurred in either group treated with endotoxin and hyperoxia despite the decreased activity of copper-dependent enzymes in the copper-deficient rats. Copper-deficient rats treated with endotoxin and exposed to hyperoxia did increase lung Cu-Zn-SOD activity, but activity remained below levels found in air-exposed controls. Mn-SOD activity was found to be induced above air-exposed controls in the copper-deficient rats treated with endotoxin and exposed to hyperoxia. Hyperoxic exposure resulted in a marked increase in plasma ceruloplasmin concentrations in the control rats, but no increases in ceruloplasmin occurred in the copper-deficient animals. Endotoxin protects copper-deficient rats from hyperoxia despite their decreased lung Cu-Zn-SOD activity, and decreased plasma ceruloplasmin.  相似文献   

11.
Exposure of animals to hyperoxia results in respiratory failure and death within 72 h. Histologic evaluation of the lungs of these animals demonstrates epithelial apoptosis and necrosis. Although the generation of reactive oxygen species (ROS) is widely thought to be responsible for the cell death observed following exposure to hyperoxia, it is not clear whether they act upstream of activation of the cell death pathway or whether they are generated as a result of mitochondrial membrane permeabilization and caspase activation. We hypothesized that the generation of ROS was required for hyperoxia-induced cell death upstream of Bax activation. In primary rat alveolar epithelial cells, we found that exposure to hyperoxia resulted in the generation of ROS that was completely prevented by the administration of the combined superoxide dismutase/catalase mimetic EUK-134 (Eukarion, Inc., Bedford, MA). Exposure to hyperoxia resulted in the activation of Bax at the mitochondrial membrane, cytochrome c release, and cell death. The administration of EUK-134 prevented Bax activation, cytochrome c release, and cell death. In a mouse lung epithelial cell line (MLE-12), the overexpression of Bcl-XL protected cells against hyperoxia by preventing the activation of Bax at the mitochondrial membrane. We conclude that exposure to hyperoxia results in Bax activation at the mitochondrial membrane and subsequent cytochrome c release. Bax activation at the mitochondrial membrane requires the generation of ROS and can be prevented by the overexpression of Bcl-XL.  相似文献   

12.
Instillation of exogenous surfactant into rabbits exposed to 100% O2 increases survival time and decreases alveolar epithelial injury. In this study we investigated whether rabbits with increased levels of endogenous pulmonary surfactant are more resistant to hyperoxia. Rabbits were exposed to 100% O2 for 64 h and then returned to room air for 8 days (preexposed). At this time, they had normal gas exchange and alveolar permeability to solute and increased levels of lavageable alveolar phospholipids compared with control rabbits breathing air (26 +/- 2 vs. 12 +/- 2 mumol/kg). Preexposed rabbits survived significantly longer than control rabbits when reexposed to 100% O2 (166 +/- 24 vs. 80 +/- 6 h; n = 7; P less than 0.05) and had significantly higher values of total lavageable phospholipids after 72 h in 100% O2 (15 +/- 2 vs. 5 +/- 2 mumol/kg). Controls developed arterial hypoxemia after 72 h in 100% O2. On the other hand, preexposed rabbits maintained arterial PO2 values greater than 100 Torr throughout the hyperoxic exposure and developed progressive respiratory acidosis. Specific activities of CuZn and Mn superoxide dismutase, catalase, and glutathione peroxidase in lung homogenates and isolated alveolar type II pneumocytes of preexposed rabbits were unchanged from those of controls before O2 reexposure and after 72 h in 100% O2. We concluded that 1) increases in pulmonary antioxidant enzyme specific activities are not necessary for the development of O2 tolerance in rabbits and 2) pulmonary surfactant may play a role in O2 adaptation.  相似文献   

