首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports the application of an anionic cyclodextrin (CD), sulfated β-cyclodextrin with a degree of substitution of four (β-CD-(SO4)4, in chiral separations of pharmaceutical enantiomers by non-aqueous capillary electrophoresis (NACE). Upon complexation with the anionic CD, electrophoretic mobilities of the basic enantiomers decreased, however, both separation selectivity and resolution were enhanced. The advantage of NACE chiral separations over the aqueous CE with the charged CD is that higher electric field strength and higher ionic strength could be applied due to the characteristics of the solvent formamide. The higher ionic strength leads to stacking of peaks and reduces the electrodispersion caused by the mobility mismatch between β-CD-(SO4)4–analyte complexes and the co-ions in the running buffer. As a result, better peak shapes and higher separation efficiency were obtained. Comparing with NACE chiral separations with neutral CDs, lower concentration of β-CD-(SO4)4 was needed due to the fact that the electrostatic attraction caused stronger binding between β-CD-(SO4)4 and the enantiomers. The effects of the experimental parameters, such as concentration of the CD, apparent pH (pH*), degree of substitutions of the CDs, percentage of water in mixed solvent systems, and type of solvents were also studied.  相似文献   

2.
Maria Pawlowska 《Chirality》1991,3(2):136-138
The paper demonstrates that the technique of solvent generated liquid--solid chromatography can be used to create normal phase systems for chiral separations. The chiral adsorption layer was generated by pumping a binary hexane:ethanol eluent containing a small fraction of permethylated β-cyclodextrin through a column packed with microparticulate silica. This technique leads to columns with good time stability and reproducibility. The possibility of generating normal phase systems with permethylated β-cyclodextrin as chiral component via the mobile phase broadens the range of phase system which can be used to separate enantiomers by HPLC.  相似文献   

3.
The sodium salts of (+)-(S)- and (−)-(R)-2-(2-fluoro-4-biphenylyl)propionic acid (flurbiprofen, FBP) form 1:1 inclusion complexes with β-cyclodextrin (β-CD) having different association constants. Proton selective relaxation rate measurements revealed the existence of superior aggregated forms for both complexes (+)-FBP/β-CD and (−)-FBP/β-CD; information about their stereochemistry has been obtained by 2D ROESY analysis. © 1996 Wiley-Liss, Inc.  相似文献   

4.
5.
Oxysterols, such as 7β‐hydroxy‐cholesterol (7β‐OH) and cholesterol‐5β,6β‐epoxide (β‐epoxide), may have a central role in promoting atherogenesis. This is thought to be predominantly due to their ability to induce apoptosis in cells of the vascular wall and in monocytes/macrophages. Although there has been extensive research regarding the mechanisms through which oxysterols induce apoptosis, much remains to be clarified. Given that experimental evidence has long associated alterations of calcium (Ca2+) homeostasis to apoptotic cell death, the aim of the present study was to determine the influence of intracellular Ca2+ changes on apoptosis induced by 7β‐OH and β‐epoxide. Ca2+ responses in differentiated U937 cells were assessed by epifluorescence video microscopy, using the ratiometric dye fura‐2. Over 15‐min exposure of differentiated U937 cells to 30 μM of 7β‐OH induced a slow but significant rise in fura‐2 ratio. The Ca2+ channel blocker nifedipine and the chelating agent EGTA blocked the increase in cytoplasmic Ca2+. Moreover, dihydropyridine (DHP) binding sites identified with BODIPY‐FLX‐DHP were blocked following pretreatment with nifedipine, indicating that the influx of Ca2+ occurred through L‐type channels. However, following long‐term incubation with 7β‐OH, elevated levels of cytoplasmic Ca2+ were not maintained and nifedipine did not provide protection against apoptotic cell death. Our results indicate that the increase in Ca2+ may be an initial trigger of 7β‐OH–induced apoptosis, but following chronic exposure to the oxysterol, the influence of Ca2+ on apoptotic cell death appears to be less significant. In contrast, Ca2+ did not appear to be involved in β‐epoxide–induced apoptosis. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:324–332, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20295  相似文献   

