首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intravenous administration of low doses of lysergic acid diethylamide (LSD) or of the selective 5-hydroxytryptamine1A (5-HT1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) depresses the firing activity of dorsal raphe 5-HT-containing neurons, presumably via the activation of 5-HT1A receptors. The present studies were undertaken to determine the effect of different types of 5-HT receptor antagonists on this effect of LSD and 8-OH-DPAT. (-)-Propranolol (2 mg/kg i.v.), methiothepin (2 mg/kg i.p., twice daily for 4 days followed by an additional dose of 2 mg/kg i.p., prior to the experiment), pelanserine (0.5 mg/kg i.v.), and indorenate (125 micrograms/kg i.v.) failed to block the effects of either LSD or 8-OH-DPAT on the firing activity of 5-HT neurons of the dorsal raphe nucleus. However, spiperone (1 mg/kg i.v.) significantly reduced the effect of both LSD and 8-OH-DPAT. These results indicate that, among the five putative 5-HT receptor antagonists tested, only spiperone can antagonize the suppressant effect of 5-HT receptor agonists on the firing of dorsal raphe 5-HT neurons.  相似文献   

2.
In cerebral cortex and lateral septal nuclei different serotonergic receptor subtypes coexist, thus a different action on neuronal firing may be expected depending on the receptor activated. Dorsal raphe nucleus stimulation produced an increased rate of firing in cortical layer V, and in lateral septal nuclei. However, firing rate in cortical layer VI remained unchanged after stimulating the dorsal raphe nucleus. Clomipramine is a tricyclic which exerts its main actions on serotonergic receptors, and long-term treatment with this antidepressant produced a selective increased firing rate in lateral septal neurons, but not in cortical neurons. From an electrophysiological point of view, it is concluded that the excitatory actions on firing rate elicited by dorsal raphe nucleus stimulation or clomipramine treatment are mediated by 5-HT2 receptor subtype activation which is likely to be acting as a 5-HT1A modulator in such places where both receptor subtypes coexist.  相似文献   

3.
4.
Abstract: Serotonergic neurons of the dorsal and median raphe nuclei are morphologically dissimilar. Recent results challenge previous evidence indicating a greater inhibition of dorsal raphe neurons after 5-hydroxytryptamine1A (5-HT1A) autoreceptor activation. As both nuclei innervate different forebrain territories, this issue is critical to understanding the changes in brain function induced by anxiolytic and antidepressant drugs. Using microdialysis, we examined the modifications of 5-HT release induced by the selective 5-HT1A agonist ipsapirone in both neuronal pathways. Maximal and minimal basal 5-HT values (in the presence of 1 µ M citalopram) were 45.0 ± 4.8 fmol/fraction in the median raphe nucleus and 8.4 ± 0.4 fmol/fraction in the dorsal hippocampus. Ipsapirone (0.3, 3, and 10 mg/kg s.c.) reduced dose-dependently 5-HT in the two raphe nuclei and four forebrain areas. Maximal reductions (to ∼25% of predrug values) were observed in cortex and striatum and in median raphe nucleus. The effects were more moderate in dorsal and ventral hippocampus (to 66 and 50% of baseline, respectively). These results are consistent with a higher sensitivity of dorsal raphe neurons to 5-HT1A autoreceptor activation. Yet the differential reduction of 5-HT release in the median raphe nucleus and hippocampus suggests the presence of complex mechanisms of control of 5-HT release in these neurons.  相似文献   

5.
D K Pitts  J Marwah 《Life sciences》1986,38(13):1229-1234
The effects of intravenous (i.v.) cocaine HCl on single identified spontaneously firing noradrenergic neurons in the nucleus locus coeruleus (LC) were studied in rats in vivo. Cocaine (0.25-1 mg/kg) produced inhibition of spontaneously firing LC neurons, which was reversed by the administration of the selective alpha 2-adrenoceptor antagonist, piperoxane (250 micrograms/kg, i.v.). Procaine, a local anesthetic that is structurally related to cocaine, did not inhibit LC neurons in doses up to 4 mg/kg, i.v. These results suggest that cocaine in low doses has significant central sympathomimetic effects at the single noradrenergic neuron level and that the inhibition of spontaneous activity may be mediated by alpha 2-adrenoceptors. Our results also indicate that cocaine in pharmacologically relevant doses, can significantly affect central alpha 2-adrenoceptor regulatory processes.  相似文献   

