首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To explore possible biochemical mechanisms whereby electromagnetic fields of around 0.1 mT might affect immune cells or developing cancer cells, we studied intracellular calcium signaling in the model system Jurkat E6-1 human T-leukemia cells during and following exposure to a 60 Hz magnetic field. Cells were labeled with the intracellular calcium-sensitive fluorescent dye Fluo-3, stimulated with a monoclonal antibody against the cell surface structure CD3 (associated with ligand-stimulated T-cell activation), and analyzed on a FACScan flow-cytometer for increases in intensity of emissions in the range of 515–545 nm. Cells were exposed during or before calcium signal-stimulation to 0.15 mTrms 60 Hz magnetic field. The total DC magnetic field of 78.2 μT was aligned 17.5° off the vertical axis. Experiments used both cells cultured at optimal conditions at 37 °C and cells grown under suboptimal conditions of 24 °C, lowered external calcium, or lowered anti-CD3 concentration. These experiments demonstrate that intracellular signaling in Jurkat E6-1 was not affected by a 60 Hz magnetic field when culture and calcium signal-stimulation were optimal or suboptimal. These results do not exclude field-induced calcium-related effects further down the calcium signaling pathway, such as on calmodulin or other calcium-sensitive enzymes. Bioelectromagnetics 18:439–445, 1997. © 1997 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    2.
    We independently examined the findings of Harland and Liburdy, who reported that 1.2 microT(rms), 60 Hz magnetic fields could significantly reduce the inhibitory action of physiological levels of melatonin (10(-9) M) and of pharmacological levels of tamoxifen (10(-7) M) on the growth of MCF-7 human breast cancer cells in vitro. We used two testing protocols. In the melatonin study, the cell numbers per dish on day 7 of treatment were determined using a hemocytometer assay. In the tamoxifen study we used an expanded protocol, employing an alternative cell counting assay to characterize the cell numbers per dish on days 4, 5, 6, and 7. In both the melatonin and tamoxifen studies, cells were plated on 35 mm dishes and placed in each of two exposure chambers inside 5% CO(2) incubators. One exposure chamber was energized to produce 1.2 microT(rms), 60 Hz magnetic fields and the other chamber was not energized. Treatment was continuous until assays were performed. Cells were harvested at selected times, and enumerated without knowledge of treatment. In the melatonin study, the experiment was repeated three times, whereas in the tamoxifen study, each experiment was repeated nine times. In the melatonin study, cell numbers per dish were significantly reduced (by 16.7%) in the melatonin treated cultures after 7 days of incubation compared to control cultures, whereas in the presence of 1.2 microT(rms), 60 Hz magnetic fields, the melatonin treated cultures had the same cell populations as the control cultures. In the tamoxifen study, tamoxifen reduced the cell growth by 18.6 and 25% on days 6 and 7, respectively, in the chamber not energized, while in 1.2 microT(rms), 60 Hz fields, tamoxifen reduced the cell growth only by 8.7 and 13.1%, respectively. These results are consistent with those reported by Harland and Liburdy. A critical element of this successful replication effort was the constructive communication established and maintained with the original investigators. Bioelectromagnetics 22:122-128, 2001. Published 2001 Wiley-Liss, Inc.  相似文献   

    3.
    A peptide (Lymantria TE) was isolated from brains of the gypsy moth, Lymantria dispar, which stimulates synthesis of ecdysteroid in the testes of larval and pupal insects. This ecdysiotropic peptide was purified and its structure determined to be NH2-IIe-Ser-Asp-Phe-Asp-Glu-Tyr-Glu-Pro-Leu-Asn-Asp-Ala-Asp-Asn-Asn-Glu-Val-Leu-Asp-Phe-OH using protein sequence analysis and electrospray mass spectrometry. The peptide was biphasic in activity, with maximal activity in the pupal testes at 10−13 M and 10−9 M, with a minimum at 10−10 M, and with maxima at 10−15 M and 10−10 M and minimum at 10−13 M for larval testes. Arch. Insect Biochem. Physiol. 34:175–189, 1997. © 1997 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    4.
    Regeneration (blastema growth) in Dugesia tigrina was accelerated if prior to transection the planarians were exposed to a weak constant magnetic field (42 μT) combined with an ultraweak alternating magnetic field (40 nT, 3.7 Hz); lesser stimulation was obtained with weak microwaves (100 μW/cm2 at 36 GHz). Field exposure after transection produced only half of the effect (magnetic field) or none at all (microwaves).  相似文献   

