共查询到19条相似文献,搜索用时 46 毫秒
1.
对于培养的神经元网络而言,学习是外界刺激与网络响应之间联系建立和调控的过程.为构建合适的神经元网络学习模型,采用闭环低频(1 Hz)成对电极的电刺激模拟认知任务,在多通道微电极阵列系统中对培养的海马神经元网络进行训练,使其发生网络层次上的学习行为.经过训练后,神经元网络在刺激后20~80ms内的早期突触后响应明显增加,响应/刺激比(在闭环训练中,电极上任一阶段连续10次刺激的早期突触后响应的个数/10)增大,响应时延减小,并且响应具有选择性,即表明,神经元网络与外界刺激之间已建立可调控的联系,该可调控联系是通过网络的响应来表现的,建立神经元网络与外界刺激之间的可调控联系即网络层次的学习. 相似文献
2.
目的:探讨培养的海马神经元网络对外界刺激信息的群体编码机制.方法:本文利用多电极阵列对培养海马神经元网络进行多位点刺激及同步记录,运用线性统计方法分析网络中各点对刺激的响应规律,以及聚类算法分辨网络对不同位置刺激的响应.结果:各记录位点在刺激后100ms内的响应放电频率与距刺激点的空间距离线性无关、与记录/刺激位点的自发活动相关系数呈弱线性相关,与刺激前100ms内的自发放电频率呈线性关系.进一步实验结果表明刺激不同位点时自发放电频率与响应放电频率线性关系的斜率和截距不同.不同位点刺激时的自发-响应数据能够通过聚类进行区分,并且自发-响应放电频率的线性相关系数越大分类的正确率越高.药理实验结果表明,该线性相关系数在APV阻断NMDA受体后减小,而在CNQX阻断AMPA受体后相关系数增大.结论:培养的海马神经元网络中的神经元对刺激的响应放电频率与其自发放电频率线性相关,该群体响应特征可以用来实现对刺激位置的编码,并且NMDA受体的存在是维系该群体响应特征的因素之一. 相似文献
3.
4.
5.
体育运动训练改变肌肉和大脑的结构和功能。运动训练可以增加肌肉中毛细血管的数量,改变肌原纤维的比例,刺激多种细胞因子和肌肉因子的合成与分泌,增加肌肉体积,增强肌肉力量。相反,身体活动长期受限则会使肌肉体积减小,肌肉力量下降。另外,运动训练还会使大脑部分脑区的灰质体积增加,促进神经发生,促进脑血管增生,改变大脑激活模式及其结构和功能联结,增加神经营养因子水平。这些作用受运动类型、运动时长、运动强度的影响或调节。目前我们对肌肉可塑性与大脑可塑性之间关系的了解还十分有限。运动相关的代谢过程与肌肉收缩的分泌物可能与大脑可塑性有密切关系。本综述为倡导运动锻炼,制定科学的运动和康复方案提供理论依据和实践指导。 相似文献
6.
脑的可塑性和功能重组是近十多年来颇受关注的课题,导致人们对脑功能的认识更深化了一步。人们已逐渐认识到,神经系统折结构和机能完整靠外周伟入和效应器官的正常机能活动维持。用建立条件反射条件反射的训练可以使脑功能动态性调节得到加强和皮层功能定位域扩大,而一旦失去这种功能联系,各级中枢的替代性功能重组即不可避免地发生。 相似文献
7.
鸟鸣及其鸣唱控制系统发育可塑性研究进展 总被引:4,自引:0,他引:4
鸟类的鸣唱控制系统已成为研究神经系统与学习、行为和发育相关的一个重要模型。鸣禽鸣唱学习行为的神经基础为脊椎动物复杂习得行为的解剖学功能定位提供了一个范例。它也可为我们研究人类语言学习记忆提供借鉴,对近年来在鸟类鸣唱及其呜唱控制系统发育可塑性方面的研究进展进行了综述。 相似文献
8.
鸟类鸣啭学习神经回路的发育可塑性 总被引:4,自引:0,他引:4
鸟类鸣啭控制系统已成为人们研究神经系统与学习、行为和发育关系的重要模型。鸣啭系统在发育中所表现出的神经和行为明显变化的特点,为我们理解语言学习敏感期、突触联系的再分布、结构特化以及细胞死亡与神经发生提供了宝贵的信息。在许多方面,鸣禽鸟啭系统都有别于哺乳动物,这为特定理论问题的研究提供了新的途径。 相似文献
9.