6.
Abstract Substance P antagonists of the neurokinin-1 receptor type (NK1) are gaining growing interest as new antidepressant therapies. It has been postulated that these drugs exert this putative therapeutic effect without direct interactions with serotonin (5-HT) neurones. Our recent microdialysis experiment performed in NK1 receptor knockout mice suggested evidence of changes in 5-HT neuronal function (Froger et al. 2001). The aim of the present study was to evaluate the effects of coadministration of the selective 5-HT reuptake inhibitor (SSRI) paroxetine with a NK1 receptor antagonist (GR205171 or L733060), given either intraperitoneally (i.p.) or locally into the dorsal raphe nucleus, on extracellular levels of 5-HT ([5-HT]ext) in the frontal cortex and the dorsal raphe nucleus using in vivo microdialysis in awake, freely moving mice. The systemic or intraraphe administration of a NK1 receptor antagonist did not change basal cortical [5-HT]ext in mice. A single systemic dose of paroxetine (4 mg/kg; i.p.) resulted in a statistically significant increase in [5-HT]ext with a larger extent in the dorsal raphe nucleus (+ 138% over basal AUC values), than in the frontal cortex (+ 52% over basal AUC values). Co-administration of paroxetine (4 mg/kg; i.p.) with the NK1 receptor antagonists, GR205171 (30 mg/kg; i.p.) or L733060 (40 mg/kg; i.p.), potentiated the effects of paroxetine on cortical [5-HT]ext in wild-type mice, whereas GR205171 (30 mg/kg; i.p.) had no effect on paroxetine-induced increase in cortical [5-HT]ext in NK1 receptor knock-out mice. When GR205171 (300 micro mol/L) was perfused by 'reverse microdialysis' into the dorsal raphe nucleus, it potentiated the effects of paroxetine on cortical [5-HT]ext, and inhibited paroxetine-induced increase in [5-HT]ext in the dorsal raphe nucleus. Finally, in mice whose 5-HT transporters were first blocked by a local perfusion of 1 micro mol/L of citalopram into the frontal cortex, a single dose of paroxetine (4 mg/kg i.p.) decreased cortical 5-HT release, and GR205171 (30 mg/kg i.p.) reversed this effect. The present findings suggest that NK1 receptor antagonists, when combined with a SSRI, augment 5-HT release by modulating substance P/5-HT interactions in the dorsal raphe nucleus.  相似文献   

7.
Activation of NMDA receptors has been shown to induce either neuronal cell death or neuroprotection against excitotoxicity in cultured cerebellar granule neurons in vitro. We have investigated the effects of pretreatment with NMDA on kainate-induced neuronal cell death in mouse hippocampus in vivo. The systemic administration of kainate (30 mg/kg), but not NMDA (100 mg/kg), induced severe damage in pyramidal neurons of the hippocampal CA1 and CA3 subfields 3-7 days later, without affecting granule neurons in the dentate gyrus. An immunohistochemical study using an anti-single-stranded DNA antibody and TdT-mediated dUTP nick end labeling analysis both revealed that kainate, but not NMDA, induced DNA fragmentation in the CA1 and CA3 pyramidal neurons 1-3 days after administration. Kainate-induced neuronal loss was completely prevented by the systemic administration of NMDA (100 mg/kg) 1 h to 1 day previously. No pyramidal neuron was seen with fragmented DNA in the hippocampus of animals injected with kainate 1 day after NMDA treatment. The neuroprotection mediated by NMDA was prevented by the non-competitive NMDA receptor antagonist MK-801. Taken together these results indicate that in vivo activation of NMDA receptors is capable of protecting against kainate-induced neuronal damage through blockade of DNA fragmentation in murine hippocampus.  相似文献   

