首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new PET radiotracer for in vivo labeling of serotonin (5-HT) uptake sites, cis-N, N-[11C]dimethyl-3-(2′,4′-dichlorophenyl)-indanamine, cis-[11C]DDPI, was synthesized and its biological behavior was studied. The radiosynthesis of cis-[11C]DDPI was performed by N-methylation of cis-N-methyl-3-(2′,4′-dichlorophenyl)-indanamine with [11C]iodomethane. The average radiochemical yield was approx. 8%, with an average specific activity of 600mCi/μmol. Following intravenous administration, cis-[11C]DDPI accumulated in mouse brain regions rich in 5-HT uptake sites, such as olfactory tubercles, hypothalamus and frontal cortex. Following pre-injection of 1 mg/kg of paroxetine, a high affinity 5-HT uptake blocker, the binding of cis-[11C]DDPI in the olfactory tubercles, hypothalamus and frontal cortex was decreased by 23, 25 and 16%; this corresponds to 73, 82 and 59% of the specific binding in these regions. These results suggest that the accumulation of cis-[11C]DDPI in the tissues rich in 5-HT sites is a result of specific binding of cis-[11C]DDPI to 5-HT uptake sites. Due to the relatively high non-specific uptake and slow clearance of this compound from non-specific binding sites, the ratio between specific and non-specific binding increased slowly with time, reaching 1.5:1 at 60 min after injection.  相似文献   

2.
Most antidepressant therapies aim to increase the synaptic concentration of one or more of the monoamines. Synaptic monoamine levels are, however, extremely difficult to measure. In order to estimate synaptic levels of serotonin, an indirect method has been used. Since [3Hjketanserin is an antagonist at the 5HT2 serotonin receptor, one would expect its in vivo binding to be inhibited by increased levels of synaptic serotonin. This hypothesis was tested in mice by measuring the effect of compounds which are considered to raise the synaptic concentration of serotonin. Directly acting agents such as quipazine, methysergide and mianserin inhibited [3H]ketanserin binding in vitro and in vivo. On the other hand, indirect agonists such as the monoamine oxidase inhibitors, pargyline and niamide, the serotonin uptake blockers, paroxetine and midalcipran, the serotonin releasers, p-chloroamphetamine and H75/12 and the serotonin precursor, 5-hydroxytryptophan had no effect on [3H]ketanserin binding in vivo. This was in spite of the fact that at doses used a very marked serotonin-induced behaviour was observed. In view of its insensitivity to changes in synaptic concentrations of serotonin, it is possible that the sites labelled in vivo by [3H]ketanserin are not innervated by the serotonin nerve terminals through which these indirect serotonin agonists act.  相似文献   

3.
It has been suggested that drugs combining activities of selective serotonin reuptake inhibitor and 5-HT1A receptor agonist may form a novel strategy for higher therapeutic efficacy of antidepressant. The present study aimed to examine the pharmacology of YL-0919, a novel synthetic compound with combined high affinity and selectivity for serotonin transporter and 5-HT1A receptors. We performed in vitro binding and function assays and in vivo behavioral tests to assess the pharmacological properties and antidepressant-like efficacy of YL-0919. YL-0919 displayed high affinity in vitro to both 5-HT1A receptor and 5-HT transporter prepared from rat cortical tissue. It exerted an inhibitory effect on forskolin-stimulated cAMP formation and potently inhibited 5-HT uptake in both rat cortical synaptosomes and recombinant cells. After acute p.o. administration, very low doses of YL-0919 reduced the immobility time in tail suspension test and forced swimming test in mice and rats, with no significant effect on locomotor activity in open field test. Furthermore, WAY-100635 (a selective 5-HT1A receptor antagonist, 0.3 mg/kg) significantly blocked the effect of YL-0919 in tail suspension test and forced swimming test. In addition, chronic YL-0919 treatment significantly reversed the depressive-like behaviors in chronically stressed rats. These findings suggest that YL-0919, a novel structure compound, exerts dual effect on the serotonergic system, as both 5-HT1A receptor agonist and 5-HT uptake blocker, showing remarkable antidepressant effects in animal models. Therefore, YL-0919 may be used as a new option for the treatment of major depressive disorder.  相似文献   