热性癫痫发作是儿童常见病,能损害认知功能,而突触可塑性和再可塑性(metaplasticity)是维系大脑认知功能的重要神经基础.本文通过脑片灌流和细胞外场电位记录术研究了热性癫痫发作大鼠海马齿状回外侧支的突触可塑性和再可塑性.制作对照组和热性癫痫发作组大鼠的脑切片后,记录电极置于齿状回外侧支的外分子层获取兴奋性突触后... 相似文献
10.
有关环境因素作为影响发育的信号导致产生表观多型性的研究,属于遗传学、发育生物学、进化生物学和生态学研究领域的热点问题,在长期的积淀和拓展中形成了一门新的交叉学科——生态发育生物学。该学科以发育的可塑性为理论基础,研究多种环境因子诱导机体在发育中产生表观多型性的机制,包括非遗传多型性和应激性多型性。对于环境、发育和进化三者关系的研究尤为重视。本文介绍了该学科形成的背景,并对其研究主题进行分析和归纳,重点讨论了不同环境因子导致动物表观多型性的机制,包括季节和捕食者诱导的非遗传多型性,营养和激素调节社会性昆虫的品级分化,温度依赖型性别决定中的基因、酶与激素,动物对环境的适应与进化,机体的免疫应答与神经元的可塑性、环境污染物的致畸作用等。并对生态学与发育生物学结合的未来研究前景做了展望。 相似文献
11.
离子通道是一类重要的药物作用耙点。膜片钳技术是目前进行离子通道研究和影响离子通道药物研究的最好方法。但膜片钳技术通量低,成为应用该法进行药物筛选的最大障碍。膜片钳阵列技术是在普通膜片钳技术基础上发展起来的高通量技术,包括平面膜片钳阵列技术和微管自动化膜片钳技术,已经在药物筛选中得到应用。本文仅就这2种方法当前的研究进展及其在药物筛选中的应用做简单的介绍。 相似文献
12.
Dayou Zhou Yuehan Ni Xiaona Yu Kuixuan Lin Ning Du Lele Liu Xiao Guo Weihua Guo 《Ecology and evolution》2021,11(16):11352
Phragmites australis is the dominant species in the Yellow River Delta and plays an important role in wetland ecosystems. In order to evaluate the relationship between phenotypic variation and environmental factors, explore how functional traits respond to changes in electrical conductivity and soil water content, and reveal the ecological strategies of P. australis, we investigated the ecological responses of P. australis to soil properties based on 96 plots along the coastal–inland regions in the Yellow River Delta of China. Within the range of soil water content (SWC, 9.39%–36.92%) and electrical conductivity (EC, 0.14–13.29 ms/cm), the results showed that (a) the effects of salinity were more important than the soil water content for the characterization of the morphological traits and that plant functional traits including leaf traits and stem traits responded more strongly to soil salinity than soil water content; (b) compared with morphological traits such as average height and internode number, physiological traits such as SPAD value, as well as morphological traits closely related to physiological traits such as specific leaf area and leaf thickness, showed stronger stability in response to soil water and salinity; and (c) under the condition of high electrical conductivity, P. australis improved its water acquisition ability by increasing indicators such as leaf water content and leaf thickness. In addition, with the increase in plant tolerance to stress, more resources were used to resist external stress, and the survival strategy was inclined toward the stress tolerator (S) strategy. Under low EC conditions, P. australis increased specific leaf area and leaf area for its growth in order to obtain resources rapidly, while its survival strategy gradually moved toward the competitor (C) strategy. 相似文献
13.
The characteristics of the potential changes caused by excitation of the thallus of Conocephalum conicum L. were investigated and compared with the basic criteria of an action potential. Electrical stimulation (square DC pulses) was applied, and extraand intracellular potentials were recorded. The all-or-nothing law, strength-duration relation, refractory periods, and general characteristics of the changes of transmembrane potential difference were examined. The electrical phenomena occurring during the excitation of Conocephalum fulfil the basic criteria of an action potential. The results contribute additional evidence for the hypothesis that action potentials occur both in plants and in animals. 相似文献
14.
