首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzyme cholesterol oxidase (E.C. 1.1.3.6), purified from Streptomyces culture filtrate was previously found to have oral insecticidal activity on neonate larvae of the boll weevil (Anthonomus grandis grandis Boheman) from a laboratory population. In the present study, second instar larvae were also controlled by the enzyme at diet concentrations similar to those which control neonates (12 day LC50 = 2.4 μg.ml?1 in diet). Larvae from field-collected adults were similarly susceptible to cholesterol oxidase in the diet. When ingested by adult females during the mating/pre-oviposition period, cholesterol oxidase greatly reduced subsequent oviposition (83% reduction in eggs laid as compared to controls) and larval survival (97% reduction from controls). Dissection of treated adult females revealed poorly developed ovaries and few developing oöcytes. These studies were conducted to further evaluate the utility of cholesterol oxidase in a program to establish boll weevil-resistant transgenic cotton.  相似文献   

2.
Cholesterol oxidase represents a novel type of insecticidal protein with potent activity against the cotton boll weevil (Anthonomus grandis grandis Boheman). We transformed tobacco (Nicotiana tabacum) plants with the cholesterol oxidase choM gene and expressed cytosolic and chloroplast-targeted versions of the ChoM protein. Transgenic leaf tissues expressing cholesterol oxidase exerted insecticidal activity against boll weevil larvae. Our results indicate that cholesterol oxidase can metabolize phytosterols in vivo when produced cytosolically or when targeted to chloroplasts. The transgenic plants exhibiting cytosolic expression accumulated low levels of saturated sterols known as stanols, and displayed severe developmental aberrations. In contrast, the transgenic plants expressing chloroplast-targeted cholesterol oxidase maintained a greater accumulation of stanols, and appeared phenotypically and developmentally normal. These results are discussed within the context of plant sterol distribution and metabolism.  相似文献   

3.
4.
杀虫晶体蛋白(insecticidal crystal proteins,ICPs;含有Cry和Cyt 2大家族)和营养期杀虫蛋白(vegetative insecticidal proteins,Vips)等Bt杀虫蛋白可有效防治鳞翅目害虫,其中Cry应用最广泛。然而,一些地区的鳞翅目害虫已对Bt杀虫蛋白产生了抗性。目前,普遍认为鳞翅目昆虫中肠受体与Bt杀虫蛋白结合能力的改变是导致其对Bt杀虫蛋白产生抗性的最主要因素。在鳞翅目昆虫中,Cry受体是研究得最为透彻的Bt受体,已经被证实的有氨肽酶N、钙黏蛋白、碱性磷酸酶和ABC转运蛋白等。Vips杀虫蛋白类与鳞翅目昆虫中肠受体的结合方式与Cry杀虫蛋白相似,但结合位点与Cry杀虫蛋白不同。本文从结构特点、作用机制及不同鳞翅目昆虫间的表达差异等角度对以上4种鳞翅目昆虫中肠Bt受体进行了综述,并提出如下展望:(1)以棉铃虫或小菜蛾等鳞翅目昆虫为农业害虫模式生物进行深入研究,阐明其对Bt杀虫蛋白产生抗性的机制,为研究其他鳞翅目农业害虫对Bt杀虫蛋白产生抗性的机制提供理论借鉴;(2)鉴于在不同鳞翅目昆虫间,中肠Bt受体与Bt杀虫蛋白结合存在差异,且同一Bt杀虫蛋白与鳞翅目昆虫Bt受体并不专一性结合,Bt杀虫蛋白多基因组合策略是较为有效的田间鳞翅目昆虫防治策略,是今后一段时间内Bt杀虫蛋白应用的发展方向。  相似文献   