6.
In anterior pituitaries from male rats, it appeared that 5α-androstane-3β, 17β-diol was quickly metabolized into 5α-androstane-3β,6α-17β-triol and 5α-androstane-3β,7α, 17β-triol by action of 6α- and 7α-hydroxylases. Hydroxysteroid hydroxylases were located in endoplasmic reticulum and were dependent on NADPH+. Their optimum pH was 8.0, optima temperature, 37°C, and their apparent Km was 2.7 μM. Hydroxylative reactions were not reversible and not modified by gonadectomy. Hydroxylation seemed an efficient control of the pituitary level of 5α-andros-tane-3β, 17β-diol.  相似文献   

7.
Heptakis(2,3-di-O-acetyl-6-bromo-6-deoxy)cyclomaltoheptaose has been characterized in aqueous solution by 1D and 2D NMR spectroscopy and in the solid state by X-ray crystallography. In methanol solution, the acetyl groups were found to interact with both inward and outward-pointing protons. This and the strong deshielding of the bridging carbons, relative to the nonacetylated precursor, indicate macrocyclic flexibility. In the crystalline state the macrocycle exists as a methanol complex. It exhibits elliptical distortion, all glucose residues been tilted with their primary side toward the cavity. The existing strain due to the congestion of 14 acetyl groups at the secondary site is relieved by two glucose rings acquiring the rarely observed skew-boat conformation, (0)S(2), by the increased tilting of two glucose residues, as well as by minor variations of the torsion angles of the acetyl groups. The seven bromine atoms are quite accessible to nucleophiles.  相似文献   

8.
Folding type-specific secondary structure propensities of 20 naturally occurring amino acids have been derived from α-helical, β-sheet, α/β, and α+β proteins of known structures. These data show that each residue type of amino acids has intrinsic propensities in different regions of secondary structures for different folding types of proteins. Each of the folding types shows markedly different rank ordering, indicating folding type-specific effects on the secondary structure propensities of amino acids. Rigorous statistical tests have been made to validate the folding type-specific effects. It should be noted that α and β proteins have relatively small α-helices and β-strands forming propensities respectively compared with those of α+β and α/β proteins. This may suggest that, with more complex architectures than α and β proteins, α+β and α/β proteins require larger propensities to distinguish from interacting α-helices and β-strands. Our finding of folding type-specific secondary structure propensities suggests that sequence space accessible to each folding type may have differing features. Differing sequence space features might be constrained by topological requirement for each of the folding types. Almost all strong β-sheet forming residues are hydrophobic in character regardless of folding types, thus suggesting the hydrophobicities of side chains as a key determinant of β-sheet structures. In contrast, conformational entropy of side chains is a major determinant of the helical propensities of amino acids, although other interactions such as hydrophobicities and charged interactions cannot be neglected. These results will be helpful to protein design, class-based secondary structure prediction, and protein folding. © 1998 John Wiley & Sons, Inc. Biopoly 45: 35–49, 1998  相似文献   

9.
Inhibition of aromatase is an efficient approach for the prevention and treatment of breast cancer. New 6β,19-bridged steroid analogs of androstenedione, 6β,19-epithio- and 6β,19-methano compounds 11 and 17, were synthesized starting from 19-hydroxyandrostenedione (6) and 19-formylandrost-5-ene-3β,17β-yl diacetate (12), respectively, as aromatase inhibitors. All of the compounds including known steroids 6β,19-epoxyandrostenedione (4) and 6β,19-cycloandrostenedione (5) tested were weak to poor competitive inhibitors of aromatase and, among them, 6β,19-epoxy steroid 4 provided only moderate inhibition (Ki: 2.2 μM). These results show that the 6β,19-bridged groups of the inhibitors interfere with binding in active site of aromatase.  相似文献   

