首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An epidemiological study conducted by Savitz et al. reported that residential wire codes were more strongly associated with childhood cancer than were measured magnetic fields, a peculiar result because wire codes were originally developed to be a surrogate for residential magnetic fields. The primary purpose of the study reported here, known as the Back to Denver (BTD) study, was to obtain data to help in the interpretation of the original results of Savitz et al. The BTD study included 81 homes that had been occupied by case and control subjects of Savitz et al., stratified by wire code as follows: 18 high current configuration (HCC) case homes; 20 HCC control homes; 20 low current configuration (LCC) case homes; and 23 LCC control homes. Analysis of new data acquired in these homes led to the following previously unpublished conclusions. The home-averaged (i.e., mean of fields measured in subjects' bedrooms, family/living rooms, and rooms where meals normally eaten) spot 60 Hz, 180 Hz, and harmonic (i.e., 60-420 Hz) magnetic fields were associated with wire codes. The 180 Hz and harmonic components, but not the 60 Hz component, were associated with case/control status. Measured static magnetic fields were only weakly correlated (rapproximately 0.2) between rooms in homes. The BTD data provide little support for, but are too sparse to definitively test, the 1995 resonance hypothesis proposed by Bowman et al. Case and control homes had similar concentrations of copper in their tap water. Copper concentration was not associated with wire codes nor with the level of electric current carried by a home's water pipe. These results of the BTD study suggest that future case/control studies investigating power frequency magnetic fields might wish to include measurements of 180 Hz or harmonic magnetic fields in order to examine their associations (if any) with disease status.  相似文献   

2.
Case-control data on childhood leukemia in Los Angeles County were reanalyzed with residential magnetic fields predicted from the wiring configurations of nearby transmission and distribution lines. As described in a companion paper, the 24-h means of the magnetic field's magnitude in subjects' homes were predicted by a physically based regression model that had been fitted to 24-h measurements and wiring data. In addition, magnetic field exposures were adjusted for the most likely form of exposure assessment errors: classic errors for the 24-h measurements and Berkson errors for the predictions from wire configurations. Although the measured fields had no association with childhood leukemia (P for trend=.88), the risks were significant for predicted magnetic fields above 1.25 mG (odds ratio=2.00, 95% confidence interval=1.03-3.89), and a significant dose-response was seen (P for trend=.02). When exposures were determined by a combination of predictions and measurements that corrects for errors, the odds ratio (odd ratio=2.19, 95% confidence interval=1.12-4.31) and the trend (p =.007) showed somewhat greater significance. These findings support the hypothesis that magnetic fields from electrical lines are causally related to childhood leukemia but that this association has been inconsistent among epidemiologic studies due to different types of exposure assessment error. In these data, the leukemia risks from a child's residential magnetic field exposure appears to be better assessed by wire configurations than by 24-h area measurements. However, the predicted fields only partially account for the effect of the Wertheimer-Leeper wire code in a multivariate analysis and do not completely explain why these wire codes have been so often associated with childhood leukemia. The most plausible explanation for our findings is that the causal factor is another magnetic field exposure metric correlated to both wire code and the field's time-averaged magnitude.  相似文献   

3.
Recent interest in the transient magnetic field events produced by electrical switching events in residential and occupational environments has been kindled by the possibility that these fields may explain observed associations between childhood cancer and wire codes. This paper reports the results of a study in which the rate of occurrence of magnetic field events with 2-200 kHz frequency content were measured over 24 h or longer periods in 156 U.S. residences. A dual-channel meter was developed for the study that, during 20 s contiguous intervals of time, counted the number of events with peak 2-200 kHz magnetic fields exceeding thresholds of 3. 3 nT and 33 nT. Transient activity exhibited a distinct diurnal rhythm similar to that followed by power frequency magnetic fields in residences. Homes that were electrically grounded to a conductive water system that extended into the street and beyond, had higher levels of 33 nT channel transient activity. Homes located in rural surroundings had less 33 nT transient activity than homes in suburban/urban areas. Finally, while transient activity was perhaps somewhat elevated in homes with OLCC, OHCC, and VHCC wire codes relative to homes with underground (UG) and VLCC codes, the elevation was the smallest in VHCC and the largest in OLCC homes. This result does not provide much support for the hypothesis that transient magnetic fields are the underlying exposure that explains the associations, observed in several epidemiologic studies, between childhood cancer and residence in homes with VHCC, but not OLCC and OHCC, wire codes.  相似文献   