5.
Different isolates of the soil bacterium Bacillus thuringiensis produce multiple crystal (Cry) proteins toxic to a variety of insects, nematodes and protozoans. These insecticidal Cry toxins are known to be active against specific insect orders, being harmless to mammals, birds, amphibians, and reptiles. Due to these characteristics, genes encoding several Cry toxins have been engineered in order to be expressed by a variety of crop plants to control insectpests. The cotton boll weevil, Anthonomus grandis, and the fall armyworm, Spodoptera frugiperda, are the major economically devastating pests of cotton crop in Brazil, causing severe losses, mainly due to their endophytic habit, which results in damages to the cotton boll and floral bud structures. A cry1Ia-type gene, designated cry1Ia12, was isolated and cloned from the Bt S811 strain. Nucleotide sequencing of the cry1Ia12 gene revealed an open reading frame of 2160 bp, encoding a protein of 719 amino acid residues in length, with a predicted molecular mass of 81 kDa. The amino acid sequence of Cry1Ia12 is 99% identical to the known Cry1Ia proteins and differs from them only in one or two amino acid residues positioned along the three domains involved in the insecticidal activity of the toxin. The recombinant Cry1Ia12 protein, corresponding to the cry1Ia12 gene expressed in Escherichia coli cells, showed moderate toxicity towards first instar larvae of both cotton boll weevil and fall armyworm. The highest concentration of the recombinant Cry1Ia12 tested to achieve the maximum toxicities against cotton boll weevil larvae and fall armyworm larvae were 230 microg/mL and 5 microg/mL, respectively. The herein demonstrated insecticidal activity of the recombinant Cry1Ia12 toxin against cotton boll weevil and fall armyworm larvae opens promising perspectives for the genetic engineering of cotton crop resistant to both these devastating pests in Brazil.  相似文献   

6.
The main purpose of this study was to determine the insecticidal activity of mixtures of Bacillus thuringiensis crystalline toxins and plant substances that could contribute to create a new bioinsecticide of high efficiency. We decided to determine the toxicity of crystals of B. thuringiensis MPU B9 isolate, azadirachtin (NeemAzal), mustard oil and their mixtures against lepidopteran pests: Cydia pomonella, Spodoptera exigua and Dendrolimus pini. The interaction of the components in mixtures against insects was evaluated and their utility in plant protection was assessed. The crystals and plant substances showed synergistic effect against all insect species. The occurrence of synergism between two components depended on the ratio of their concentration in mixtures. Slight amount of one of the components added to the mixture led to enhanced toxicity of the preparation. The supplementation of mustard oil with B. thuringiensis toxins from up to 0.3% of the mixture resulted in more than twofold higher observed mortality of L1 larvae of D. pini in comparison with expected mortality. The beneficial insecticidal effect of the mustard oil and crystals mixture was also noted when crystals comprised up to 1.3% and from 7 to 20% against L1 caterpillars of C. pomonella and L3 larvae of S. exigua, respectively. The insecticidal efficient effect was achieved when mixture of B. thuringiensis crystals and azadirachtin was used against the three species of lepidopteran pests. The combinations in which components interacted synergistically against caterpillars are potentially useful for making a new bioinsecticide for controlling lepidopteran pests in plant protection.  相似文献   

7.
The Indian meal moth Plodia interpunctella is a pest of stored products worldwide. Plant-derived essential oils with insecticidal activity could be safe products to control this species. The scarce information about the mode of action of most plant-derived products limits their use for the control of insect pests. Here, we demonstrate that an essential oil distilled from Lippia turbinata (“poleo”) has insecticidal activity on P. interpunctella larvae. Furthermore, we performed a comprehensive characterization of P. interpunctella neuroendocrine system, in comparison with other lepidopteran species.  相似文献   

8.
Bacillus thuringiensis is a Gram-positive bacterium, widely used in agriculture as a biological pesticide. The biocidal activity mainly resides in a parasporal protein inclusion body, or crystal. The inclusion is composed of one or more types of δ-endotoxins (Cry and Cyt proteins). Cry proteins are selectively toxic to different species from several invertebrate phyla: arthropods (mainly insects), nematodes, flatworms and protozoa. The mode of action of the insecticidal proteins is still a matter of investigation; generally, the active toxin is supposed to bind specific membrane receptors on the insect midgut brush-border epithelium, leading to intestinal cell lysis and subsequent insect death by starvation or septicemia. The toxin-encoding cry genes have been extensively studied and expressed in a large number of prokaryotic and eukaryotic organisms. The expression of such genes in transgenic plants has provided a powerful alternative for crop protection. Received 25 February 1997/ Accepted in revised form 15 August 1997  相似文献   

