首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
JH III esterase and JH III epoxide hydrolase (EH) in vitro activity was compared in whole body Trichoplusia ni homogenates at each stage of development (egg, larva, pupa and adult). While activity of both enzymes was detected at all ages tested, JH esterase was significantly higher than EH activity except for day three of the fifth (last) stadium (L5D3). For both enzymes, activity was highest in eggs. Adult virgin females had 4.6- and 4.0-fold higher JH esterase and EH activities, respectively, than adult virgin males. JH III metabolic activity also was measured in whole body homogenates of fifth stadium T. ni that were fed a nutritive diet (control) or starved on a non-nutritive diet of alphacel, agar and water. With larvae that were starved for 6, 28 and 52 h, EH activity per insect equivalent was 48%, 5% and 1%, respectively, of the control insects. At the same time points, JH esterase activity levels in starved T. ni were 29%, 4% and 3% of that of insects fed the nutritive diet. Selected insect hormones and xenobiotics were administered topically or orally to fifth stadium larvae for up to 52 h, and the effects on whole body EH and JH esterase activity analyzed. JH III increased the JH III esterase activity as high as 2.2-fold, but not the JH III EH activity. The JH analog, methoprene, increased both JH esterase and EH activity as high as 2.5-fold. The JH esterase inhibitor, 3-octylthio-1,1,1-trifluoropropan-2-one (OTFP), had no impact on EH activity. The epoxides trans- and cis-stilbene oxide (TSO and CSO) in separate experiments increased the EH activity approximately 2.0-fold. TSO did not alter JH esterase levels when topically applied, but oral administration reduced activity to 70% of the control at 28 h, and then increased the activity 1.8-fold at 52 h after the beginning of treatment. CSO had no effect on JH esterase activity. Phenobarbital increased EH activity by 1.9-fold, but did not change JH esterase levels. Clofibrate and cholesterol 5alpha,6alpha-epoxide had no effect on EH. JH esterase activity also was not affected by clofibrate, but cholesterol 5alpha,6alpha-epoxide reduced the JH esterase activity to 60-80% of the control. The biological significance of these results is discussed.  相似文献   

2.
Four esterase isozymes hydrolyzing α-naphthyl acetate (α-NA) were detected screening whole body homogenates of larvae and adults of Ips typographus by electrophoresis. Two of the four isozymes (isozymes 3 and 4) were not detected by α-NA staining in the pupal stage, but topical application of juvenile hormone III (JH III) on the pupa induced these isozymes. The JH esterase (JHE) activity on the gel was associated with the proteins of isozyme 2. The compounds OTFP, PTFP, and DFP inhibited this catalytic activity of isozyme 2 on the gel at low concentrations, whereas the proteins of isozyme 3 and 4 were affected only at higher concentrations. A quantitative developmental study was performed to characterize which of the esterases hydrolyzed JH III, using a putative surrogate substrate for JH (HEXTAT) and α-NA. The I50 of several esterase inhibitors and the JH metabolites were also defined. All findings supported the results that a protein associated with isozyme 2 is catabolizing JH and that isozymes 3 and 4 are the main contributors to the general esterase activity on α-NA. The JHE from Tenebrio molitor was purified by affinity chromatography. Although the recovery was low, an analytical isoelectric focusing gel showed that the JHE activity of the purified enzyme. T. molitor cochromatographed at the same pl as the JHE activity of I. typographus. Arch. Insect Biochem. Physiol. 34:203–221, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
Juvenile hormone (JH) III esterase and JH III epoxide hydrolase activity was found in the integument, midgut, fat body, and brain during last instar development of the tobacco hornworm, Manduca sexta. JH esterase activity was primarily located in the cytosol in these tissues while the majority of the JH epoxide hydrolase activity was found in the microsomes. A prewandering (on day 3) and postwandering (on day 8) peak in plasma JH III esterase activity occurs in the last instar of gate I M. sexta. The JH esterase activity profile in integument, midgut, fat body, and brain followed a similar pattern to that of the plasma. The only exception to this was the absence of the postwandering, prepupal (on day 8) JH esterase peak in the fat body. The topical application of the juvenoid, (RS)-methoprene, failed to induce fat body JH esterase activity but increased activity in the plasma, integument, midgut, and brain in M. sexta prepupae. These results indicate that the source of plasma JH esterase activity is not always the fat body as previously hypothesized. The developmental profile of tissue JH epoxide hydrolase activity was also similar to that of JH esterase suggesting that both enzymes may be regulated partly by the same factors and that JH epoxide hydrolase may also have an important, previously unrecognized functional role in JH regulation and insect metamorphosis. Multiple isoelectric forms of tissue-specific JH esterases and JH epoxide hydrolases were found in integument, midgut, fat body, and brain. The JH esterases in these tissues had isoelectric points more acidic than that for plasma. Tissue α-naphthyl acetate esterase, developmental profiles, and inhibitor sensitivity to 3-(octylthio)-1,1,1-trifluoropropan-2-one differed significantly from that for JH esterase, suggesting that they represent different enzymes. ©1992 Wiley-Liss, Inc.  相似文献   