Stephen D. Skaper Vincenzo Di Marzo 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2012,367(1607):3193-3200
The psychoactive component of the cannabis resin and flowers, delta9-tetrahydrocannabinol (THC), was first isolated in 1964, and at least 70 other structurally related ‘phytocannabinoid’ compounds have since been identified. The serendipitous identification of a G-protein-coupled cannabinoid receptor at which THC is active in the brain heralded an explosion in cannabinoid research. Elements of the endocannabinoid system (ECS) comprise the cannabinoid receptors, a family of nascent lipid ligands, the ‘endocannabinoids’ and the machinery for their biosynthesis and metabolism. The function of the ECS is thus defined by modulation of these receptors, in particular, by two of the best-described ligands, 2-arachidonoyl glycerol and anandamide (arachidonylethanolamide). Research on the ECS has recently aroused enormous interest not only for the physiological functions, but also for the promising therapeutic potentials of drugs interfering with the activity of cannabinoid receptors. Many of the former relate to stress-recovery systems and to the maintenance of homeostatic balance. Among other functions, the ECS is involved in neuroprotection, modulation of nociception, regulation of motor activity, neurogenesis, synaptic plasticity and the control of certain phases of memory processing. In addition, the ECS acts to modulate the immune and inflammatory responses and to maintain a positive energy balance. This theme issue aims to provide the reader with an overview of ECS pharmacology, followed by discussions on the pivotal role of this system in the modulation of neurogenesis in the developing and adult organism, memory processes and synaptic plasticity, as well as in pathological pain and brain ageing. The volume will conclude with discussions that address the proposed therapeutic applications of targeting the ECS for the treatment of neurodegeneration, pain and mental illness. 相似文献
15.
Farzaneh G. Tahrir Jennifer Gordon Arthur M. Feldman Joseph Cheung Kamel Khalili Taha Mohseni Ahooyi 《Journal of cellular physiology》2019,234(10):18371-18381
Homeostasis of proteins involved in contractility of individual cardiomyocytes and those coupling adjacent cells is of critical importance as any abnormalities in cardiac electrical conduction may result in cardiac irregular activity and heart failure. Bcl2-associated athanogene 3 (BAG3) is a stress-induced protein whose role in stabilizing myofibril proteins as well as protein quality control pathways, especially in the cardiac tissue, has captured much attention. Mutations of BAG3 have been implicated in the pathogenesis of cardiac complications such as dilated cardiomyopathy. In this study, we have used an in vitro model of neonatal rat ventricular cardiomyocytes to investigate potential impacts of BAG3 on electrophysiological activity by employing the microelectrode array (MEA) technology. Our MEA data showed that BAG3 plays an important role in the cardiac signal generation as reduced levels of BAG3 led to lower signal frequency and amplitude. Our analysis also revealed that BAG3 is essential to the signal propagation throughout the myocardium, as the MEA data-based conduction velocity, connectivity degree, activation time, and synchrony were adversely affected by BAG3 knockdown. Moreover, BAG3 deficiency was demonstrated to be connected with the emergence of independently beating clusters of cardiomyocytes. On the other hand, BAG3 overexpression improved the activity of cardiomyocytes in terms of electrical signal amplitude and connectivity degree. Overall, by providing more in-depth analyses and characterization of electrophysiological parameters, this study reveals that BAG3 is of critical importance for electrical activity of neonatal cardiomyocytes. 相似文献
16.
应用玻璃微电极的电生理实验技术,研究日本血吸虫雄性成虫的细胞电活动。结果显示:日本血吸虫雄性成虫皮层细胞膜电位为-47±5. 6mV(X±SE;n=103);肌细胞膜电位为-30.2±4.3mV(X±SE;n=126).肌细胞可记录到自发放电活动,电位去极化幅值为9—28mV。微电极记录的部分细胞(皮层细胞 n=25;肌细胞 n=22)用辣根过氧化酶(Horeradish peroxidase,HRP)标记,进行了细胞组织学鉴定. 相似文献
17.