4.
The relationship of measured residential magnetic fields and wire codes to pregnancy outcome was examined in data collected for a study of childhood cancer in Denver. Pregnancies in homes with measured fields above 0.2 μT or high wire codes were not more likely to end in miscarriage, low birth weight, or preterm delivery. Lack of data on potential confounders and small numbers of cases limit the study's conclusions. © 1994 Wiley-Liss, Inc.  相似文献   

5.
A physically based model for residential magnetic fields from electric transmission and distribution wiring was developed to reanalyze the Los Angeles study of childhood leukemia by London et al. For this exposure model, magnetic field measurements were fitted to a function of wire configuration attributes that was derived from a multipole expansion of the Law of Biot and Savart. The model parameters were determined by nonlinear regression techniques, using wiring data, distances, and the geometric mean of the ELF magnetic field magnitude from 24-h bedroom measurements taken at 288 homes during the epidemiologic study. The best fit to the measurement data was obtained with separate models for the two major utilities serving Los Angeles County. This model's predictions produced a correlation of 0.40 with the measured fields, an improvement on the 0.27 correlation obtained with the Wertheimer-Leeper (WL) wire code. For the leukemia risk analysis in a companion paper, the regression model predicts exposures to the 24-h geometric mean of the ELF magnetic fields in Los Angeles homes where only wiring data and distances have been obtained. Since these input parameters for the exposure model usually do not change for many years, the predicted magnetic fields will be stable over long time periods, just like the WL code. If the geometric mean is not the exposure metric associated with cancer, this regression technique could be used to estimate long-term exposures to temporal variability metrics and other characteristics of the ELF magnetic field which may be cancer risk factors.  相似文献   

6.
The Wertheimer-Leeper wire code, originally developed as a surrogate for magnetic-field exposure, has been associated with childhood leukemia in several epidemiologic investigations. However, these and other studies indicate that most between-residence variability in measured magnetic fields remains unexplained by wire codes. To better understand this remaining variability, engineering and demographic data were examined for 333 underground (UG) and very-low current configuration (VLCC) single-family or duplex residences, selected from a database of nearly 1000 residences specifically because their magnetic fields are most likely affected negligibly by overhead power lines. Using linear regression techniques, four factors predictive of the log-transformed residential field were identified: the square-root of the 24-h average net service drop current (this current is equivalent to the current in the grounding system), the log of the number of service drops on the same secondary serving the residence, residence age (four categories), and area type (rural, suburban, or urban). Complete data on ground current and service drops, the two factors with the strongest individual relationships to measured fields, were available for only half of the residences in the sample. However, these data were determined to be "missing at random" according to established statistical criteria. The full-sample or "composite" models thus relied on a method similar to regression imputation, accounting for missing data with binary dummy variables. When applied to the samples from which they were derived, these models accounted for 25% of the variance of the log-spot-measured magnetic field values in the full sample, while models that considered only those residences with complete data (n = 167) explained about 35%. The model validated well against a sample of 201 ordinary low current configuration (OLCC) homes selected from the same database.  相似文献   

7.
We developed a new computer wire coding method and then applied it to investigate the suggestion that control selection bias might explain the observed association between wire codes and childhood cancer made in the study conducted by Savitz et al. in the Denver area. The computer wire coding method used a geographic information system approach with data on the local distribution electric system and from tax assessor records. Individual residences were represented as a circle scaled to the ground floor area of the residence and centered on the lot centroid. The wire code of the residence was determined from the distance between the circle and the relevant power line, and from the current carrying capacity of that line. Using this method, wire codes were generated for 238 290 residences built before 1986, the time of the Savitz et al. study, in the Denver metropolitan area. We then attempted to reconstruct the 1985 population of hypothetically eligible control children in the Denver metropolitan area by using 1980 census data. Since data were not available to locate the children in each residence within a census block, uniform, Poisson, and negative binomial distributions were used to randomly assign children to residences. To evaluate the likelihood of the wire code distribution of the controls selected by Savitz et al., 100 random trials were conducted for each distribution, matching two controls to each case. The odds ratios between childhood cancer and very high current configuration (VHCC) wire codes were reduced when the assigned controls were used, suggesting control selection bias may have been present. However, control selection bias is unlikely to account for all the reported association between childhood cancer and wire codes in the Savitz et al. study.  相似文献   