4.
保幼激素的代谢   总被引:4,自引:0,他引:4  
李胜  蒋容静  曹梅讯 《昆虫学报》2004,47(3):389-393
保幼激素的代谢由保幼激素酯酶、保幼激素环氧水解酶和保幼激素二醇激酶等共同催化完成。在这些代谢酶的作用下,保幼激素代谢成保幼激素酸、保幼激素二醇、保幼激素酸二醇和保幼激素二醇磷酸。作者总结了保幼激素代谢的研究方法;按实验室和昆虫种类为线索,归纳和概括了每一种保幼激素代谢酶的研究进程;对保幼激素酯酶和保幼激素环氧水解酶作了序列分析;最后对保幼激素的代谢研究进行了展望。  相似文献   

5.
Two fractions obtained after chromatography of dichloromethane extract of Penicillium brevicompactum culture medium showed anti-juvenile hormone activity. One was active when assayed in vivo against Oncopeltus fasciatus third-instar nymphs, whereas the other showed a strong in vitro inhibition of JH III biosynthesis on Locusta migratoria corpora allata. A subfraction of the latter, constituting 97% of this fraction, is a main component that possessed the juvenile hormone biosynthesis inhibitory activity. Chemical characterization of this compound shows a sesquiterpene-like structure, molecular mass of 278.16185 daltons, corresponding to an empirical formula of C15H22N2O3 named brevioxime. Evidence suggests that the final steps of JH III biosynthesis are the target of the active compound. Its effects may be compared with those of a known inhibitor of P-450-linked epoxidase, KK-42 (1-benzyl-5-[(E)-2,6-dimethyl-1,5-heptadienyl]imidazole), whose effects on L. Migratoria corpora allata are also reported here for the first time. Arch. Insect Biochem. Physiol. 37:287–294, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
Juvenile hormone (JH) esterase found primarily in the hemolymph and tissues of insects is a low abundance protein involved in the ester hydrolysis of insect juvenile hormones, JHs. The enzyme was purified from the larval plasma of wild-type Manduca sexta using an affinity column prepared by binding the ligand, 3-[(4'-mercapto)butylthio]-1,1,1-trifluoropropan-2-one (MBTFP), to epoxy-activated Sepharose. The purification was greater than 700-fold with a 72% recovery, and the purified enzyme appeared as a single protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoelectrophoresis, reverse phase high performance liquid chromatography, and amino acid sequence analysis. The molecular weight was 66,000. The plasma JH esterase in wild-type, black, and white strains of M. sexta was similar when analyzed by immunotitration, wide range (pH 3.5-9.0) isoelectric focusing, and inhibition with MBTFP and 3-octylthio-1,1,1-trifluoropropan-2-one (OTFP). Inhibition studies revealed a sensitive and insensitive form (I50 = 10(-9) and 10(-6) M, respectively) in these three biotypes. Narrow range isoelectric focusing (pH 4.0-7.0) indicated the presence of two major isoelectric forms with pI values of 6.0 and 5.5, but their inhibition kinetics with OTFP and O,O-diisopropyl phosphorofluoridate were identical.  相似文献   