    5.
    Comparisons are made between the average magnetic flux density as it would be measured with a single-axis coil probe and the flux density at the center of the probe, assuming that the probe is oriented to measure the maximum field at that point. Probability distributions of the differences between the two quantities are calculated assuming a dipole magnetic field and are found to be asymmetric. The distributions are used to estimate the uncertainty for maximum magnetic field measurements at distances that are large compared with the dimensions of the field source. Bioelectromagnetics 18:273–276, 1997. © 1997 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    6.
    The effect of exposure to a 50 Hz, vertical magnetic field on the excretion of urinary 6-sulphatoxymelatonin (aMT6s) of rats was studied in a self-controlled experiment. Ten male Wistar rats were kept under 9:15 h light:dark conditions in metabolic cages. The rats were exposed to 1.0 or 100 μT flux density for 24 h. The excretion of aMT6s, which is the primary metabolite of melatonin in the urine, did not show a statistically significant decrease, as measured by 125I radioimmunoassay, during or after magnetic field exposure of rats to either flux density. At 100 μT flux density, the increase of aMT6s excretion on the day after exposure was statistically significant (P < .02), compared with the value under exposure, but was not significant compared with the baseline values before exposure. Bioelectromagnetics 18:190–192, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

    7.
    There is ample experimental evidence that changes of earth-strength static magnetic fields, pulsed magnetic fields, or alternating electric fields (60 Hz) depress the nocturnally enhanced melatonin synthesis of the pineal gland of certain mammals. No data on the effects of high-frequency electromagnetic fields on melatonin synthesis is available. In the present study, exposure to 900 MHz electromagnetic fields [0.1 to 0.6 mW/cm2, approximately 0.06 to 0.36 W/kg specific absorption rate (SAR) in rats and 0.04 W/kg in Djungarian hamsters; both continuous and/or pulsed at 217 Hz, for 15 min to 6 h] at day or night had no notable short-term effect on pineal melatonin synthesis in male and female Sprague-Dawley rats and Djungarian hamsters. Pineal synaptic ribbon profile numbers (studied in rats only) were likewise not affected. The 900 MHz electromagnetic fields, unpulsed or pulsed at 217 Hz, as applied in the present study, have no short-term effect on the mammalian pineal gland. Bioelectromagnetics 18:376–387, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

    8.
    Previous work reported that nerve growth factor-stimulated neurite outgrowth in PC-12 cells could be altered by exposure to parallel alternating current (AC) and direct current (DC) magnetic fields under a variety of exposure conditions, producing results that are consistent with the predictions of the ion parametric resonance (IPR) model. The credibility of these results, considered extraordinary by some scientists, could be strengthened if the cell response were found to persist under alternate assay conditions. We replaced part of our standard assay procedure with a double blind procedure. This new procedure obscured 1) whether a particular set of dishes of cells was exposed or not, and 2) which individual dish was in which exposure system. The goal was to determine whether the previously observed responses of PC-12 cells to magnetic fields would be sufficiently robust to decode the imposed blinding, thereby removing any question of experimenter bias in reported results. We placed three coded dishes of cells in each of two otherwise identical exposure systems, one not energized and one energized to produce exposure conditions predicted to maximally suppress neurite outgrowth (Bdc of 36.6 μT, parallel 45 Hz AC of 23.8 μT rms). Each of the six dishes were recoded before assay to further obscure the exposure identity of any individual dish. The combined results of four distinct runs of these double blind experiments unequivocally demonstrated that 1) there was a clear, distinctive, repeatable consistency with the actual energization of the exposure systems and location of each dish, and with the predictions of the IPR model; 2) only the explicitly stated experimental variables influenced the experiment; and 3) the reported response of the cells was very improbably due to chance (P = .000024). Bioelectromagnetics 19:204–209, 1998. © 1998 Wiley-Liss, Inc.
  • 1 This article was prepared by a group consisting of both United States government employees and non-United States government employees, and as such is subject to 17 U.S.C. Sec. 105.
  •   相似文献   