8.
The aim of this work was to study the exposure to magnetic fields of children living at different distances from a power line and to evaluate how well theoretical calculations compared with actual exposure. Personal exposure instruments were carried for 24 h by 65 schoolchildren living 28–325 m from a 300 kV transmission line; the current load was 200–700 A. About half of the children attended a school far from the power line, whereas the other half attended a school located about 25 m from the line. Exposure to magnetic fields was analyzed for three categories of location: at home, at school, and at all other places. Time spent in bed was analyzed separately. The results indicated that children who lived close to a power line had a higher magnetic field exposure than other children. The power line was the most important source of exposure when the magnetic field due to the line was greater than about 0.2 μT. Exposure at school influenced the 24 h time-weighted average results considerably in those cases where the distance between home and power line was very different from the distance between school and power line. The calculated magnetic field, based on line configuration, current load, and distance between home and power line, corresponded reasonably well with the measured field. However, the correlation depends on whether home only or 24 h exposure is used in the analysis and on which school the children attended. The calculated magnetic field seems to be a reasonably good predictor of actual exposure and could be used in epidemiological studies, at least in Norway, where the electrical system normally results in less ground current than in most other countries. Bioelectromagnetics 18:47–57, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
During the last 15 years several studies have investigated a possible relationship between exposure to electromagnetic fields (EMF) and childhood cancer. There is considerable variation between these studies with respect to methods of exposure assessment and reported results. Methods of exposure assessment range from simple visual criteria to costly and time consuming measurements or estimations of electric flux density. Additional individual refinements further hinder the comparability of results. We carried out several meta-analyses of data published so far taking into account the heterogeneity between studies as far as possible. Our particular interest was to investigate a potential dose-response-like relationship by comparing analyses for different cut-off points of exposure. Our meta-analyses suggest a marginal association between all cancer diagnoses combined and EMF exposure assessed by the two-level wire code (odds ratio, OR= 1.37, 95% confidence interval, CI: 0.94–2.00). Based on this criterion a significant effect was found for cases of leukemia (OR= 1.66, CI: 1.11–2.49) but not for central nervous system (CNS) tumors (OR= 1.5, CI: 0.69–3.26) or lymphomas (OR= 1.32, CI: 0.52–3.37). A significant increase in overall cancer risk with increasing stages of the four-level wire code (P=0.003) could not be confirmed when data of the initial study performed by Wertheimer and Leeper were excluded (P=0.17). When the exposure criterion was based on distance to the transmission line, estimated ORs for all cancers combined and for leukemias increased with distances decreasing from 100 to 25 m. Those analyses incorporating data on measured or calculated EMFs demonstrated also an increase of overall cancer risk with higher cut-off points. However, regarding individual diagnoses, this finding was reflected only in the group of brain tumors. One possible explanation for the high degree of heterogeneity between studies - especially with respect to methods of exposure assessment and choice of the respective cutpoint relevant for an increase in cancer risk - could be that published cut-off points were not always chosen in advance, but were selected because in exploratory analyses the most striking results were obtained with these specific cut-off values. Should this speculation be true at least partially, any meta-analysis will yield a false-positive finding. Further results of comparable studies with strictly a priori planned analyses are necessary to properly investigate a possible link between EMF and childhood cancer.  相似文献   