7.
The increase in the juvenile hormone (JH) III titer in the hemolymph of Lymantria dispar larvae that were parasitized by the endoparasitoid braconid, Glyptapanteles liparidis, during the host's premolt to third instar, coincided with the molt of the parasitoid larvae to the second instar between day 5 and 7 of the fourth host instar. It reached a maximum mean value of 89 pmol/ml on day 7 of the fifth instar while it remained below 1 pmol/ml in unparasitized larvae. Only newly molted fifth instar hosts showed a low JH III titer similar to that of the unparasitized larvae. JH II, which is the predominant JH homologue in unparasitized gypsy moth larvae, also increased relative to controls in the last two samples (days 7 and 9) from parasitized fourth and fifth instars. Compared to unparasitized larvae, a generally reduced activity of JH esterase (JHE) was found in parasitized larvae throughout both larval stages. The reduction in enzyme activity at the beginning and at the end of each instar, when the JHE activity in unparasitized larvae was high, may be in part responsible for the increased JH II and JH III titers in parasitized larvae. Ester hydrolysis was the only pathway of JH metabolism in the hemolymph of unparasitized and parasitized gypsy moth larvae as detected by chromatographic assays. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Abstract A rapid and simple method has been developed for the simultaneous measurement of juvenile hormone (JH) and JH acid synthesized in vitro by larval corpora allata (CA) of the tobacco hornworm, Manduca sexta. An organic solvent partition of incubation medium efficiently separates JH acid from JH, and a radioimmunoassay which recognizes the two moieties equivalently is then employed to quantify each. The change in the biosynthetic product of the CA from JH to JH acid appears to begin slowly at the time of ecdysis to the last (fifth) larval stadium and is not complete until just prior to wandering (day 4). The inclusion of the JH esterase inhibitor S-benzoyl-O-ethyl phosphoramidothiolate in incubations of corpora allata revealed that the activity of JH esterases from the gland parallels gland activity and that significant hydrolysis of newly synthesized JH by these esterases occurs in incubations of glands taken at the beginnings of the fourth and fifth larval stadia. An allatostatin, which is proposed to inhibit the corpus allatum during the time of the change in its product, inhibits both JH I and JH I acid synthesis.  相似文献   

9.
10.
Juvenile hormone (JH) is an insect hormone containing an alpha,beta-unsaturated ester consisting of a small alcohol and long, hydrophobic acid. JH degradation is required for proper insect development. One pathway of this degradation is through juvenile hormone esterase (JHE), which cleaves the JH ester bond to produce methanol and JH acid. JHE is a member of the functionally divergent alpha/beta-hydrolase family of enzymes and is a highly efficient enzyme that cleaves JH at very low in vivo concentrations. We present here a 2.7 A crystal structure of JHE from the tobacco hornworm Manduca sexta (MsJHE) in complex with the transition state analogue inhibitor 3-octylthio-1,1,1-trifluoropropan-2-one (OTFP) covalently bound to the active site. This crystal structure, the first JHE structure reported, contains a long, hydrophobic binding pocket with the solvent-inaccessible catalytic triad located at the end. The structure explains many of the interactions observed between JHE and its substrates and inhibitors, such as the preference for small alcohol groups and long hydrophobic backbones. The most potent JHE inhibitors identified to date contain a trifluoromethyl ketone (TFK) moiety and have a sulfur atom beta to the ketone. In this study, sulfur-aromatic interactions were observed between the sulfur atom of OTFP and a conserved aromatic residue in the crystal structure. Mutational analysis supported the hypothesis that these interactions contribute to the potency of sulfur-containing TFK inhibitors. Together, these results clarify the binding mechanism of JHE inhibitors and provide useful observations for the development of additional enzyme inhibitors for a variety of enzymes.  相似文献   

11.
The participation of juvenile hormone (JH) in the regulation of growth and protein synthesis in the accessory reproductive gland of male Locusta migratoria has been investigated. After elimination of endogenous JH with ethoxyprecocene, the accessory gland failed to grow, but growth was restored by a single application of the JH analog, pyriproxyfen. Pyriproxyfen appeared to stimulate total protein synthesis by 3 h, with a significant effect by 12 h, in contrast to 24 h observed in fat body. The dose curve for stimulation of protein synthesis 12 h after applying pyriproxyfen gave an ED50 of 0.1 μg; the dose curve for gland growth at 72 h was biphasic, with steps at about 0.01 μg and 10 μg, suggesting two phases in JH action. SDS-PAGE analysis showed several components that were stimulated by pyriproxyfen, the effect being strongest in an 11 kDa band. A 5 kDa component was enhanced in the soluble and reduced in the particulate fraction after precocene treatment. The accessory gland contained JH esterase activity at levels about 100 times those in fat body or hemolymph, and was higher in precocene treated locusts. Binding activity for [3H]10R -JH III was high in cytosolic and nuclear fractions, and was identified immunologically as due to the previously described hemolymph JH binding protein. The results indicate that the mode of action of JH in the accessory gland may differ from that in the fat body. The presence of intracellular JH binding protein suggests a direct action of JH within the gland, that may be modulated by JH esterase. © 1995 Wiley-Liss, Inc.  相似文献   