    9.
    The growth of estrogen‐receptor positive breast cancer cells is inhibited by the pineal gland hormone, melatonin. Concern has been raised that power‐line frequency and microwave electromagnetic fields (EMFs) could reduce the efficiency of melatonin on breast cancer cells. In this study we investigated the impact of EMFs on the signal transduction of the high‐affinity receptor MT1 in parental MCF‐7 cells and MCF‐7 cells transfected with the MT1 gene. The binding of the cAMP‐responsive element binding (CREB) protein to a promoter sequence of BRCA‐1 after stimulation with melatonin was analyzed by a gel‐shift assay and the expression of four estrogen‐responsive genes was measured in sham‐exposed breast cancer cells and cells exposed to a sinusoidal 50 Hz EMF of 1.2 µT for 48 h. In sham‐exposed cells, binding of CREB to the promoter of BRCA‐1 was increased by estradiol and subsequently diminished by treatment with melatonin. In cells exposed to 1.2 µT, 50 Hz EMF, binding of CREB was almost completely omitted. Expression of BRCA‐1, p53, p21WAF, and c‐myc was increased by estradiol stimulation and subsequently decreased by melatonin treatment in both cell lines, except for p53 expression in the transfected cell line, thereby proving the antiestrogenic effect of melatonin at molecular level. In contrast, in breast cancer cells transfected with MT1 exposed to 1.2 µT of the 50 Hz EMF, the expression of p53 and c‐myc increased significantly after melatonin treatment but for p21WAF the increase was not significant. These results convincingly prove the negative effect of EMF on the antiestrogenic effect of melatonin in breast cancer cells. Bioelectromagnetics 31:237–245, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

    10.
    The effects of static and 50 Hz magnetic fields on cytochrome-C oxidase activity were investigated in vitro by strictly controlled, simultaneous polarographic measurements of the enzyme's high- and low-affinity redox reaction. Cytochrome-C oxidase was isolated from beef heart. Control experiments were carried out in the ambient geomagnetic and 50 Hz magnetic fields at respective flux densities of 45 and 1.8 μT. The experimentally applied fields, static and time-varying, were generated by Helmholtz coils at flux densities between 50 μT and 100 mT. Exposures were timed to act either on the combined enzyme-substrate interchange or directly on the enzyme's electron and proton translo-cations. Significant changes as high as 90% of the overall cytochrome-C oxidase activity resulted during exposure (1) to a static magnetic field at 300 μT or 10 mT in the high-affinity range, and (2) to a 50 Hz magnetic field at 10 or 50 mT in the low-affinity range. No changes were observed at other flux densities. After exposure to a change-inducing, static or time-varying field, normal activity returned. © 1993 Wiley-Liss. Inc.  相似文献   

    11.
    A study was carried out in 1990 to guide the development of a protocol for assessing residential exposures of children to time-weighted-average (TWA) power-frequency magnetic fields. The principal goal of this dosimetry study was to determine whether area (i.e., spot and/or 24 h) measurements of power-frequency magnetic fields in the residences and in the schools and daycare centers of 29 children (4 months through 8 years of age) could be used to predict their measured personal 24-h exposures. TWA personal exposures, measured with AMEX-3D meters worn by subjects, were approximately log-normally distributed with both residential and nonresidential geometric means of 0.10 μT (1.0 mG). Between-subjects variability in residential personal exposure levels (geometric standard deviation of 2.4) was substantially greater than that observed for nonresidential personal exposure levels (1.4). The correlation between log-transformed residential and total personal exposure levels was 0.97. Time-weighted averages of the magnetic fields measured in children's bedrooms, family rooms, living rooms, and kitchens were highly correlated with residential personal exposure levels (r = 0.90). In general, magnetic field levels measured in schools and daycare centers attended by subjects were smaller and less variable than measured residential fields and were only weakly correlated with measured nonresidential personal exposures. The final measurement protocol, which will be used in a large US study examining the relationship between childhood leukemia and exposure to magnetic fields, contains the following elements: normal- and low-power spot magnetic field measurements in bedrooms occupied by subjects during the 5 years prior to the date of diagnosis for cases or the corresponding date for controls; spot measurements under normal and low power-usage conditions at the centers of the kitchen and the family room; 24-h magnetic-field recordings near subjects' beds; and wire coding using the Wertheimer-Leeper method. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    12.
    This work was undertaken to compare the behavior of Friend erythroleukemia cells in a solenoid, where the magnetic field was 70 μT at 50 Hz (plus 45 μT DC of Earth) with that of the same cells in a magnetically shielded room, where the magnetic field was attenuated to 20 nT DC and 2.5 pT AC. The control laboratory magnetic field corresponded to 45 μT DC and a stray 50 Hz field below 0.2 μT. The culture growth cycle of cells maintained inside the solenoid was slightly accelerated compared with that of cells maintained outside the solenoid (P < .05). This stimulation probably depended on sensitivity of cell cycle to a magnetic field, because, inside the solenoid, the percentage of G1 cells slightly increased during the culture growth cycle, whereas that of S cells slightly decreased. Acceleration of growth was detected soon after exposure of the cultures to the solenoid field, and growth did not change further if the action of this field continued for a long time, accounting for adaptation. The solenoid field also caused a small increase of cell survival without influencing cell volume. By contrast, the culture growth cycle of cells maintained inside the magnetically shielded room was slightly decelerated compared with that of cells maintained outside the room (P < .05). The essential absence of any field inside the magnetically shielded room also caused a small increase of cell volume, whereas, during the culture growth cycle, the percentage of G1 cells decreased, and that of S cells increased. The majority of these events did not change in cells induced to differentiate hemoglobin through dimethylsulfoxide. Bioelectromagnetics 18:58–66, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