9.
The midgut proteinase activities were characterized from the keratinolytic larvae of two lepidopterans, Hofmannophila pseudospretella (Stainton) (Oecophoridae) and Tineola bisselliella (Hummel) (Tineidae), and one coleopteran, Anthrenocerus australis (Hope) (Dermestidae). The major endopeptidase activities, characterized using specific enzyme inhibitors, were serine proteinases with hydrolytic activity against N-benzoyl-DL-arginine-p-nitroanilide and against N-succinyl-L-alanyl-L-alanyl-L-prolyl-L-leucine-p-nitroanilide. No significant levels of metalloendopeptidase or cysteine endopeptidase activities were detected. Aminopeptidase activity was present in all larvae. The enzyme levels and properties of the two moth larvae were similar to each other and to those of phytophagous lepidopteran larvae but different from those of the beetle larva. Whereas only a limited number of serine proteinase inhibitors inhibited the midgut proteolysis of the lepidopteran larvae, most inhibitors inhibited the midgut proteolysis of the beetle larva. © 1994 Wiley-Liss, Inc.  相似文献   

10.
Bruchid beetle larvae cause major losses in grain legume crops throughout the world. Some bruchid species, such as the cowpea weevil (Callosobruchus maculatus) and the Mexican bean weevil (Zabrotes subfasciatus), are pests that damage stored seeds. The Mediterranean flour moth (Anagasta kuehniella) is of major economic importance as a flour and grain feeder; it is often a severe pest in flour mills. Plant lectins have been implicated as antibiosis factors against insects. Bauhinia monandra leaf lectin (BmoLL) was tested for anti-insect activity against C. maculatus, Z. subfasciatus and A. kuehniella larvae. BmoLL produced ca. 50% mortality to Z. subfaciatus and C. maculatus when incorporated into an artificial diet at a level of 0.5% and 0.3% (w/w), respectively. BmooLL up to 1% did not significantly decrease the survival of A. kuehniella larvae, but produced a decrease of 40% in weight. Affinity chromatography showed that BmoLL bound to midgut proteins of the insect C. maculatus. 33 kDa subunit BmoLL was not digested by midgut preparations of these bruchids. BmoLL-fed C. maculatus larvae increased the digestion of potato starch by 25% compared with the control. The transformation of the genes coding for this lectin could be useful in the development of insect resistance in important agricultural crops.  相似文献   

11.
The cotton boll weevil (Anthonomus grandis) causes severe cotton crop losses in North and South America. This report describes the presence of cysteine proteinase activity in the cotton boll weevil. Cysteine proteinase inhibitors from different sources were assayed against total A. grandis proteinases but, unexpectedly, no inhibitor tested was particularly effective. In order to screen for active inhibitors against the boll weevil, a cysteine proteinase cDNA (Agcys1) was isolated from A. grandis larvae using degenerate primers and rapid amplification of cDNA ends (RACE) techniques. Sequence analysis showed significant homologies with other insect cysteine proteinases. Northern blot analysis indicated that the mRNA encoding the proteinase was transcribed mainly in the gut of larvae. No mRNA was detected in neonatal larvae, pupae, or in the gut of the adult insect, suggesting that Agcys1 is an important cysteine proteinase for larvae digestion. The isolated gene will facilitate the search for highly active inhibitors towards boll weevil larvae that may provide a new opportunity to control this important insect pest.  相似文献   

12.
从杀虫植物杠柳Periploca sepium Bunge根皮中分离得到的杠柳新苷P具有很高的杀虫活性, 为了探索其杀虫机理, 采用经典的昆虫蛋白酶活性测定方法, 比较研究了杠柳新苷P和无杀虫活性的杠柳新苷E对东方粘虫Mythimna separata与小地老虎Agrotis ypsilon 6龄幼虫中肠类胰蛋白酶和类胰凝乳蛋白酶活性的影响。结果表明: 对东方粘虫弱碱性类胰蛋白酶, 杠柳新苷P表现出强激活作用(酶活性为对照的3.43倍), 激活时间可长达8 h, 而杠柳新苷E则无明显激活作用。杠柳新苷P和E对东方粘虫弱碱性类胰蛋白酶活性的影响二者差异显著(P=0.01), 杠柳新苷P药后2, 4和8 h, 东方粘虫中肠弱碱性类胰蛋白酶的活性分别是杠柳新苷E药后的15.4, 106.8和242.7倍。酶活性测定结果还表明, 与东方粘虫相比, 小地老虎中肠类胰蛋白酶活性相对较低, 且杠柳新苷P的激活作用也较弱, 这可能是杠柳新苷P对东方粘虫具杀虫活性, 而小地老虎对其不敏感的原因之一; 另外, 杠柳新苷P和E对试虫中肠类凝乳胰蛋白酶活性均无明显影响。据此推测, 杠柳活性成分新苷P对东方粘虫中肠弱碱性类胰蛋白酶的激活作用可能是造成试虫中毒的机理之一。  相似文献   