10.
A study was carried out in 1990 to guide the development of a protocol for assessing residential exposures of children to time-weighted-average (TWA) power-frequency magnetic fields. The principal goal of this dosimetry study was to determine whether area (i.e., spot and/or 24 h) measurements of power-frequency magnetic fields in the residences and in the schools and daycare centers of 29 children (4 months through 8 years of age) could be used to predict their measured personal 24-h exposures. TWA personal exposures, measured with AMEX-3D meters worn by subjects, were approximately log-normally distributed with both residential and nonresidential geometric means of 0.10 μT (1.0 mG). Between-subjects variability in residential personal exposure levels (geometric standard deviation of 2.4) was substantially greater than that observed for nonresidential personal exposure levels (1.4). The correlation between log-transformed residential and total personal exposure levels was 0.97. Time-weighted averages of the magnetic fields measured in children's bedrooms, family rooms, living rooms, and kitchens were highly correlated with residential personal exposure levels (r = 0.90). In general, magnetic field levels measured in schools and daycare centers attended by subjects were smaller and less variable than measured residential fields and were only weakly correlated with measured nonresidential personal exposures. The final measurement protocol, which will be used in a large US study examining the relationship between childhood leukemia and exposure to magnetic fields, contains the following elements: normal- and low-power spot magnetic field measurements in bedrooms occupied by subjects during the 5 years prior to the date of diagnosis for cases or the corresponding date for controls; spot measurements under normal and low power-usage conditions at the centers of the kitchen and the family room; 24-h magnetic-field recordings near subjects' beds; and wire coding using the Wertheimer-Leeper method. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    11.
    Study of the health effects of magnetic fields often depends on identifying determinants and hence indicators of personal exposure. This study identified determinants of children's exposure to magnetic fields and constructed a prediction model for them. For 632 children participating in a case-control study of childhood leukemia, we made direct measures of exposure over 48 h using a portable device, together with observations on candidate determinants. A child's age and sex, the proportion of time spent in the home, and their parents' education or income were very weak predictors of (logged) mean 48 h magnetic field (R(2) < 1%). More important were province (R(2) = 8.0%) and type of residence (R(2) = 11.3%). Low temperatures at the time of measurement were associated with high fields (about 20% increase for each 10 degrees C below 14, R(2) = 4.9%). Several visible attributes of wiring around residences predicted exposure, mostly captured in the Wertheimer-Leeper wire code (R(2) = 13.5%). Stationary 24 h measurement in the bedroom (R(2) = 63.3%) and spot measurements outside the house (R(2) = 40.7%) predicted personal exposures best. Adding other minor predictors increased only slightly variance explained by 24 h stationary (R(2) = 66.2%) and spot (R(2) = 46.8%) measurements. Without spot or stationary measurements, the best model was much less powerful (R(2) = 29.0%). We conclude that spot measurements outside the residence provide a moderately effective basis for estimating exposure for children living there, but do not perform as well as 24 h stationary measurements in the child's bedroom. Although several other easily-observed variables were associated with personal exposure, they were weak determinants, either individually or in combination.  相似文献   

    12.
    We estimate that there are about 100,000 workers from different disciplines, such as radiographers, nurses, anesthetists, technicians, engineers, etc., who can be exposed to substantial electromagnetic fields (compared to normal background levels) around magnetic resonance imaging (MRI) scanners. There is a need for well‐designed epidemiological studies of MRI workers but since the exposure from MRI equipment is a very complex mixture of static magnetic fields, switched gradient magnetic fields, and radiofrequency electromagnetic fields (RF EMF), it is necessary to discuss how to assess the exposure in epidemiological studies. As an alternative to the use of job title as a proxy of exposure, we propose an exposure categorization for the different professions working with MRI equipment. Specifically, we propose defining exposure in three categories, depending on whether people are exposed to only the static field, to the static plus switched gradient fields or to the static plus switched gradient plus RF fields, as a basis for exposure assessment in epidemiological studies. Bioelectromagnetics 34:81–84, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

    13.
    An experimental test constraining the intrinsic time scale of a primary physical mechanism that detects extremely-low-frequency (ELF) magnetic fields in biological systems is proposed. The suggested test postulates that a transductive mechanism operating on time scales much shorter than the period of an applied magnetic field cannot obtain any information about the exposure conditions other than the absolute magnitude of the field. By generating field exposures that differ in their vector properties but are equivalent in their time-varying absolute amplitude, it is possible to differentiate between two broad classes of mechanisms: 1) those with intrinsic time scales comparable with or longer than those of the external influence, and 2) those that are much faster than the period of the applied field. The hypothesis assumes an experimental model proven to respond to magnetic fields and sensitive to a change of about a factor of two in one of the field parameters (AC, DC amplitude or frequency). The case of general linearly polarized fields is discussed, and an analytical solution for the case of perpendicular AC/DC fields is given. Bioelectromagnetics 18:244–249, 1997 © 1997 Wiley-Liss, Inc.  相似文献   