    13.
    Recent laboratory and epidemiological results have stimulated interest in the hypothesis that human beings may exhibit biological responses to magnetic and/or electric field transients with frequencies in the range between 100 Hz and 100 kHz. Much can be learned about the response of a system to a transient stimulation by understanding its response to sinusoidal disturbances over the entire frequency range of interest. Thus, the main effort of this paper was to compare the strengths of the electric fields induced in homogeneous ellipsoidal models by uniform 100 Hz through 100 kHz electric and magnetic fields. Over this frequency range, external electric fields of about 25–2000 V/m (depending primarily on the orientation of the body relative to the field) are required to induce electric fields inside models of adults and children that are similar in strength to those induced by an external 1 μT magnetic field. Additional analysis indicates that electric fields induced by uniform external electric and magnetic fields and by the nonuniform electric and magnetic fields produced by idealized point sources will not differ by more than a factor of two until the sources are brought close to the body. Published data on electric and magnetic field transients in residential environments indicate that, for most field orientations, the magnetic component will induce stronger electric fields inside adults and children than the electric component. This conclusion is also true for the currents induced in humans by typical levels of 60 Hz electric and magnetic fields in U.S. residences. Bioelectromagnetics 18:67–76, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

    14.
    Primary-culture bone cells were exposed to ion-resonance (IR) magnetic fields tuned to Ca2+. Cytosolic calcium concentration, [Ca2+]c, was measured by using fura-2 during field exposure. The fields investigated were 20 μT static + 40 μT p-p at either 15.3 or 76.6 Hz, and 0.13 mT static + either 0.5 or 1.0 mT p-p at 100 Hz. Other parameters included field orientation, culture age (2 or 5 days after plating), and the presence of serum (0 or 2%) during exposure. Total experiment time was 29.5 min: The field was applied after 2 min, and bradykinin was added as an agonist control after 22 min. The data were quantified on a single-cell basis during the 2–22 min exposure period in terms of the magnitude of the largest occurring [Ca2+]c spike normalized to local baseline. Field-exposed and control groups were characterized in terms of the percent of cells exhibiting spike magnitudes above thresholds of 100 or 66% over baseline and were compared by using Fisher's exact test. Without serum, there was little evidence that IR magnetic fields altered [Ca2+]c. However, in the presence of 2% serum, 3 of the 16 experiments exhibited significant effects at the 100% threshold. Reducing this threshold to 66% resulted in five experiments exhibiting significant effects. Most strikingly, in all of these cases, the field acted to enhance [Ca2+]c activity as opposed to suppressing [Ca2+]c activity. These findings suggest a role for serum or for constituents within serum in mediating the effects of IR magnetic fields on cells and may provide a resolution pathway to the dilemma imposed by theoretical arguments regarding the possibility of such phenomena. Possible roles of serum and future studies are discussed. Bioelectromagnetics 18:203–214, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

    15.
    In an earlier study, we found no effects of 60 Hz electric and magnetic fields (EMF) from a 500 kV transmission line on serum melatonin patterns or on puberty in ten female Suffolk lambs (Ovis aries). We conducted a larger replicate study of 15 lambs exposed to a mean electric field of 6.3 kV/m and a mean magnetic field of 3.77 μT and 15 controls exposed to EMF two orders of magnitude weaker than in the line area. The replicate produced essentially the same results as our previous study. © 1995 Wiley-Liss, Inc.  相似文献   