13.
Numerous species of insect pests attack cotton plants, out of which the cotton boll weevil (Anthonomus grandis) is the main insect in Brazil and must be controlled to avert large economic losses. Like other insect pests, A. grandis secretes a high level of α-amylases in the midgut lumen, which are required for digestion of carbohydrates. Thus, α-amylase inhibitors (α-AIs) represent a powerful tool to apply in the control of insect pests. Here, we applied DNA shuffling and phage display techniques and obtained a combinatorial library containing 108α-AI variant forms. From this library, variants were selected exhibiting in vitro affinity for cotton boll weevil α-amylases. Twenty-six variant sequences were cloned into plant expression vectors and expressed in Arabidopsis thaliana. Transformed plant extracts were assayed in vitro to select specific and potent α-amylase inhibitors against boll weevil amylases. While the wild type inhibitors, used to create the shuffled library, did not inhibit the A. grandis α-amylases, three α-AI mutants, named α-AIC3, α-AIA11 and α-AIG4 revealed high inhibitory activities against A. grandis α-amylases in an in vitro assay. In summary, data reported here shown the potential biotechnology of new α-AI variant genes for cotton boll weevil control.  相似文献   

14.
The interaction between Bacillus thuringiensis insecticidal crystal protein Cry1A and cadherin receptors in lepidopteran insects induces toxin oligomerization, which is essential for membrane insertion and mediates Cry1A toxicity. It has been reported that Manduca sexta cadherin fragment CR12-MPED and Anopheles gambiae cadherin fragment CR11-MPED enhance the insecticidal activity of Cry1Ab and Cry4Ba to certain lepidopteran and dipteran larvae species, respectively. This study reports that a Helicoverpa armigera cadherin fragment (HaCad1) containing its toxin binding region, expressed in Escherichia coli, enhanced Cry1Ac activity against H. armigera larvae. A binding assay showed that HaCad1 was able to bind to Cry1Ac in vitro and that this event did not block toxin binding to the brush border membrane microvilli prepared from H. armigera. When the residues 1423GVLSLNFQ1430 were deleted from the fragment, the subsequent mutation peptide lost its ability to bind Cry1Ac and the toxicity enhancement was also significantly reduced. Oligomerization tests showed that HaCad1 facilitates the formation of a 250-kDa oligomer of Cry1Ac-activated toxin in the midgut fluid environment. Oligomer formation was dependent upon the toxin binding to HaCad1, which was also necessary for the HaCad1-mediated enhancement effect. Our discovery reveals a novel strategy to enhance insecticidal activity or to overcome the resistance of insects to B. thuringiensis toxin-based biopesticides and transgenic crops.  相似文献   

15.
Ligand-gated chloride channels mediate a variety of functions in excitable membranes of nerve and muscle in insects, and have a long history as targets for neurotoxic insecticides. Recent findings from our laboratory confirm that the natural product silphinenes and their semi-synthetic analogs share a mode of action with the established ligand-gated chloride channel antagonist, picrotoxinin. The silphinenes are non-selective, being roughly equipotent on insect and mammalian receptors, but also possess lethal and neurotoxic effects on a dieldrin-resistant strain of Drosophila melanogaster. These findings suggest that silphinenes act on insect GABA receptors in a way that is different from picrotoxinin, and it is possible that resistant insect populations in the field could be controlled with insecticidal compounds derived from the silphinenes. Voltage-gated chloride channels and anion transporters provide additional classes of validated targets for insecticidal/nematicidal action. Anion transporter blockers are toxic to insects via an action on the gut, and RNAi studies implicate voltage-gated chloride channels in nematode muscle as another possible target. There was no cross resistance to DIDS in a dieldrin-resistant strain of Drosophila melanogaster, and no evidence for neurotoxicity. The potent paralytic actions of anion transporter blockers against nematodes, and stomach poisoning activity against lepidopteran larvae suggests they are worthy of further investigation as commercial insecticidal/nematicidal agents.  相似文献   