13.
The effects of hyperoxia on the status of antioxidant defenses and markers of oxidative damage were evaluated in goldfish tissues. The levels of lipid peroxides, thiobarbituric acid reactive substances, carbonyl proteins and the activities of some antioxidant enzymes were measured in brain, liver, kidney and skeletal muscle of goldfish, Carassius auratus L., over a time course of 3-12 h of hyperoxia exposure followed by 12 or 36 h of normoxic recovery. Exposure to high oxygen resulted in an accumulation of protein carbonyls in tissues throughout hyperoxia and recovery whereas lipid peroxides and thiobarbituric acid reactive substances accumulated transiently under short-term hyperoxia stress (3-6 h) but were then strongly reduced. This suggests that hyperoxia stimulated an enhancement of defenses against lipid peroxidation or mechanisms for enhancing the catabolism of peroxidation products. The activities of principal antioxidant enzymes, superoxide dismutase and catalase, were not altered under hyperoxia but catalase increased during normoxic recovery; activities may rise in anticipation of further hyperoxic excursions. In most tissues, the activities of glutathione-utilizing enzymes (glutathione peroxidase, glutathione-S-transferase, glutathione reductase) as well as glucose-6-phosphate dehydrogenase, were not affected under hyperoxia but increased sharply during normoxic recovery. Correlations between some enzyme activities and oxidative stress markers were found, for example, an inverse correlation was seen between levels of thiobarbituric acid reactive substances and glutathione-S-transferase activity in liver and catalase and glucose-6-phosphate dehydrogenase in kidney. The results suggest that liver glutathione-S-transferase plays an important role in detoxifying end products of lipid peroxidation accumulated under hyperoxia stress.  相似文献   

14.
Pretreatment with the combination of tumor necrosis factor/cachectin (TNF/C) and interleukin 1 (IL-1) increased glucose-6-phosphate dehydrogenase (G6PDH), glutathione reductase (GR), glutathione peroxidase (GPX), catalase (CAT), and superoxide dismutase (SOD) activities in lungs of rats continuously exposed to hyperoxia for 72 h, a time when all untreated rats had already died. Pretreatment with TNF/C and IL-1 also increased, albeit slightly, lung G6PDH and GR activities of rats exposed to hyperoxia for 4 or 16 h. By comparison, no differences occurred in lung antioxidant enzyme activities of TNF/C and IL-1- or saline-pretreated rats exposed to hyperoxia for 36 or 52 h; the latter is a time just before untreated rats began to succumb during exposure to hyperoxia. The results raise the possibility that TNF/C and IL-1 treatment can increase lung antioxidant enzyme activities and that increased lung antioxidant enzymes may contribute to the increased survival of TNF/C and IL-1-pretreated rats in hyperoxia for greater than 72 h.  相似文献   

15.
HL60 cells exposed to increasing paraquat concentrations were screened for clones without increased superoxide dismutase activities in an effort to examine cytotoxic events occurring after superoxide production. The resulting resistance to paraquat was not associated with alterations in paraquat uptake, catalase, or NADPH-P450 reductase activity, but to alterations in glutathione-dependent enzyme activities. While increases in glutathione-dependent enzymes upon exposure to paraquat have been reported, the increases were considered a secondary response to increases in superoxide dismutase activities. Our results demonstrate that glutathione-dependent enzymes alone provide protection against paraquat toxicity, and their increase upon exposure to paraquat can be independent of the response of superoxide dismutases. This supports a previous finding that cells resistant to Adriamycin, based on elevated glutathione peroxidase and transferase activities are also cross-resistant to paraquat. Unlike this previous report, the increase in glutathione peroxidase was not a persistent genetic event, as activities returned to normal upon removal of paraquat. An isolated increase in glutathione peroxidase without accompanying increases in superoxide dismutases was a rare event, as nearly all clones examined after exposure to paraquat had increased superoxide dismutase.  相似文献   

16.
We investigated the mechanism of cell toxicity of alpha-tocopheryl hemisuccinate (TS). TS concentration- and time-dependently induced the lactate dehydrogenase release and DNA fragmentation of rat vascular smooth muscle cells (VSMC). Exogenous addition of superoxide dismutase, but not catalase, significantly inhibited the cell toxicity of TS. The NADPH-dependent oxidase activity of VSMC was stimulated by TS treatment. The cell toxicity of TS was inhibited by NADPH oxidase inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride. Consequently, TS-induced apoptosis of VSMC was suggested to be caused by exogenous O(2)(-) generated via the oxidase system activated with TS.  相似文献   