4.
Summary 1. The molecular and behavioral pharmacology of DOV 102,677 is characterized.2. This characterization was performed using radioligand binding and neurotransmitter uptake assays targeting the monoamine neurotransmitter receptors. In addition, the effects of DOV 102,677 on extracellular neurotransmitter levels were investigated using in vivo microdialysis. Finally, the effects of DOV 102,677 in the forced swim test, locomotor function, and response to prepulse inhibition was investigated.3. DOV 102,677 is a novel, “triple” uptake inhibitor that suppresses [3H]dopamine (DA), [3H]norepinephrine (NE) and [3H]serotonin (5-HT) uptake by recombinant human transporters with IC50 values of 129, 103 and 133 nM, respectively. Radioligand binding to the dopamine (DAT), norepinephrine (NET), and serotonin (SERT) transporters is inhibited with k i values of 222, 1030, and 740 nM, respectively. DOV 102,677 (20 mg/kg IP) increased extracellular levels of DA and 5-HT in the prefrontal cortex to 320 and 280% above baseline 100 min after administration. DA levels were stably increased for the duration (240 min) of the study, but serotonin levels declined to baseline by 200 min after administration. NE levels increased linearly to a maximum of 348% at 240 min post-dosing. Consistent with these increases in NE levels, the density of β-adrenoceptors was selectively decreased in the cortex of rats treated with DOV 102,677 (20 mg/kg per day, PO, 35 days).4. DOV 102,677 dose-dependently reduced the amount of time spent immobile by rats in the forced swim test, a model predictive of antidepressant activity, with a minimum effective dose (MED) of 20 mg/kg and a maximal efficacy comparable to imipramine. This decrease in immobility time did not appear to result from increased motor activity. Further, DOV 102,677 was as effective as methylphenidate in reducing the amplitude of the startle response in juvenile mice, without notably altering motor activity.5. In summary, DOV 102,677 is an orally active, “balanced” inhibitor of DAT, NET and SERT with therapeutic versatility in treating neuropsychiatric disorders beyond depression.  相似文献   

5.
Enhancement of 5-hydroxytryptamine (5-HT, serotonin) neurotransmission is a viable means of treating depression. On the basis of this observation, agents that inhibit re-uptake of 5-HT were prepared based on (?)-cocaine and aryltropanes as lead compounds because they are reasonably potent 5-HT re-uptake inhibitors. Molecular dissection of an aryltropane provided a series of 5- and 6-membered ring compounds. From among this library of compounds a series of disubstituted tetrahydrofurans bearing 2-alkyl aryl and 5-alkyl amino groups were identified as having highly potent and selective 5-HT re-uptake inhibition. The compounds were evaluated for their ability to compete with radiolabeled RTI-55 binding and to inhibit re-uptake of neurotransmitters at the human dopamine, serotonin and norepinephrine transporters. Based on potency (e.g., Ki = 800 pM) and significant functional selectivity (e.g., IC50 ratios for human dopamine:serotonin or norepinephrine:serotonin, ?1397) highly potent and selective serotonin re-uptake inhibitors were identified. Optimal features playing a dominant role in binding affinity and re-uptake inhibition included lipophilic substitution on the aromatic moiety, trans relative stereochemistry of the 2,5-disubstituted tetrahydrofuran ring, and a total of four or five methylene groups between the alkyl amine and the alkyl aryl moiety and the tetrahydrofuran group. A number of the most potent serotonin re-uptake inhibitors were tested in Balb/c mice in the forced-swim test (FST), a behavioral test used to measure the effects of antidepressant agents. Acute administration of 32c (10 mg/kg), or 32d (10 mg/kg) ip tended to decrease the duration of mouse immobility in the FST although the effect was not statistically significant.  相似文献   