8.
The most dominant hypotheses for the pathogenesis of schizophrenia have focused primarily upon hyperfunctional dopaminergic and hypofunctional glutamatergic neurotransmission in the central nervous system. The therapeutic efficacy of all atypical antipsychotics is explained in part by antagonism of the dopaminergic neurotransmission, mainly by blockade of D2 dopamine receptors. N-methyl-d-aspartate (NMDA) receptor hypofunction in schizophrenia can be reversed by glycine transporter type-1 (GlyT-1) inhibitors, which regulate glycine concentrations at the vicinity of NMDA receptors. Combined drug administration with D2 dopamine receptor blockade and activation of hypofunctional NMDA receptors may be needed for a more effective treatment of positive and negative symptoms and the accompanied cognitive deficit in schizophrenia. To investigate this type of combined drug administration, rats were treated with the atypical antipsychotic risperidone together with the GlyT-1 inhibitor Org-24461. Brain microdialysis was applied in the striatum of conscious rats and determinations of extracellular dopamine, DOPAC, HVA, glycine, glutamate, and serine concentrations were carried out using HPLC/electrochemistry. Risperidone increased extracellular concentrations of dopamine but failed to influence those of glycine or glutamate measured in microdialysis samples. Org-24461 injection reduced extracellular dopamine concentrations and elevated extracellular glycine levels but the concentrations of serine and glutamate were not changed. When risperidone and Org-24461 were added in combination, a decrease in extracellular dopamine concentrations was accompanied with sustained elevation of extracellular glycine levels. Interestingly, the extracellular concentrations of glutamate were also enhanced. Our data indicate that coadministration of an antipsychotic with a GlyT-1 inhibitor may normalize hypofunctional NMDA receptor-mediated glutamatergic neurotransmission with reduced dopaminergic side effects characteristic for antipsychotic medication.  相似文献   

9.
The release of 5-HT in terminal areas of the rodent brain is regulated by 5-HT1B receptors. Here we examined the role of 5-HT1B receptors in the control of 5-HT output and firing in the dorsal raphe nucleus (DR), median raphe nucleus (MnR) and forebrain of the rat in vivo. The local perfusion (30-300 microM) of the selective 5-HT1B receptor agonist CP-93,129 to freely moving rats decreased 5-HT release in the DR and more markedly in the MnR. Likewise, 300 microM CP-93,129 reduced 5-HT output in substantia nigra pars reticulata, ventral pallidum, lateral habenula and the suprachiasmatic nucleus. The effect of CP-93,129 was prevented by SB-224289, but not by WAY-100635, selective 5-HT1B and 5-HT1A receptor antagonists, respectively. SB-224289 did not alter dialysate 5-HT in any raphe nuclei. The intravenous administration of the brain-penetrant selective 5-HT1B receptor agonist CP-94,253 (0.5-2.0 mg/kg) to anesthetized rats decreased dialysate 5-HT in dorsal hippocampus and globus pallidus, increased it in MnR and left it unaltered in the DR and medial prefrontal cortex. SB-224289, at a dose known to block 5-HT1B autoreceptor-mediated effects (5 mg/kg), did not prevent the effect of CP-94,253 on MnR 5-HT. The intravenous administration of CP-94,253 (0.05-1.6 mg/kg) to anesthetized rats increased the firing rate of MnR, but not DR-5-HT neurons. The local perfusion of CP-94,253 in the MnR showed a biphasic effect, with 5-HT reductions at 0.3-3 microM and increase at 300 microM. These results suggest that 5-HT cell firing and release in midbrain raphe nuclei (particularly in the MnR) are under control of 5-HT1B receptors. The activation of 5-HT1B autoreceptors (possibly located on 5-HT nerve endings and/or varicosities within DR and MnR) reduces 5-HT release. The effects of higher concentrations of 5-HT1B receptor agonists seem more compatible with the activation of 5-HT1B heteroreceptors on inhibitory neurons.  相似文献   

10.
In recent studies examining the modulation of dopamine (DA) cell firing patterns, particular emphasis has been placed on excitatory afferents from the prefrontal cortex and the subthalamic nucleus. A number of inconsistencies in recently published reports, however, do not support the contention that tonic activation of NMDA receptors is the sole determinate of DA neuronal firing patterns. The results of work on the basic mechanism of DA firing and the action of apamin suggest that excitatory projections to DA neurons from cholinergic and glutamatergic neurons in the tegmental pedunculopontine nucleus, and/or inhibitory GABAergic projections, are also involved in modulating DA neuron firing behavior.  相似文献   