    14.
    This study assessed exposure to extremely low frequency (ELF) magnetic fields of welders and other metal workers and compared exposure from different welding processes. Exposure to ELF magnetic fields was measured for 50 workers selected from a nationwide cohort of metal workers and 15 nonrandomly selected full-time welders in a shipyard. The measurements were carried out with personal exposure meters during 3 days of work for the metal workers and 1 day of work for the shipyard welders. To record a large dynamic range of ELF magnetic field values, the measurements were carried out with “high/low” pairs of personal exposure meters. Additional measurements of static magnetic fields at fixed positions close to welding installations were done with a Hall-effect fluxmeter. The total time of measurement was 1273 hours. The metal workers reported welding activity for 5.8% of the time, and the median of the work-period mean exposure to ELF magnetic fields was 0.18 μT. DC metal inert or active gas welding (MIG/MAG) was used 80% of the time for welding, and AC manual metal arc welding (MMA) was used 10% of the time. The shipyard welders reported welding activity for 56% of the time, and the median and maximum of the workday mean exposure to ELF magnetic fields was 4.70 and 27.5 μT, respectively. For full-shift welders the average workday mean was 21.2 μT for MMA welders and 2.3 μT for MIG/MAG welders. The average exposure during the effective time of welding was estimated to be 65 μT for the MMA welding process and 7 μT for the MIG/MAG welding process. The time of exposure above 1 μT was found to be a useful measure of the effective time of welding. Large differences in exposure to ELF magnetic fields were found between different groups of welders, depending on the welding process and effective time of welding. MMA (AC) welding caused roughly 10 times higher exposure to ELF magnetic fields compared with MIG/MAG (DC) welding. The measurements of static fields suggest that the combined exposure to static and ELF fields of MIG/MAG (DC) welders and the exposure to ELF fields of MMA (AC) welders are roughly of the same level. Bioelectromagnetics 18:470–477, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

    15.
    We present a hypothesis that the risk of childhood leukemia is related to exposure to specific combinations of static and extremely-low-frequency (ELF) magnetic fields. Laboratory data from calcium efflux and diatom mobility experiments were used with the gyromagnetic equation to predict combinations of 60 Hz and static magnetic fields hypothesized to enhance leukemia risk. The laboratory data predicted 19 bands of the static field magnitude with a bandwidth of 9.1 μT that, together with 60 Hz magnetic fields, are expected to have biological activity. We then assessed the association between this exposure metric and childhood leukemia using data from a case-control study in Los Angeles County. ELF and static magnetic fields were measured in the bedrooms of 124 cases determined from a tumor registry and 99 controls drawn from friends and random digit dialing. Among these subjects, 26 cases and 20 controls were exposed to static magnetic fields lying in the predicted bands of biological activity centered at 38.0 μT and 50.6 μT. Although no association was found for childhood leukemia in relation to measured ELF or static magnetic fields alone, an increasing trend of leukemia risk with measured ELF fields was found for subjects within these static field bands (P for trend = 0.041). The odds ratio (OR) was 3.3 [95% confidence interval (CI) = 0.4–30.5] for subjects exposed to static fields within the derived bands and to ELF magnetic field above 0.30 μT (compared to subjects exposed to static fields outside the bands and ELF magnetic fields below 0.07 μT). When the 60 Hz magnetic fields were assessed according to the Wertheimer-Leeper code for wiring configurations, leukemia risks were again greater with the hypothesized exposure conditions (OR = 9.2 for very high current configurations within the static field bands: 95% CI = 1.3–64.6). Although the risk estimates are based on limited magnetic field measurements for a small number of subjects, these findings suggest that the risk of childhood leukemia may be related to the combined effects of the static and ELF magnetic fields. Further tests of the hypothesis are proposed. © 1995 Wiley-Liss, Inc.  相似文献   

    16.
    《Biophysical journal》2020,118(7):1552-1563
    Tumor cells express a unique cell surface glycocalyx with upregulation of sulfated glycosaminoglycans and charged glycoproteins. Little is known about how electromagnetic fields interact with this layer, particularly with regard to harnessing unique properties for therapeutic benefit. We applied a pulsed 20-millitesla (mT) magnetic field with rate of rise (dB/dt) in the msec range to cultured tumor cells to assess whether this affects membrane integrity as measured using cytolytic assays. A 10-min exposure of A549 human lung cancer cells to sequential 50- and 385-Hz oscillating magnetic fields was sufficient to induce intracellular protease release, suggesting altered membrane integrity after the field exposure. Heparinase treatment, which digests anionic sulfated glycan polymers, before exposure rendered cells insensitive to this effect. We further examined a non-neoplastic human primary cell line (lung lymphatic endothelial cells) as a typical normal host cell from the lung cancer microenvironment and found no effect of field exposure on membrane integrity. The field exposure was also sufficient to alter proliferation of tumor cells in culture, but not that of normal lymphatic cells. Pulsed magnetic field exposure of human breast cancer cells that express a sialic-acid rich glycocalyx also induced protease release, and this was partially abrogated by sialidase pretreatment, which removes cell surface anionic sialic acid. Scanning electron microscopy showed that field exposure may induce unique membrane “rippling” along with nanoscale pores on A549 cells. These effects were caused by a short exposure to pulsed 20-mT magnetic fields, and future work may examine greater magnitude effects. The proof of concept herein points to a mechanistic basis for possible applications of pulsed magnetic fields in novel anticancer strategies.  相似文献   