6.
Following administration of x-methyltryptophan (AMTP) (50 mg/kg) there was a time dependent decrease of serotonin and a concomitant increase of α-methyl-5-hydroxy-tryptamine (AM-5-HT) in most cerebral areas. AMTP is hydroxylated to α-methyl-5-hydroxytryptophan (AM-5-HTP) by cerebral tryptophan hydroxylase in vitro and in vivo. Hydroxylation of AMTP in vitro and in vivo was markedly inhibited in p-chlorophenylalanine (p-CP) treated rats. After administration of AMTP, the conversion in vivo of tyrosine to norepinephrine was inhibited. This inhibition was not apparent in p-CP pretreated animals. p-Chloroamphetamine (p-CA) (10 mg/kg) lowered serotonin and AM-5-HT levels in some areas of the brain, but unlike p-CP, alone or in combination with AMTP it did not significantly inhibit hydroxylation of tryptophan (Trp). AMTP, as substrate of tryptophan hydroxylase, has a Km of 1.08 × 10-4 M (using 6-MPH4, as cofactor) and as competitive inhibitor, a K1 of 2.09 × 10-4M with L-Trp as substrate. AMTP becomes an uncompetitive inhibitor when its concentration is equal to or exceeds that of L-Trp. D-AMTP is neither a substrate nor an inhibitor of tryptophan hydroxylase. DL-AM-5-HTP (K1, 1.5 × 10-5 M) and AM-5-HT (K1 4.0 × 10-5 M) are competitive inhibitors.  相似文献   

7.
p-Methoxyamphetamine (PMA) has been implicated in fatalities as a result of 'ecstasy' (MDMA) overdose worldwide. Like MDMA, acute effects are associated with marked changes in serotonergic neurotransmission, but the long-term effects of PMA are poorly understood. The aim of this study was to determine the effect of repeated PMA administration on in vitro measures of neurodegeneration: serotonin (5-HT) uptake, 5-HT transporter (SERT) density and 5-HT content in the hippocampus, and compare with effects on in vivo 5-HT clearance. Male rats received PMA, MDMA (4 or 15 mg/kg s.c., twice daily) or vehicle for 4 days and 2 weeks later indices of SERT function were measured. [(3)H]5-HT uptake into synaptosomes and [(3)H]cyanoimipramine binding to the SERT were significantly reduced by both PMA and MDMA treatments. 5-HT content was reduced in MDMA-, but not PMA-treatment. In contrast, clearance of locally applied 5-HT measured in vivo by chronoamperometry was only reduced in rats treated with 15 mg/kg PMA. The finding that 5-HT clearance in vivo was unaltered by MDMA treatment suggests that in vitro measures of 5-HT axonal degeneration do not necessarily predict potential compensatory mechanisms that maintain SERT function under basal conditions.  相似文献   

8.
Examination of HP 184, [N-n-propyl)-N-(3-fluoro-4-pyridinyl)-1H-3-methylindodel-1-amine hydrochloride], in a variety of tests for serotonergic activity revealed some unique properties of this compound. We report here that 100 μM HP 184 enhanced spontaneous release of [3H]serotonin (5-HT) from rat hippocampal slices. This release was independent of the uptake carrier. In vivo assays confirmed that HP 184 (20 mg/kg, i.p.) lacked significant interactions at the norepinephrine (NE) or 5-HT uptake carrier itself. Notably, HP 184 (15 mg/kg, i.p.) reduced drinking behavior in schedule-induced polydipsic (SIP) rats. We previously reported that some selective 5-HT reuptake inhibitors decrease SIP 30–40% after a 14–21 day treatment. In the current study, HP 184 decreased SIP beginning with the first treatment, and this reduction (30%) was maintained for 28 days. We further investigated HP 184 and serotonin metabolite levels. One hour after i.p. administration of 30 mg/kg HP 184, the ratio of whole brain 5-hydroxyindolacetic acid (5-HIAA) to 5-HT was increased, suggesting serotonergic activation. Under these conditions, the brain: plasma ratio of HP 184 was approximately 2∶1, with brain concentrations of 1.6 μg/gram. We speculate that the spontaneous release effects of HP 184 may be responsible for the behavioral effects observed.  相似文献   

9.
p-chlorophenylethylamine (p-CPEA), a metabolite of p-chlorophenylalanine (p-CPA) induces the “serotonin syndrome” which consists of lateral head weaving, Straub tail, hindlimb abduction, tremor, hyperactivity, reciprocal fore-paw treading, salivation and piloerection. These p-CPEA-induced behavioral signs were partially prevented by pretreatment with serotonin (5-HT) uptake blockers (fluoxetine, chlorimipramine, Org 6582) and 5-HT receptor blockers (methiothepin, methysergide, cinnanserin) but not by two depletors of brain 5-HT (p-CPA, reserpine). p-CPEA (50 mg/kg) produces an initial decrease in 5-HT associated with a concurrent increase in 5-hydroxyindoleacetic acid with a maximum change at 30 minutes after injection; these early biochemical changes are prevented by pretreatment with fluoxetine (10 mg/kg). p-CPEA also competes with (3H)-5-HT for 5-HT receptors. The reported paradoxical effects of p-CPA on several behavioral paradigms could be due to its decarboxylation to p-CPEA which may both stimulate 5-HT receptors and enhance 5-HT release.  相似文献   