17.
Electroneutral Na absorption occurs in the intestine via sodium-hydrogen exchanger (NHE) isoforms NHE2 and NHE3. Bicarbonate and butyrate both stimulate electroneutral Na absorption through NHE. Bicarbonate- but not butyrate-dependent Na absorption is inhibited by cholera toxin (CT). Long-term exposure to butyrate also influences expression of apical membrane proteins in epithelial cells. These studies investigated the effects of short- and long-term in vivo exposure to butyrate on apical membrane NHE and mRNA, protein expression, and activity in rat ileal epithelium that had been exposed to CT. Ileal loops were exposed to CT in vivo for 5 h and apical membrane vesicles were isolated. 22Na uptake was measured by using the inhibitor HOE694 to identify NHE2 and NHE3 activity, and Western blot analyses were performed. CT reduced total NHE activity by 70% in apical membrane vesicles with inhibition of both NHE2 and NHE3. Reduced NHE3 activity and protein expression remained low following removal of CT but increased to control values following incubation of the ileal loop with butyrate for 2 h. In parallel there was a 40% decrease in CT-induced increase in cAMP content. In contrast, NHE2 activity partially increased following removal of CT and was further increased to control levels by butyrate. NHE2 protein expression did not parallel its activity. Neither NHE2 nor NHE3 mRNA content were affected by CT or butyrate. These results indicate that CT has varying effects on the two apical NHE isoforms, inhibiting NHE2 activity without altering its protein expression and reducing both NHE3 activity and protein expression. Butyrate restores both CT-inhibited NHE2 and NHE3 activities to normal levels but via different mechanisms.  相似文献   

18.
Summary The effects of anoxia and reoxygenation on major antioxidant enzyme activities were investigatedin vitro in immortalized rat brain endothelial cells (RBE4 cells). A sublethal anoxic period of 12 h was assessed for RBE4 cells using the neutral red uptake test. Anoxia markedly influenced the specific activity of catalase and superoxide dismutase, with no major effect on glutathione peroxidase or glutathione reductase. After 24 h postanoxia, the superoxide dismutase activity modulated by the presence or absence of oxygen returned to control value. Damage and recovery of RBE4 immortalized rat brain endothelial cells in culture after exposure to free radicals and other oxygen-derived species provides a usefulin vitro model to study anoxia-reoxygenation trauma at the cellular level.  相似文献   

19.
Proposed mechanism for neonatal rat tolerance to normobaric hyperoxia   总被引:1,自引:0,他引:1  
Induction of two forms of superoxide dismutase, catalase and glutathione peroxidase, occurs very rapidly in neonatal rat lung tissue upon exposure of these animals to 94 + % normobaric oxygen. No such oxygen-mediated enzyme induction occurs in the lungs of adult rats. The aged-dependent pattern of enzyme induction correlates with the well-established age-dependent tolerance of neonatal rats to hyperoxia. Enzyme induction occurs in the lungs of neonates in only those species known to be resistant to oxygen-provoked lung damage. Compromise of oxygen-mediated enzyme induction predisposed the neonatal rats to pulmonary oxygen toxicity. These data have formed the basis of the proposal that oxygen induction of the superoxide dismutases catalase and glutathione peroxidase provides a vital part of the defense mechanism against oxygen toxicity. A biochemical mechanism of oxygen-provoked pulmonary damage has been elaborated to explain the role of each enzyme in the protection against oxygen and free radical toxicity.  相似文献   

20.
Breathing air with a high oxygen tension induces an inflammatory response and injures the microvessels of the lung. The resulting development of smooth muscle cells in these segments contributes to changes in vasoreactivity and increased pulmonary artery pressure. This in vivo study determines the temporal and spatial expression of endogenous endothelial nitric oxide synthase (NOS III) and inducible NOS (NOS II), important enzymes regulating vasoreactivity and inflammation, in the adult rat lung during the development of experimental pulmonary hypertension induced by oxidant injury. We analyzed the cellular distribution of these NOS isoforms, using specific antibodies, and assessed enzyme activity at baseline and after 1-28 days of hyperoxia (FIO2 0.87). The number of NOS III-immuno-positive endothelial cells increased early in hyperoxia and then remained high. By day 28, the relative number of these cells had increased from 40% in proximal vessels and 13-16% in distal alveolar vessels of the normal lung to 73-86% and 40-59%, respectively, in hyperoxia. Pulmonary alveolar macrophages (PAMs), normally few in number and only weakly immunopositive for NOS II or III in the normal lung, increased in number in hyperoxia and were strongly immunopositive for each isoform. These morphological data were supported by a temporal increase in total and calcium-independent NOS activity. Thus NOS expression and activity significantly increased in hyperoxia as pulmonary hypertension developed, and NOS III expression increased selectively in vascular endothelial cells, while both NOS isoforms were expressed by the PAM population. We conclude that this increase in expression of a potent vasodilator, an antiproliferative agent for smooth muscle cells, and an antioxidant molecule represents an adaptive response to protect the lung from oxidant-induced vascular and epithelial injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号