    16.
    Flux density and spectral measurements were carried out on magnetic fields generated by several types of motor-driven personal appliances used near the body. Among the units tested were several for which the average flux densities, as determined at the surfaces of the appliance, exceeded 0.4 mT. Time-rates-of-change (dB/dt) for several units exceeded 1000 T/s, and several units exhibited high-frequency components in the low-MHz range. Use of such appliances, although normally of short duration, can represent exposure to magnetic fields of relatively high flux density, which may also have high-frequency components. Compared to other household and commercial sources of magnetic fields, those generated by certain motor-driven personal appliances may represent a significant contribution to time-weighted average exposure and may represent an important source of local induced currents in the body. Furthermore, high-frequency transients that represent only a minor contribution to time-weighted average exposure may generate significant instantaneous induced currents. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    17.
    This report describes the third in a series of double-blind, laboratory-based studies that were aimed at determining the effects of nocturnal exposure to power frequency magnetic fields on blood levels of melatonin in human volunteers. Our two earlier studies evaluated effects on melatonin of intermittent exposure to 60 Hz circularly polarized magnetic fields at 10 and 200 mG. No overall effects on melatonin levels were found. In the present study, men were exposed continuously rather than intermittently through the night to the same 200 mG magnetic field condition that was used previously; again, no overall effects on melatonin levels were found. We conclude that the intermittent and continuous exposure conditions used in our laboratory to date are not effective in altering nocturnal blood levels of melatonin in human volunteers. Bioelectromagnetics 18:166–171, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

    18.
    A number of novel melatonin derivatives, containing aroylhydrazone moieties, were synthesized and explored in vivo for anticonvulsant activity, neurotoxicity in ICR mice as well as in-vitro for cytoxicity and oxidative stress in rats. The structures and configurations were confirmed by NMR, FTIR, HRMS and crystal X-ray diffraction method. For selection of potent structures for synthesis a pharmacophore model was used. Two compounds 3e, with a 2-furyl moiety fragment and 3f with 2-thienyl fragment, showed a potency in maximal electroshock (MES) test (ED50 = 50.98 mg kg−1, PI > 5.88 and ED50 = 108.7 mg kg−1; PI > 2.76), respectively, higher than melatonin (ED50 = 160.3 mg kg−1, PI > 1.87). The compounds 3c, 3e, 3f and 3i suppressed psychomotor seizures in the 6 Hz test and 3c was the most potent with higher ED50 = 13.98 mg kg−1 and PI of > 21.46 compared to that of melatonin (ED50 = 49.76 mg kg−1 and PI of > 6.03) in mice. None of the compounds displayed neurotoxicity in the rota-rod test. The novel melatonin derivatives exerted weak cytotoxic effects while 3f showed the lowest hepatoxic effects comparable to that of the positive control melatonin in rats. The high affinities to the elucidated pharmacophore model of the novel melatonin compounds derived from the inclusion of aroylhydrazone moiety in the indole scaffold yielded suitable candidates with anticonvulsant activity in the MES and 6 Hz test of psychomotor seizures.  相似文献   

    19.
    The purpose of this study was to determine if 60 Hz magnetic fields can alter the clinical progression of leukemia in an animal model. Large granular lymphocytic (LGL) leukemia cells from spleens of leukemic rats were transplanted into young male Fischer 344 rats, producing signs of leukemia in approximately 2–3 months. The animals were randomly assigned to 4 treatment groups (108/group) as follows: 1) 10 G (1.0 mT) linearly polarized 60 Hz magnetic fields, 2) sham exposed [null energized unit with residual 20 mG (2 μT) fields], 3) ambient controls [<1 mG (0.1 μT)], and 4) positive controls (a single 5 Gy whole body exposure to 60Co 4 days prior to initiation of exposure). All rats were injected intraperitoneally (ip) with 2.2 × 107 LGL leukemic cells at the initiation of exposure or sham exposure. The magnetic fields were activated for 20 h/day, 7 days/week, allowing time for animal care. The experimental fields were in addition to natural ambient magnetic fields. Eighteen rats from each treatment group were bled, killed, and evaluated at 5, 6, 7, 8, 9, and 11 weeks of exposure. Peripheral blood hematological endpoints, changes in spleen growth, and LGL cell infiltration into the spleen and liver were measured to evaluate the leukemia progression. No significant or consistent differences were detected between the magnetic field exposed groups and the ambient control group, although the clinical progress of leukemia was enhanced in the positive control animals. These data indicate that exposure to sinusoidal, linearly polarized 60 Hz, 10 G magnetic fields did not significantly alter the clinical progression of LGL leukemia. Furthermore, the data are in general agreement with previous results of a companion repeated‐bleeding study in which animals were exposed for 18 weeks. Bioelectromagnetics 20:48–56, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

    20.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号