10.
Abstract: Evidence exists that a reinforcement in monoaminergic transmission in the frontal cortex (FCX) is associated with antidepressant (AD) properties. Herein, we examined whether blockade of α2-adrenergic receptors modified the influence of monoamine reuptake inhibitors on FCX levels of serotonin (5-HT), noradrenaline (NAD), and dopamine (DA). The selective α2-adrenergic receptor agonist S 18616 (0.16 mg/kg, s.c.) suppressed extracellular levels of NAD, DA, and 5-HT (by 100, 51, and 63%, respectively) in single dialysates of FCX of freely moving rats. In contrast, the selective α2-adrenergic receptor antagonists atipamezole (0.16 mg/kg, s.c.) and 1-(2-pyrimidinyl)piperazine (1-PP; 2.5 mg/kg, s.c.) increased levels of NAD (by 180 and 185%, respectively) and DA (by 130 and 90%, respectively), without affecting 5-HT levels. Duloxetine (5.0 mg/kg, s.c.), a mixed inhibitor of 5-HT and NAD reuptake, and fluoxetine (10.0 mg/kg, s.c.), a selective 5-HT reuptake inhibitor, both increased levels of 5-HT (by 150 and 120%, respectively), NAD (by 400 and 100%, respectively), and DA (by 115 and 55%, respectively). Atipamezole (0.16 mg/kg, s.c.) markedly potentiated the influence of duloxetine and fluoxetine on levels of 5-HT (by 250 and 330%, respectively), NAD (by 1,030 and 215%, respectively), and DA (by 370 and 170%, respectively). 1-PP similarly potentiated the influence of duloxetine on 5-HT, NAD, and DA levels (by 290, 1,320, and 600%, respectively). These data demonstrate that α2-adrenergic receptors tonically inhibit NAD and DA and phasically inhibit 5-HT release in the FCX and that blockade of α2-adrenergic receptors strikingly potentiates the increase in FCX levels of 5-HT, NAD, and DA elicited by reuptake inhibitors. Concomitant α2-adrenergic receptor antagonism and inhibition of monoamine uptake may thus provide a mechanism allowing for a marked increase in the efficacy of AD agents.  相似文献   

11.
《Life sciences》1996,59(15):PL239-PL246
The effects of single (1mg/kg) and repeated (1mg/kg 21 daily for 4 days) diazepam administration are investigated on brain regional 5-hydroxytryptamine (5-HT; serotonin) and 5-hydroxy indoleacetic acid (5-HIAA) concentration in rats. Daily treatment decreased food intakes but body weights did not decrease. Administration of diazepam (1mg/kg) to 4 day sahne injected rats on the 5th day decreased 5-HT levels in the hippocampus and increased it in the hypothalamus. 5-HIAA levels were increased in the striatum and decreased in the hypothalamus. 4 day diazepam injected rats injected with sahne on the 5th day also exhibited silmilar changes of 5-HT and 5-HIAA. Cortical levels of 5-HIAA were also smaller in these rats. Administration of diazepam to 4 day diazepam injected rats again decreased 5-HT in the hippocampus and 5-HIAA in the hypothalamus. 5-HT and 5-HIAA were both decreased in the striatum. Regionally specific effects of diazepam on brain serotonin metabolism are discussed in relation to their possible functions.  相似文献   