Microelectrode array (MEA) technology holds tremendous potential in the fields of biodetection, lab-on-a-chip applications, and tissue engineering by facilitating noninvasive electrical interaction with cells in vitro. To date, significant efforts at integrating the cellular component with this detection technology have worked exclusively with neurons or cardiac myocytes. We investigate the feasibility of using MEAs to record from skeletal myotubes derived from primary myoblasts as a way of introducing a third electrogenic cell type and expanding the potential end applications for MEA-based biosensors. We find that the extracellular action potentials (EAPs) produced by spontaneously contractile myotubes have similar amplitudes to neuronal EAPs. It is possible to classify myotube EAPs by biological signal source using a shape-based spike sorting process similar to that used to analyze neural spike trains. Successful spike-sorting is indicated by a low within-unit variability of myotube EAPs. Additionally, myotube activity can cause simultaneous activation of multiple electrodes, in a similar fashion to the activation of electrodes by networks of neurons. The existence of multiple electrode activation patterns indicates the presence of several large, independent myotubes. The ability to identify these patterns suggests that MEAs may provide an electrophysiological basis for examining the process by which myotube independence is maintained despite rapid myoblast fusion during differentiation. Finally, it is possible to use the underlying electrodes to selectively stimulate individual myotubes without stimulating others nearby. Potential uses of skeletal myotubes grown on MEA substrates include lab-on-a-chip applications, tissue engineering, co-cultures with motor neurons, and neural interfaces. 相似文献
18.
Annika Ahtiainen;Barbara Genocchi;Narayan Puthanmadam Subramaniyam;Jarno M. A. Tanskanen;Tomi Rantamäki;Jari A. K. Hyttinen; 《Journal of neurochemistry》2024,168(9):3076-3094
Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the adult brain that binds to GABA receptors and hyperpolarizes the postsynaptic neuron. Gabazine acts as a competitive antagonist to type A GABA receptors (GABAAR), thereby causing diminished neuronal hyperpolarization and GABAAR-mediated inhibition. However, the biochemical effects and the potential regulatory role of astrocytes in this process remain poorly understood. To address this, we investigated the neuronal responses of gabazine in rat cortical cultures containing varying ratios of neurons and astrocytes. Electrophysiological characterization was performed utilizing microelectrode arrays (MEAs) with topologically controlled microcircuit cultures that enabled control of neuronal network growth. Biochemical analysis of the cultures was performed using traditional dissociated cultures on coverslips. Our study indicates that, upon gabazine stimulation, astrocyte-rich neuronal cultures exhibit elevated electrophysiological activity and tyrosine phosphorylation of tropomyosin receptor kinase B (TrkB; receptor for brain-derived neurotrophic factor), along with distinct cytokine secretion profiles. Notably, neurons lacking proper astrocytic support were found to experience synapse loss and decreased mitogen-activated protein kinase (MAPK) phosphorylation. Furthermore, astrocytes contributed to neuronal viability, morphology, vascular endothelial growth factor (VEGF) secretion, and overall neuronal network functionality, highlighting the multifunctional role of astrocytes. 相似文献
19.
Paradoxical modulation of short-term facilitation of dopamine release by dopamine autoreceptors 总被引:1,自引:0,他引:1
Kita JM Parker LE Phillips PE Garris PA Wightman RM 《Journal of neurochemistry》2007,102(4):1115-1124
Electrophysiological studies have demonstrated that dopaminergic neurons burst fire during certain aspects of reward-related behavior; however, the correlation between dopamine release and cell firing is unclear. When complex stimulation patterns that mimic intracranial self-stimulation were employed, dopamine release was shown to exhibit facilitated as well as depressive components (Montague et al. 2004). Understanding the biological mechanisms underlying these variations in dopamine release is necessary to unravel the correlation between unit activity and neurotransmitter release. The dopamine autoreceptor provides negative feedback to dopamine release, inhibiting release on the time scale of a few seconds. Therefore, we investigated this D(2) receptor to see whether it is one of the biological mechanisms responsible for the history-dependent modulation of dopamine release. Striatal dopamine release in anesthetized rats was evoked with stimulus trains that were designed to promote the variability of dopamine release. Consistent with the well established D(2)-mediated autoinhibition, the short-term depressive component of dopamine release was blocked by raclopride, a D(2) antagonist, and enhanced by quinpirole, a D(2)-receptor agonist. Surprisingly, these same drugs exerted a similar effect on the short-term facilitated component: a decrease with raclopride and an increase with quinpirole. These data demonstrate that the commanding control exerted by dopamine autoreceptors over short-term neuroadaptation of dopamine release involves both inhibitory and paradoxically, facilitatory components. 相似文献