12.
In the Colorado potato beetle (Leptinotarsa decemlineata), low juvenile hormone (JH) titers are necessary to initiate metamorphosis and diapause. Low JH titers coincide with high activities of JH esterase, which occur mainly in the hemolymph. The specific activity of JH esterase appeared to be highest in the last larval instar, at day 3 after the molt, and reached a value of 13.5 nmol/min/mg. JH esterase was purified from hemolymph collected at this stage by a sequence of separation systems, including preparative nondenaturing PAGE, isoelectric focusing, and SDS-PAGE. The enzyme had a molecular weight of 120,000 and was composed of two subunits with molecular weights of 57,000, which were not linked by disulphide bridges. Isoelectric focusing revealed two forms of the enzyme with isoelectric points of 5.5 and 5.6. The Km and kcat of the purified enzyme were determined. The major form with pI 5.6 had a Km of 1.4 × 10-6M and a kcat of 0.9 s-1 and the minor form with pI 5.5 had a Km of 2.2 × 10-6M and a kcat of 1.9 s-1. The quaternary structure of L. decemlineata JH esterase as a dimer, differs from JH esterases in other species, which are monomers. Arch. Insect Biochem. Physiol. 35:261-277, 1997.© 1997 Wiley-Liss, Inc.  相似文献   

13.
A thin-layer chromatographic assay was developed for the resolution of hydrolytic and conjugative catabolites of juvenile hormone (JH). A single-dimension, dual-development thin-layer system allowed complete resolution of the catabolites. Thus, this system provided a means for the rapid and economic analysis of JH hydrolysis even when different hydrolytic activities were present concurrently. Purified hydrolytic enzymes were found to be superior to chemical methods for the generation of small amounts of standards of JH catabolites. The relative levels of activities of an epoxide hydrolase and an esterase toward JH III were found to be similar in microsomal preparations from three lines of adult Drosophila melanogaster isolated from a field population. However, selection of flies by exposure to cut orange resulted in the elevation of levels of epoxide hydrolase activities, whereas esterase levels were not affected to the same extent. The formation of the JH acid-diol was not detected under the conditions of this study, suggesting that the JH acid and diol were not good substrates for epoxide hydrolase and juvenile hormone esterase, respectively.  相似文献   

14.
Juvenile hormone (JH) is one of the key insect hormones that regulate metamorphosis. Juvenile hormone diol kinase (JHDK) is an enzyme involved in JH metabolism and catalyzes JH diol to form a polar end product, JH diol phosphate that has no JH activity. In this study, a JHDK complementary DNA (cDNA) was cloned from Spodoptera litura and the structure and expression of the gene was characterized. The cDNA was 714 base pairs in length and encoded a protein of 183 amino acids with a molecular mass of 21 kDa and an isoelectric point of 4.55. Based on the structure, three putative calcium binding motifs and guanosine triphosphate‐binding motifs were predicted in the protein. Modeling of the 3‐D structure showed that the protein consisted of eight α‐helixes linked with loops, with no β‐sheets. The gene was expressed in the epidermis, fat body and midgut of fifth and sixth instar larvae. The expression level in the epidermis was lower than in the fat body and midgut. The gene was expressed at higher levels at the early stages than in the later stages of fifth and sixth instar midgut and fat body. The results suggest that this gene may be involved in the regulation of the JH titer in larvae of S. litura.  相似文献   

15.
16.
Methyl farnesoate (MF) is a sesquiterpenoid that is synthesized by crustaceans and is structurally similar to the insect juvenile hormones. MF is metabolized to farnesoic acid by carboxylesterases present in crustacean tissues. In order to investigate the biological significance of MF metabolism, we have developed two rapid methods for measuring MF esterase activity. The first method is a radiochemical partition assay that utilizes an authentic substrate. The [3H]MF partition assay was used to evaluate the spectrophotometric esterase substrates methyl 1-heptylthioacetothioate (HEPTAT) and methyl 1-pentylthioacetothioate (PENTAT) for use with crude and partially purified samples of MF esterases from lobster hepatopancreas (midgut gland). The spectrophotometric method is less specific for MF esterases than the partition assay but is less time consuming and nonradioactive, and it provides kinetic information. HEPTAT and PENTAT were suitable for rapid screening of chromatographic fractions for MF esterase activity. Arch. Insect Biochem. Physiol. 36:115–128, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Topical application of different juvenile hormone analogs (JHA) or of a mixture of stereoisomers of insect juvenile hormone (JH) 1 and 3 to fed virgin female Ornithodoros moubata immediately after feeding induced vitellogenesis and egg-laying in up to 70% of treated females. In controls only 13.7% oviposited. The eggs were sterile, with abnormal shape, but their number versus the weight of engorged females was normal or sometimes greater than in mated females. However, preoviposition period was longer than in mated females.

It was more difficult to induce egg-laying by similar topical applications 100 days after feeding of virgin females. A maximum of 58% of ovipositing females was obtained with a very high dosage of JH mixture (500 fig). Injection of this mixture into the females was more potent; 15 to 50 fig induced oviposition in about 60% of the females. The preoviposition period was also longer than in control females.