11.
G P Mereu  C Pacitti  A Argiolas 《Life sciences》1983,32(12):1383-1389
The effect of (-)-cathinone (CAT), an alkaloid from khat leaves, on brain dopamine (DA) metabolism and on the firing rate of nigral DA neurons was studied in rats, in comparison with that of d-amphetamine. Like d-amphetamine, CAT (8-40 mg/kg i.p.) decreased DOPAC levels in the caudate nucleus, nucleus accumbens and frontal cortex, without modifying DA concentrations. CAT showed approximately one fifth of the potency of d-amphetamine in this effect. CAT, injected i.v. to unanesthetized, paralyzed rats, inhibited the firing rate of DA neurons in the substantia nigra, pars compacta, showing a similar potency to that of d-amphetamine in this respect. CAT-induced inhibition of dopaminergic firing was reversed by haloperidol.  相似文献   

12.
In vivo microdialysis in conscious rats was used to examine the effect of clozapine on serotonin (5-hydroxytryptamine, 5-HT) efflux in the prefrontal cortex and dorsal raphe nucleus and dopamine efflux in the prefrontal cortex. Both systemic and local administration of clozapine (systemic, 10 or 20 mg/kg, i.p.; local, 100 microM) increased 5-HT efflux in the dorsal raphe. However, in the prefrontal cortex, dialysate 5-HT increased when clozapine (100 microM) was administered through the probe, while no effect was observed when it was administered systemically. By pretreatment with the selective 5-HT1A receptor antagonist p-MPPI (3 mg/kg, i.p.), systemic treatment of clozapine (10 mg/kg, i.p.) significantly increased 5-HT efflux in the prefrontal cortex. This result suggests that the ability of clozapine to enhance the extracellular concentrations of 5-HT in the dorsal raphe attenuates this drug's effect in the frontal cortex, probably through the stimulation of 5-HT1A somatodendritic autoreceptors in the dorsal raphe. We also found that pretreatment with p-MPPI (3 mg/kg, i.p.) attenuated by 45% the rise in cortical dopamine levels induced by clozapine (10 mg/kg, i.p.). These findings imply that the reduction in serotonergic input from the dorsal raphe nucleus induced by clozapine could lead to an increase in dopamine release in the prefrontal cortex.  相似文献   

13.
The effect of morphine on the neuronal activity evoked by a nociceptive stimulus, a foot pinch, was studied in the dorsal raphe nucleus (DR) and in the mesencephalic reticular formation (MRF) of the rat. In the MRF and adjacent areas, neuronal firing was accelerated by the nociceptive stimulus. Morphine blocked this acceleration when administered either microintophoretically or i.v. Three lines of evidence indicate that this is a specific narcotic effect. First, naloxone, a specific narcotic antagonist, antagonized the effect of morphine. Secondly, two morphine agonists, oxymorphone and methadone, blocked the evoked neuronal acceleration like morphine when administered either microiontophoretically or i.v.; naloxone also blocked the effects of the two agonists. Finally, two non-opioid CNS depressants did not block the acceleration in neuronal firing even though microintophoretic ejection currents 2–5 times greater than those for morphine were used. In contrast, neuronal firing in the DR was rarely altered by the nociceptive stimulus or by morphine, administered either microiontophoretically or i.v. Furthermore, morphine did not affect the inhibition produced by 5-HT on neurons in the DR.It is concluded from this study that the MRF is a possible site of action for the antinociceptive effects of morphine. It is also concluded that morphine does not affect the spontaneous neuronal firing rate in the DR and that the DR is not a site of action of the antinociceptive effects of morphine when a foot pinch is used as the nociceptive stimulus.  相似文献   

14.
To investigate GABA(B) receptors along vagal afferent pathways, we recorded from vagal afferents, medullary neurons, and vagal efferents in ferrets. Baclofen (7-14 micromol/kg i.v.) reduced gastric tension receptor and nucleus tractus solitarii neuronal responses to gastric distension but not gastroduodenal mucosal receptor responses to cholecystokinin (CCK). GABA(B) antagonists CGP-35348 or CGP-62349 reversed effects of baclofen. Vagal efferents showed excitatory and inhibitory responses to distension and CCK. Baclofen (3 nmol i.c.v. or 7-14 micromol/kg i.v.) reduced both distension response types but reduced only inhibitory responses to CCK. CGP-35348 (100 nmol i.c.v. or 100 micromol/kg i.v.) reversed baclofen's effect on distension responses, but inhibitory responses to CCK remained attenuated. They were, however, reversed by CGP-62349 (0.4 nmol i.c.v.). In conclusion, GABA(B) receptors inhibit mechanosensitivity, not chemosensitivity, of vagal afferents peripherally. Mechanosensory input to brain stem neurons is also reduced centrally by GABA(B) receptors, but excitatory chemosensory input is unaffected. Inhibitory mechano- and chemosensory inputs to brain stem neurons (via inhibitory interneurons) are both reduced, but the pathway taken by chemosensory input involves GABA(B) receptors that are insensitive to CGP-35348.  相似文献   