10.
The compound (18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid was evaluated as a chiral nuclear magnetic resonance (NMR) solvating agent for a series of diamines and bicyclic β‐amino acids. The amine must be protonated for strong association with the crown ether. An advantage of (18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid over many other crown ethers is that it undergoes a neutralization reaction with neutral amines to form the protonated species needed for binding. Twelve primary diamines in neutral and protonated forms were evaluated. Diamines with aryl and aliphatic groups were examined. Some are atropisomers with equivalent amine groups. Others have two nonequivalent amine groups. Association equilibria for these systems are complex, given the potential formation of 2:1, 1:1, and 1:2 crown‐amine complexes and given the various charged species in solution for mixtures of the crown ether with the neutral amine. The crown ether produced enantiomeric differentiation in the 1H NMR spectrum of one or more resonances for every diamine substrate. Also, a series of five bicyclic β‐amino acids were examined and (18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid caused enantiomeric differentiation in the 1H NMR spectrum of three or more resonances of each compound. Chirality 27:708–715, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
(+)-(S)-Ibuproxam, a prodrug of (+)-(S)-ibuprofen, the pharmacologically active component of ibuprofen, was synthesized in order to minimize side effects (especially gastric irritation) and reduce effective dose. The low water solubility of (+)-(S)-ibuproxam, which prevents rapid dissolution and absorption from the gastrointestinal tract, was overcome by complexation with β-cyclodextrin and its derivatives. The inclusion complex formation was confirmed by differential scanning calorimetry (DSC), by 1H-NMR spectroscopy, and X-ray powder diffractometry. The physicochemical characteristics of ibuproxam were significantly improved by the complexation. © 1995 Wiley-Liss, Inc.  相似文献   

12.
13.
The metabolism of the illegal growth promoter ethylestrenol (EES) was evaluated in bovine liver cells and subcellular fractions of bovine liver preparations. Incubations with bovine microsomal preparations revealed that EES is extensively biotransformed into norethandrolone (NE), another illegal growth promoter. Furthermore, incubations of monolayer cultures of hepatocytes with NE indicated that NE itself is rapidly reduced to 17α-ethyl-5β-estrane-3α,17β-diol (EED). In vivo tests confirmed that, after administration of either EES or NE, EED is excreted as a major metabolite. Therefore, it was concluded that, both in urine and faeces samples, EED can be used as a biological marker for the illegal use of EES and/or NE. Moreover, by monitoring EED in urine or faeces samples, the detection period after NE administration is significantly prolonged. These findings were further confirmed by three cases of norethandrolone abuse in a routine screening program for forbidden growth promoters.  相似文献   

14.
Three (9βH)‐pimaranes, 1, 2 , and 3 , and two (9βH)‐17‐norpimaranes, 4 and 5 , belonging to a rare compound class in nature, were obtained from the tubers of Icacina trichantha for the first time. Compound 1 is a new natural product, and 2 – 5 have been previously reported. The structures were elucidated based on NMR and MS data, and optical rotation values. The absolute configurations of (9βH)‐pimaranes were unambiguously established based on X‐ray crystallographic analysis. Full NMR signal assignments for the known compounds 2, 4 , and 5 , which were not available in previous publications, are also reported. All five isolates displayed cytotoxic activities on MDA‐MB‐435 cells (IC50 0.66–6.44 μM ), while 2, 3 , and 4 also exhibited cytotoxicities on HT‐29 cells (IC50 3.00–4.94 μM ).  相似文献   