16.
The discovery of porphyric insecticides was a direct fallout of the discovery and development of photodynamic herbicides. Tetrapyrrole-dependent photodynamic herbicides are compounds that force green plants to accumulate undesirable amounts of metabolic intermediates of the chlorophyll and heme metabolic pathways, namely, tetrapyrroles. In light, the accumulated tetrapyrroles photosensitize the formation of singlet oxygen that kills treated plants by oxidation of their cellular membranes. Demonstration of the potential for tetrapyrrole accumulation in insects was achieved by spraying T. ni larvae with δ-aminolevulinic acid (ALA) and 2,2-dipyridyl (Dpy). Treated larvae were placed overnight in darkness at 28°C in order to allow for tetrapyrrole accumulation. Extraction of treated, dark-incubated larvae with ammoniacal acetone, followed by spectrofluorometric examination of the larval extract, revealed the accumulation of massive amounts of protoporphyrin IX (Proto). A high degree of correlation was observed between Proto accumulation in darkness and larval death in the light. A few hours after exposure to light, the larvae became sluggish and flaccid due to loss of body fluids. Death was accompanied by extensive desiccation. Because control of insects by ingestion is as viable an option as control by spraying, and offers certain advantages under household conditions, studies were conducted to determine whether combinations of ALA and porphyric insecticide modulators would be effective if ingested with the food. The effect of ALA and 1,10-phenanthroline (Oph) were determined by incorporating them into the diet of T. ni larvae. After exposure to light, following 17 h of dark incubation, larvae underwent violent convulsions and vomiting and died within 20 to 40 s. Tetrapyrrole analysis of the treated larvae immediately after dark incubation revealed significant amounts of Proto and Zn-Proto accumulation. Correlation between tetrapyrrole accumulation and larval death was significant. Similar results were obtained when ALA and Dpy were administered to the larvae with the diet. The above results indicated that in addition to contact via spraying, porphyric insecticides had the potential to be very potent when ingested. For a more thorough understanding of the mode of action of porphyric insecticides, the phenomenology of tissue, cellular, and subcellular sites of tetrapyrrole accumulation in representative insect species was investigated. In T. ni larvae, on a unit protein basis, about 59% of the accumulated Proto was observed in the hemolymph, 35% in the gut, and 6% in the integument. Further understanding of the response of insect organs and tissues to porphyric insecticide treatment was obtained by investigating the response of isolated organs and tissues to incubation with ALA + Dpy or ALA + Oph in adult Blattella germanica (German cockroach), adult Anthonomus grandis (cotton boll weevil), fifth instar larvae of Heliothus zea (corn earworm), and fifth instar larvae of T. ni (cabbage looper). In T. ni, and H. zea, significant Proto accumulation was observed in incubated midgut and fat bodies. Proto accumulation occurred when tissues were incubated with Dpy, ALA + Dpy, Oph, and ALA + Oph (2). No response to treatment with ALA alone was observed. In cockroaches, more of the Proto appeared to accumulate in the male and female guts than in their abdomen. As in T. ni and H. zea, the response was elicited by each of the treatments that included Dpy or Oph. Cotton boll weevil abdomens appeared to be less responsive than the abdomens of the other three species. To determine whether Proto accumulation resulted in photodynamic damage of incubated tissues, T. ni midguts were incubated in darkness either in buffer, with ALA, or with Oph + ALA. Oxygen consumption of the tissue was monitored before and after exposure to 2-h of illumination. A 30% decrease in O2 consumption was observed in midguts treated with Oph or with ALA + Oph after 2 h in the light. The decrease in oxygen consumption observed in isolated T. ni midguts was shown to be caused by photodynamic damage to mitochondrial enzymes. Finally, structure-function photodynamic insecticidal studies led to the identification of 36 compounds belonging to 10 different chemical families that were effective (>70% mortality) against at least one insect species. Of the 36 modulators, 10 exhibited potent activity toward cockroaches.  相似文献   

17.
Bruchid larvae cause major losses in grain legume crops throughout the world. Some bruchid species, such as the cowpea weevil, are pests that damage stored seeds. Plants synthesize a variety of molecules, including proteinaceous proteinase inhibitors, to defend themselves against attack by insects. In this work, a trypsin inhibitor (DMTI-II) isolated from Dimorphandra mollis seeds was tested for anti-insect activity against Callosobruchus maculatus larvae. The inhibitor produced ca. 67% mortality to this bruchid when incorporated into an artificial diet at a level of 1%. The doses necessary to cause 50% mortality (LD50) and to reduce weight by 50% (ED50) for DMTI-II were ca. 0.50% and 0.60%, respectively. The action of DMTI-II on C. maculatus larvae may involve the inhibition of trypsin-like activity of larval midgut extracts, the absence of digestion by midgut preparations or with a mixture of pepsin and papain, and its association with a chitin column and chitinous structure in the midgut of this insect.  相似文献   