Our results suggest the presence of a JH-like substance which is involved in the hormonal control of vitellogenesis. However, since natural isomers of JH were much less efficient than isomeric mixtures or JHA, we suppose that the natural tick hormone does not correspond to JH, but rather to a JH-like substance.  相似文献   

18.
Previous studies have shown that the larval epidermis of the tobacco hornworm, Manduca sexta, contains a 29 kDa nuclear protein (JP29) that binds pothoaffinity analogs of juvenile hormone (JH), but does not bind JH I with high affinity. We now find that JP29 is also associated with the insecticyanin granules, and we show that JP29 mRNA is regulated in a complex fashion by both 20-hydroxyecdysone (20E) and JH. Studies with day 2 fourth instar larval epidermis in vitro showed that a molting concentration 12 μg/ml) of 20E caused the disappearance of JP29 mRNA, irrespective of the presence or absence of JH; this effect was dependent on the concentration of 20E (ED50=200 ng/ml). The reappearance of JP29 mRNA around the time of ecdysis required the presence of JH at head capsule slippage (HCS), since little appeared in larvae allatectomized about 6 h before HCS unless JH I was applied at the time of HCS. Maintenance of JP29 mRNA in fifth instar epidermis also required the continued presence of JH in both isolated abdomens and in vitro. Culture of either day 1 or day 2 fifth instar epidermis without hormones for 24 h caused decline of JP29 mRNA, which was accelerated by 20E in a concentration-dependent manner (ED50 = 30 and 10 ng/ml 20E respectively). When day 2 epidermis was exposed to 500 ng/ml 20E for 24 h to cause pupal commitment, JP29 mRNA disappeared. Neither methoprene nor JH I (in either the presence or the absence of the esterase inhibitor O-ethyl, S-phenyl phosphamidethiolate [EPPAT]) was able to prevent this loss, although both slowed its rate. The mRNA for the larval cuticle protein LCP14 was found to be regulated similarly to that for JP29 by 20E, but differently by JH. The JP29 protein was relatively long-live, persisting after the disappearance of its mRNA for at least 19 h during the larval molt and for more than 24 h in vitro. Although trace amounts of JP29 are found for the first 12 h after pupal ecdysis, injection of 5 μg JH II into pupae during the critical period to cause the synthesis of a second pupal cuticle had no effect on the amount of JP29 present. Thus, although the presence of JP29 in larval epidermis is associated with and dependent on JH, high amounts are not associated with the “status quo” action of JH on the pupa. The role of this protein consequently remains obscure. Arch. Insect Biochem. Physiol. 34:409–428, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
In vitro catabolism of juvenile hormone (JH) in haemolymph of adult female Cydia pomonella was ascribed mainly to juvenile hormone esterase (JHE) activity. No significant differences were noted between virgin and mated females 0-96 h post-emergence. Changes in JHE activity did not appear dependent upon fluctuations in JH titre; conversely, changes in JHE activity could not explain the changes in JH titres. Maximal JHE activity was recorded at 24 h (331.47 +/- 47.25 pmol/h/microl; 355.93 +/- 36.68 pmol/h/microl, virgin; mated insects, respectively) and preceded the peak in JH titres at 48 h. Topical application of JH II (10 ng-10 microg) or fenoxycarb (50 ng) enhanced JHE activity up to 640 and 56%, respectively. Treatment upon emergence with 10 microg JH II induced enzymic activity for less than 24 h, and when 10 microg JH II or 50 ng fenoxycarb were applied, circulating JH titres returned to control levels within 24 h. Oviposition was highly sensitive to exogenous JH and declined significantly with dosages >100 pg. To allow a degree of oocyte maturation before JH treatment, the hormone was administered at 6, 12, 24, or 48 h post-emergence and/or females were mated. Neither measure "protected" the system; oviposition declined immediately after JH application.  相似文献   

20.
In the hemolymph of Melanoplus sanguinipes, a high molecular weight juvenile hormone binding protein (JHBP) was identified by photoaffinity labelling and found to have a Mr of 480,000. The JHBP, purified using native gel electrophoresis followed by electroelution, has an equilibrium dissociation constant for JH III of 2.1 nM and preferentially binds JH III over JH I. Antibody raised against JHBP recognized only the 480,000 band. Under denaturing conditions the native JHBP gave a single band with a Mr 78,000. The antibody against native JHBP recognized only the 78,000 protein in SDS-treated hemolymph samples, indicating that JHBP is a hexamer in this species. The concentration of JHBP fluctuates in both the sexes during nymphal and adult development in parallel with total protein content of hemolymph. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号