15.
Simulated enzymic debranching of a β-limit dextrin model, prepared from a computed construct made by random extension and branching, and given the CCL value of w-maize amylopectin (and equal amounts of external chains with ECL values of 2 and 3) has been related to experimental chromatograms of the debranched β-limit dextrin of the amylopectin. The profile was similar to those from gel chromatograms and IEC-PAD chromatography.The equivalent lengths in glucosyl units of grid-links (g-links) of internal and external chains in constructs were calculated from the ICL and ECL values of amylopectin and models produced from the constructs with the appropriate lengths for internal and external chains. These derived models were subjected to simulated hydrolysis by Pseudomonas stutzeri amylase and the products compared with those of the experimental distribution from w-maize amylopectin. With the model the amounts of maltotetraose and maltodextrins released were similar to the experimental values but the distribution of branched maltodextrins was quite different. Unlike w-maize amylopectin – a polymer with the cluster structure – which has given a profile of molecular sizes of maltodextrins with low amounts of single and small numbers of internal chains and with a peak at a MW of about 14,000 (13 chains), in the model the proportion of maltodextrin with one internal chain was high and as d.p. increased the amounts decreased exponentially. This would be expected if the distribution of internal chains in the core was random. It is suggested that in the core of a model prepared from a construct made with alternating probabilities of extension – one in which this probability is high relative to branching, and a second in which it is low – may give clusters of branched maltodextrins with short internal chains which are joined by longer chains; more closely approximating the distribution of internal chains of different lengths in amylopectin.An arrangement for amylopectin molecules in the starch granule has been proposed. In this, they have a wafer-like, discoidal shape, composed of the amorphous zone overlain with the double helical, crystalline region. The flat macromolecules are concentrically layered with the former on the inside and the latter oriented to the outside of the granule.  相似文献   

16.
The gas chromatographic separation of enantiomers of 2‐Br carboxylic acid derivatives was studied on four different 6‐TBDMS‐2,3‐di‐O‐alkyl‐ β‐ and ‐γ‐CD stationary phases. The differences in thermodynamic data {ΔH and –ΔS} for the 15 structurally related racemates were evaluated. The influence of structure differences in the alkyl substituents covalently attached to the stereogenic carbon atom, as well as in the ester group of the homologous analytes, and the selectivity of modified β‐ and γ‐ cyclodextrin derivatives was studied in detail. The cyclodextrin cavity size, as well as elongation of alkyl substituents in positions 2 and 3 of 6‐TBDMS‐β‐CD, also affected their selectivity. The quality of enantiomeric separations is influenced mainly by alkyl chains of the ester group of the molecule and this appears to be independent of the CD stationary phase used. In some cases the separations occur as the result of external adsorption rather than inclusion complexations with the chiral selector. It was found that the temperature dependencies of the selectivity factor were nonlinear. Chirality 26:279–285, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Glycogen synthase kinase‐3 beta (GSK‐3β) dysfunction may play an essential role in the pathogenesis of psychiatric, metabolic, neurodegenerative diseases, in which oxidative stress exists concurrently. Some studies have shown that GSK‐3β activity is up‐regulated under oxidative stress. This study evaluated how oxidative stress regulates GSK‐3β activity in human embryonic kidney 293 (HEK293)/Tau cells treated with hydrogen peroxide (H2O2). Here, we show that H2O2 induced an obvious increase of GSK‐3β activity. Surprisingly, H2O2 dramatically increased phosphorylation of GSK‐3β at Ser9, an inactive form of GSK‐3β,while there were no changes of phosphorylation of GSK‐3β at Tyr216. Moreover, H2O2 led to a transient [Ca2+]i elevation, and simultaneously increased the truncation of GSK‐3β into two fragments of 40 kDa and 30 kDa, whereas inhibition of calpain decreased the truncation and recovered the activity of GSK‐3β. Furthermore, tau was hyperphosphorylated at Ser396, Ser404, and Thr231, three most common GSK‐3β targeted sites after 100 μM H2O2 administration in HEK293/Tau cells, whereas inhibition of calpain blocked the tau phosphorylation. In addition, we found that there were no obvious changes of Cyclin‐dependent kinase 5 (CDK5) expression (responsible for tau phosphorylation) and of p35 cleavage, the regulatory subunit of CDK5 in H2O2‐treated HEK293/Tau cells. In conclusion, Ca2+‐dependent calpain activation leads to GSK‐3β truncation, which counteracts the inhibitory effect of Ser9 phosphorylation, up‐regulates GSK‐3β activity, and phosphorylates tau in H2O2‐treated HEK293/Tau cells.  相似文献   