15.
Abstract: 5-HT1A autoreceptor antagonists enhance the effects of antidepressants by preventing a negative feedback of serotonin (5-HT) at somatodendritic level. The maximal elevations of extracellular concentration of 5-HT (5-HText) induced by the 5-HT uptake inhibitor paroxetine in forebrain were potentiated by the 5-HT1A antagonist WAY-100635 (1 mg/kg s.c.) in a regionally dependent manner (striatum > frontal cortex > dorsal hippocampus). Paroxetine (3 mg/kg s.c.) decreased forebrain 5-HText during local blockade of uptake. This reduction was greater in striatum and frontal cortex than in dorsal hippocampus and was counteracted by the local and systemic administration of WAY-100635. The perfusion of 50 µmol/L citalopram in the dorsal or median raphe nucleus reduced 5-HText in frontal cortex or dorsal hippocampus to 40 and 65% of baseline, respectively. The reduction of cortical 5-HText induced by perfusion of citalopram in midbrain raphe was fully reversed by WAY-100635 (1 mg/kg s.c.). Together, these data suggest that dorsal raphe neurons projecting to striatum and frontal cortex are more sensitive to self-inhibition mediated by 5-HT1A autoreceptors than median raphe neurons projecting to the hippocampus. Therefore, potentiation by 5-HT1A antagonists occurs preferentially in forebrain areas innervated by serotonergic neurons of the dorsal raphe nucleus.  相似文献   

16.
Clozapine has a remarkable efficacy in treatment-resistant schizophrenia and is one of the most effective antipsychotic drugs used today. The clinical effects of clozapine are suggested to be related to a unique interaction with a variety of receptor systems, including the glutamatergic receptors. Kynurenic acid (KYNA) is an endogenous blocker of alpha7 nicotinic receptors and a glutamate-receptor antagonist, preferentially blocking N-methyl-D-aspartate (NMDA) receptors. In the present in vivo electrophysiological study, changes in endogenous concentration of brain KYNA were utilized to analyze an interaction between clozapine and the glycine site of NMDA receptors. In control rats intravenously administered clozapine (0.078-10 mg/kg) increased the firing rate and the burst firing activity of dopamine (DA) neurons in the ventral tegmental area (VTA). Pretreatment with indomethacin (50 mg/kg, i.p., 1-3.5 h), a cyclooxygenase (COX)-inhibitor with a preferential selectivity for COX-1, which produced a significant elevation in brain KYNA levels, reversed the excitatory action of clozapine into an inhibitory response. In contrast, pretreatment with the COX-2 selective inhibitor parecoxib (25 mg/kg, i.v., 1-1.5 h) decreased brain KYNA formation and furthermore, clearly potentiated the excitatory effect of clozapine. Our results show that endogenous levels of brain KYNA are of importance for the response of clozapine on VTA DA neurons. On the basis of the present data we propose that clozapine is able to interact with glutamatergic mechanisms, via actions at the NMDA/glycine receptor.  相似文献   

17.
Abstract: The contribution of NMDA receptors to regulation of serotonin (5-HT) release was assessed by in vivo microdialysis in freely behaving rats. During infusion of NMDA (30, 100, and 300 µ M ) into the dorsal raphe nucleus (DRN), 5-HT was increased by ∼25, 100, and 280%, respectively. Competitive and noncompetitive NMDA-receptor antagonists blocked this effect on DRN 5-HT. Infusion of NMDA (300 µ M ) into the DRN also produced an 80% increase in extracellular 5-HT in the nucleus accumbens. During infusion of NMDA (100 and 300 µ M ) into the median raphe nucleus (MRN), 5-HT was increased by ∼15 and 80%, respectively. NMDA-receptor antagonists blocked this effect on MRN 5-HT. Infusion of NMDA into the MRN also produced a significant increase in hippocampal 5-HT. In contrast, infusion of NMDA into the nucleus accumbens, frontal cortex, or hippocampus produced small decreases in 5-HT in these forebrain sites. Taken together, these results suggest that NMDA receptors in the midbrain raphe, but not the forebrain, can have an excitatory influence on 5-HT neurons and, thus, produce increased 5-HT release in the forebrain. Furthermore, in comparison with the MRN, DRN 5-HT neurons were more sensitive to the excitatory effect of NMDA.  相似文献   