12.
Abstract: After a single intraperitoneal injection of the irreversible tryptophan hydroxylase inhibitor p -chlorophenylalanine (PCPA; 300 mg/kg), there was a rapid down-regulation of serotonin (5-HT) transporter mRNA levels in cell bodies. This change was significant at 1 and 2 days after PCPA administration within the ventromedial but not the dorsomedial portion of the dorsal raphe nucleus. Seven days after PCPA treatment, 5-HT transporter mRNA levels were significantly elevated compared with controls in both regions of the dorsal raphe nucleus. PCPA administration produced no change in the [3H]-citalopram binding and synaptosomal [3H]5-HT uptake in terminal regions at 2 and 7 days after treatment but significantly reduced both these parameters by ∼20% in the hippocampus and in cerebral cortex 14 days after PCPA administration. The striatum showed a lower sensitivity to this effect. No significant changes were observed in the levels of [3H]citalopram binding to 5-HT cell bodies in the dorsal raphe nucleus. In the same animals used for 5-HT transporter mRNA level measurements, levels of tryptophan hydroxylase mRNA in neurons of the ventromedial and dorsomedial portions of the dorsal raphe nucleus were increased 2 days after PCPA administration and fell to control levels 7 days after injection in the ventromedial region but not in the dorsomedial portion of the dorsal raphe nucleus, where they remained significantly higher than controls. Altogether, these results show that changes in 5-HT transporter mRNA are not temporally related to changes in 5-HT transporter protein levels. In addition, our results suggest that the 5-HT transporter and tryptophan hydroxylase genes are regulated by different mechanisms. We also provide further evidence that dorsal raphe 5-HT neurons are differentially regulated by drugs, depending on their location.  相似文献   

13.
We used knockout mice and receptor antagonist strategies to investigate the contribution of the serotonin (5-hydroxytryptamine, 5-HT) 5-HT1B receptor subtype in mediating the effects of selective serotonin reuptake inhibitors (SSRIs). Using in vivo intracerebral microdialysis in awake mice, we show that a single systemic administration of paroxetine (1 or 5 mg/kg, i.p.) increased extracellular serotonin levels [5-HT]ext in the ventral hippocampus and frontal cortex of wild-type and mutant mice. However, in the ventral hippocampus, paroxetine at the two doses studied induced a larger increase in [5-HT]ext in knockout than in wild-type mice. In the frontal cortex, the effect of paroxetine was larger in mutants than in wild-type mice at the 1 mg/kg dose but not at 5 mg/kg. In addition, either the absence of the 5-HT1B receptor or its blockade with the mixed 5-HT1B/1D receptor antagonist, GR 127935, potentiates the effect of a single administration of paroxetine on [5-HT]ext more in the ventral hippocampus than in the frontal cortex. Furthermore, we demonstrate that SSRIs decrease immobility in the forced swimming test; this effect is absent in 5-HT1B knockout mice and blocked by GR 127935 in wild-type suggesting therefore that activation of 5-HT1B receptors mediate the antidepressant-like effects of SSRIs. Taken together these data demonstrate that 5-HT1B autoreceptors appear to limit the effects of SSRI on dialysate 5-HT levels particularly in the hippocampus while presynaptic 5-HT1B heteroreceptors are likely to be required for the antidepressant activity of SSRIs.  相似文献   

14.
A growing body of evidence demonstrates the efficacy of Garcinia cambogia-derived natural (–)-hydroxycitric acid (HCA) in weight management by curbing appetite and inhibiting body fat biosynthesis. However, the exact mechanism of action of this novel phytopharmaceutical has yet to be fully understood. In a previous study, we showed that in the rat brain cortex a novel HCA extract (HCA-SX, Super CitriMax) increases the release/availability of radiolabeled 5-hydroxytryptamine or serotonin ([3H]-5-HT), a neurotransmitter implicated in the regulation of eating behavior and appetite control. The aim of the present study was 2-fold: (a) to determine the effect of HCA-SX on 5-HT uptake in rat brain cortex in vitro; and (b) to evaluate the safety of HCA-SX in vivo. Isolated rat brain cortex slices were incubated in oxygenated Krebs solution for 20 min and transferred to buffer solutions containing [3H]-5-HT for different time intervals. In some experiments, tissues were exposed to HCA-SX (10 M – 1 mM) and the serotonin receptor reuptake inhibitors (SRRI) fluoxetine (100 M) plus clomipramine (10 M). Uptake of [3H]-5-HT was expressed as d.p.m./mg wet weight. A time-dependent uptake of [3H]-5-HT occurred in cortical slices reaching a maximum at 60 min. HCA-SX, and fluoxetine plus clomipramine inhibited the time-dependent uptake of [3H]-5-HT. At 90 min, HCA-SX (300 M) caused a 20% decrease, whereas fluoxetine plus clomipramine inhibited [3H]-5-HT uptake by 30%. In safety studies, acute oral toxicity, acute dermal toxicity, primary dermal irritation and primary eye irritation, were conducted in animals using various doses of HCA-SX. Results indicate that the LD50 of HCA-SX is greater than 5000 mg/kg when administered once orally via gastric intubation to fasted male and female Albino rats. No gross toxicological findings were observed under the experimental conditions. Taken together, these in vivo toxicological studies demonstrate that HCA-SX is a safe, natural supplement under the conditions it was tested. Furthermore, HCA-SX can inhibit [3H]-5-HT uptake (and also increase 5-HT availability) in isolated rat brain cortical slices in a manner similar to that of SRRIs, and thus may prove beneficial in controlling appetite, as well as treatment of depression, insomnia, migraine headaches and other serotonin-deficient conditions.  相似文献   