18.
In addition to the neurotoxic effects of β, β′-iminodipropionitrile (IDPN) which have been previously reported by other investigators, the olfactory toxicity of this compound has recently been uncovered in this laboratory. Due to the apparently conflicting observations that the IDPN-induced lesion in the olfactory mucosa is very focal in nature (suggesting site-specific activation) and the observation by other investigators that the behavioral effects of IDPN appear to be due to the parent compound, we initiated studies into the possible role of the cytochrome P450 enzymes in the olfactory toxicity of IDPN. Immunohistochemical studies with antibodies raised against several different P450 isoforms revealed good correlation between IDPN-induced olfactory mucosal degeneration and the localization of a protein immunoreacting with an antibody to P450 2E1. Enzymatic studies revealed that there is approximately fivefold more ρ-nitrophenol hydroxylation activity in the olfactory mucosa than in the liver on a per milligram microsomal protein basis. Administration of 1% acetone in the drinking water increased the levels of olfactory mucosal 2E1, and the increase in enzyme levels corresponded to increased olfactory toxicity of IDPN; inhibition of P450 activities with either metyrapone or carbon tetrachloride eliminated or significantly decreased the olfactory toxicity of IDPN, respectively. These studies suggest a role for cytochrome P450, specifically the 2E1 isoform, in the activation of IDPN within the nasal mucosa.  相似文献   

19.
An analysis of possible tight packing of hydrophobic groups simultaneously at the both surfaces of β-hyperboloid-8 was conducted. This analysis shows that the disposition of amino acid side chains at the real β-structure's surface is unique. If we sign the mean distance between adjacent β-strands as “a,” and the mean distance along β-strand between Cα atoms, whose side chains are directed to one side of the β-sheet, as “b,” the ratio b/a = √2 very precisely. This ratio ensures the most efficient packing of side hydrophobic groups at the outer surface of β-hyperboloid-8, forming, at the same time, the second by efficiency packing at its inner surface. © 1995 Wiley-Liss, Inc.  相似文献   

20.
The canonical Wnt/β‐catenin signaling pathway plays a critical role in numerous physiological and pathological processes. LRP6 is an essential co‐receptor for Wnt/β‐catenin signaling; as transduction of the Wnt signal is strongly dependent upon GSK3β‐mediated phosphorylation of multiple PPP(S/T)P motifs within the membrane‐anchored LRP6 intracellular domain. Previously, we showed that the free LRP6 intracellular domain (LRP6‐ICD) can activate the Wnt/β‐catenin pathway in a β‐catenin and TCF/LEF‐1 dependent manner, as well as interact with and attenuate GSK3β activity. However, it is unknown if the ability of LRP6‐ICD to attenuate GSK3β activity and modulate activation of the Wnt/β‐catenin pathway requires phosphorylation of the LRP6‐ICD PPP(S/T)P motifs, in a manner similar to the membrane‐anchored LRP6 intracellular domain. Here we provide evidence that the LRP6‐ICD does not have to be phosphorylated at its PPP(S/T)P motif by GSK3β to stabilize endogenous cytosolic β‐catenin resulting in activation of TCF/LEF‐1 and the Wnt/β‐catenin pathway. LRP6‐ICD and a mutant in which all 5 PPP(S/T)P motifs were changed to PPP(A)P motifs equivalently interacted with and attenuated GSK3β activity in vitro, and both constructs inhibited the in situ GSK3β‐mediated phosphorylation of β‐catenin and tau to the same extent. These data indicate that the LRP6‐ICD attenuates GSK3β activity similar to other GSK3β binding proteins, and is not a result of it being a GSK3β substrate. Our findings suggest the functional and regulatory mechanisms governing the free LRP6‐ICD may be distinct from membrane‐anchored LRP6, and that release of the LRP6‐ICD may provide a complimentary signaling cascade capable of modulating Wnt‐dependent gene expression. J. Cell. Biochem. 108: 886–895, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号