18.
Extracellular single-unit activities of dopamine neurons were recorded using chloral hydrate anaesthetized rats. We examined the reversal effects of the selective dopamine D4 receptor blockers, NRA0160 (2-Carbamoyl-4-(4-fluorophenyl)-5-[2-[4-(3-fluorobenzylidene) piperidin-1-yl] ethyl] thiazole) and L-745,870 (3-[[4-(4-chlorophenyl) piperazin-1-yl] methyl]-1H-pyrrolo [2,3-b] pyridine), on dopamine agonists induced inhibition of dopamine neural activity. The firing rates of the substantia nigra pars compacta (A9) and the ventral tegmental area (A10) dopamine neurons were inhibited by methamphetamine (MAP: 1 mg/kg, i.v.) and apomorphine (APO: 40 microg/kg, i.v). NRA0160 dose-dependently reversed the inhibitory effects of MAP and APO on both A9 and A10 dopamine neurons. NRA0160 was more potent in reversing the inhibitory effects of both MAP and APO on A10 than A9 dopamine neurons. L-745,870 failed to reverse the inhibition produced by MAP on A9 and A10 dopamine neurons, whereas L-745,870, at the highest dose used, significantly reversed APO-induced inhibition of A10 but not A9 dopamine neurons. These results suggest that NRA0160 has different electrophysiological profiles on dopaminergic neural activity compared to L-745,870 and may have atypical antipsychotic effects.  相似文献   

19.
Erhardt S  Engberg G 《Life sciences》2000,67(15):1901-1911
Previous electrophysiological studies have shown that the GABA(A)-receptor agonist muscimol is able to markedly increase the firing rate of rat nigral dopamine (DA) neurons. This action of the drug is paradoxical since local microiontophoretic application of the drug is associated with a clearcut inhibition of this neurons. In the present electrophysiological study, an attempt was made to analyze the mechanism of this action of the drug. Administration of muscimol (0.25-4.0 mg/kg, i.v.) was associated with a dose-dependent increase in firing rate as well as an increased bursting activity of the nigral DA neurons. Both these effects of muscimol were clearly antagonised by intravenous administration of the NMDA receptor antagonist MK 801(1 mg/kg) or by intracerebroventricular administration of the broad-spectrum excitatory amino acid receptor antagonist kynurenic acid. Furthermore, pretreatment with PNU 156561A (40 mg/kg, i.v., 5-8h), a compound that raised endogenous kynurenic acid levels about 9 times, also clearly antagonised the actions of muscimol. Indeed, this treatment reversed the excitatory action of muscimol into an inhibitory effect on the nigral DA neurons. Here, we report that the excitatory action of muscimol is mediated indirectly by release of glutamate.  相似文献   

20.
Most neuronal networks, even in the absence of external stimuli, produce spontaneous bursts of spikes separated by periods of reduced activity. The origin and functional role of these neuronal events are still unclear. The present work shows that the spontaneous activity of two very different networks, intact leech ganglia and dissociated cultures of rat hippocampal neurons, share several features. Indeed, in both networks: i) the inter-spike intervals distribution of the spontaneous firing of single neurons is either regular or periodic or bursting, with the fraction of bursting neurons depending on the network activity; ii) bursts of spontaneous spikes have the same broad distributions of size and duration; iii) the degree of correlated activity increases with the bin width, and the power spectrum of the network firing rate has a 1/f behavior at low frequencies, indicating the existence of long-range temporal correlations; iv) the activity of excitatory synaptic pathways mediated by NMDA receptors is necessary for the onset of the long-range correlations and for the presence of large bursts; v) blockage of inhibitory synaptic pathways mediated by GABA(A) receptors causes instead an increase in the correlation among neurons and leads to a burst distribution composed only of very small and very large bursts. These results suggest that the spontaneous electrical activity in neuronal networks with different architectures and functions can have very similar properties and common dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号