18.
The action of plant cysteine proteases on the midgut peritrophic membrane (PM) of a polyphagous herbivorous lepidopteran, Trichoplusia ni, was studied. Proteins in PMs isolated from T. ni larvae were confirmed to be highly resistant to the serine proteinases trypsin and chymotrypsin, but were susceptible to degradation by plant cysteine proteases, which is consistent with the known molecular and biochemical characteristics of the T. ni PM proteins. However, the PM proteins were not degraded by plant cysteine proteases in larvae or in the presence of larval midgut fluid in vitro. With further biochemical analysis, cysteine protease-inhibiting activity was identified in the midgut fluid of T. ni larvae. The cysteine protease-inhibiting activity was heat resistant and active in the tested pH range from 6.0 to 10.0, but could be suppressed by thiol reducing reagents or reduced by treatment with catalase. In addition to T. ni, cysteine protease-inhibiting activity was also identified from two other polyphagous Lepidoptera species, Helicoverpa zea and Heliothis virescens. In conclusion, results from this study uncovered that herbivorous insects may counteract the attack of plant cysteine proteases on the PM by inhibiting the potentially insecticidal cysteine proteases from plants in the digestive tract. However, the biochemical identity of the cysteine protease-inhibiting activity in midgut fluid has yet to be identified.  相似文献   

19.
The pine processionary moth Thaumetopoea pityocampa Den. and Schiff. (Lep., Thaumetopoeidae) is one of the most harmful insect pests for pine species in Mediterranean countries including Turkey. Two Bacillus thuringiensis isolates obtained from T. pityocampa were identified and characterized in terms of crystal shape using electron microscopy, SDS–PAGE analysis, cry gene contents, H-serotype and insecticidal activity. Examination by a scanning electron microscope showed that Tp6 and Tp14 isolates have flat square and bipyramidal crystal shapes, respectively. PCR analysis showed that Tp6 contains cry3 gene and Tp14 isolate contains cry1 and cry2 genes. On the other hand, the presence of Cry3 and Cry1 proteins were confirmed by observation of approximately 65- and 130-kDa proteins by SDS–PAGE in Tp6 and Tp14 isolates, respectively. According to H-serotype results, these isolates were identified as Bacillus thuringiensis ssp. morrisoni (H8a8b). Toxicity tests were performed against six insect species belonging to Lepidoptera and Coleoptera. The highest insecticidal activity was 100% for Tp6 isolate on larvae of Agelastica alni and Leptinotarsa decemlineata and 100% for Tp14 isolate on larvae of Malacosoma neustria. Our results indicate that isolates Tp6 and Tp14 may be valuable biological control agents for various coleopteran and lepidopteran pests.  相似文献   

20.
Trypsin Modulating Oostatic Factor (TMOF) is a decapeptide hormone that inhibits the biosynthesis of digestive enzymes in the mosquito midgut. The hormone inhibits food digestion and ultimately leads to starvation and death. It has been used as a biological insecticide to control mosquitoes. In an attempt to increase the insecticidal activity of TMOF, a combination of CryIC (δ‐endotoxin from Bacillus thuringiensis) and TMOF was determined. Eight recombinant proteins fused with GST (glutathione‐S‐transferase) were expressed in Escherichia coli cells. Their insecticidal activities were determined against Culex pipiens and Spodoptera littoralis larvae. Purified GST‐TMOF and its analogue GST‐YDPAS exhibited a moderate toxicity on C. pipiens larvae with LC50 of 145.9 and 339.9 μg/mL, respectively. Unexpectedly, no mortality was observed in first instar larvae of S. littoralis. Puirified GST‐TMOF and GST‐YDPAS together with Bt toxin showed a synergistic toxic effect on both Culex and Spodoptera larvae. In the presence of 100 μg/mL GST‐TMOF and GST‐YDPAS, the median lethal concentration of entomocidus on culex larvae decreased from 52.1 to 16.7 and 31.9 μg/mL, respectively. Likewise, GST‐TMOF and GST‐YDPAS incorporated with 0.07 μg/cm2 of enotmocidus showed insecticidal activity against S. littoralis with LC50 of 16.4 and 21.9 μg/cm2. The E. coli lysates containing GST‐CryIC and its 3′‐truncated version showed low toxicity against the lepidopteran insect (10.8 and 16.6 μg/cm2) compared to 0.15 μg/cm2 of the native crystalline form of CryIC. Similarly, the mosquitocidal activity of the recombinant Bt toxins was low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号