    17.
    Most work on magnetic field effects focuses on AC fields. The present study demonstrates that exposure to medium-strength (10 mT-0.1 T) static magnetic fields can alter the early embryonic development of two species of sea urchin embryos. Batches of fertilized eggs from two species of urchin were exposed to fields produced by permanent magnets. Samples of the continuous cultures were scored for the timing of the first two cell divisions, time of hatching, and incidence of exogastrulation. It was found that static fields delay the onset of mitosis in both species by an amount dependent on the exposure timing relative to fertilization. The exposure time that caused the maximum effect differed between the two species. Thirty millitesla fields, but not 15 mT fields, caused an eightfold increase in the incidence of exogastrulation in Lytechinus pictus, whereas neither of these fields produced exogastrulation in Strongylocentrotus purpuratus. Bioelectromagnetics 18:255–263, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

    18.
    In the past, epidemiological studies indicated a possible correlation between the exposure to ELF fields and cancer. Public concern over possible hazards associated with exposure to extremely low frequency magnetic fields (ELFMFs) stimulated an increased scientific research effort. More recent research and laboratory studies, however, have not been able to definitively confirm the correlation suggested by epidemiological studies. The aim of this study was to evaluate the effects of 50 Hz magnetic fields in human blood cells exposed in vitro, using several methodological approaches for the detection of genotoxicity. Whole blood samples obtained from five donors were exposed for 2 h to 50 Hz, 1 mT uniform magnetic field generated by a Helmholtz coil system. Comet assay, sister chromatid exchanges (SCE), chromosome aberrations (CA), and micronucleus (MN) tests were used to assess DNA damage, one hallmark of malignant cell transformation. The effects of a combined exposure with X-rays were also evaluated. Results obtained do not show any significant difference between ELFMFs exposed and unexposed samples. Moreover, no synergistic effect with ionizing radiation has been observed. A slight but significant decrease of cell proliferation was evident in ELFMFs treated samples and samples subjected to the combined exposure.  相似文献   

    19.
    Response of leukocytes to exposure to an external magnetic field with frequency 50 Hz and sinusoidal waveform was investigated in vitro using the leukocyte adherence inhibition (LAI) assay developed as a measure of cell-mediated immunity. Leukocytes taken from healthy humans adhere, but their adherence decreases after 1 hr of exposure to the magnetic field with magnetic induction of 1 and 10 mT. The majority of leukocytes taken from cancer patients before any medical treatment do not adhere, and exposure to the magnetic field increases adherence. Correlation between the LAI assay results and the cell-mediated immunity suggests an effect of magnetic fields on leukocyte immune function in humans.  相似文献   

    20.
    The incomplete understanding of the relation between power-frequency fields and biological responses raises problems in defining an appropriate metric for exposure assessment and epidemiological studies. Based on evidence from biological experiments, one can define alternative metrics or effects functions that embody the relationship between field exposure patterns and hypothetical health effects. In this paper, we explore the application of the “effects function” approach to occupational exposure data. Our analysis provides examples of exposure assessments based on a range of plausible effects functions. An EMDEX time series data set of ELF frequency (40–800 Hz) magnetic field exposure measurements for electric utility workers was analyzed with several statistical measures and effects functions: average field strength, combination of threshold and exposure duration, and field strength changes. Results were compared for eight job categories: electrician, substation operator, machinist, welder, plant operator, lineman/splicer, meter reader, and clerical. Average field strength yields a different ranking for these job categories than the ranks obtained using other biologically plausible effects functions. Whereas the group of electricians has the highest exposure by average field strength, the group of substation operators has the highest ranking for most of the other effects functions. Plant operators rank highest in the total number of field strength changes greater than 1 μT per hour. The clerical group remains at the lowest end for all of these effects functions. Our analysis suggests that, although average field strength could be used as a surrogate of field exposure for simply classifying exposure into “low” and “high,” this summary measure may be misleading in the relative ranking of job categories in which workers are in “high” fields. These results indicate the relevance of metrics other than average field strength in occupational exposure assessment and in the design and analysis of epidemiological studies. Bioelectromagnetics 18:365–375, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号