15.
The aim of this work was to characterize the mucosal-to-serosal (apical to basolateral; AP-BL) and serosal-to-mucosal (basolateral to apical; BL-AP) transport of serotonin (5-HT) across rat jejunum, ileum, and colon, and to determine the influence of serotonin neuronal transporter inhibitors on this transport. The AP-BL apparent permeability (Papp) of 3H-5-HT increased in the order colon = jejunum < ileum, and the BL-AP Papp of 3H-5-HT increased in the order colon < jejunum = ileum. In vitro, neither fluoxetine (0.02 or 0.2 micromol/L) nor desipramine (0.4 or 4 micromol/L) had a significant effect upon the AP-BL or BL-AP Papp of 3H-5-HT in any of the intestinal regions. However, fluoxetine (0.2 micromol/L) decreased the accumulation of 3H-5-HT in the ileum (to 65% of control) in the BL-AP experiments. In vivo, chronic fluoxetine (10 mg/kg daily administered orally for 15 days), as assessed in the ileum, significantly increased (to +/-180% of control levels) the BL-AP Papp of 3H-5-HT and tended to increase the AP-BL Papp of 3H-5-HT. In conclusion, the increase in the Papp of 3H-5-HT after chronic administration of fluoxetine suggests that this treatment is able to increase the extracellular concentration of 3H-5-HT at the intestinal level.  相似文献   

16.
1. Aim: The role of the serotonin transporter (SERT) is to remove serotonin (5-HT) from the synaptic space. In vitro studies have shown that 5-HT uptake via SERT is influenced by the availability of its substrate, 5-HT. We used RN46A cells, a line that expresses SERT, to investigate 5-HT regulation of 5-HT uptake and the intracellular signaling pathways involved. RN46A cells also express mRNAs for 5-HT receptors (5-HT1A, 5-HT1B, 5-HT2A, and 5-HT2C) and as cAMP and intracellular Ca2+ are modulated by different 5-HT receptors, we studied both pathways.2. Methods: 5-HT uptake was determined as imipramine-inhibitable uptake of [3H]5-HT, intracellular cAMP was measured by RIA and intracellular Ca2+ changes were determined using the ratiometric method of intracellular Ca2+ imaging.3. Results: For uptake experiments, cells were kept for 30 min either with or without 1 μM 5-HT in the medium before measuring uptake. Removal of 5-HT for 30 min significantly decreased [3H]5-HT uptake. The absence of 5-HT for 15 min failed to induce any changes in intracellular cAMP levels. Removal of 5-HT from the medium did not change intracellular Ca2+ levels either; however, adding 1 μM 5-HT after 5 min in 5-HT-free conditions rapidly increased intracellular Ca2+ levels in 50% of the cells. The remaining cells showed no changes in the intracellular Ca2+ levels.4. Conclusions: We have shown that in RN46A cells, that endogenously express SERT and mRNAs for several 5-HT receptors, changes in 5-HT levels influence 5-HT uptake rate as well as induce changes in intracellular Ca2+ levels. This suggests that 5-HT may utilize intracellular Ca2+ to regulate 5-HT uptake.  相似文献   

17.
The dorsomedial hypothalamus (DMH) plays an important role in coordinating physiological and behavioral responses to stress-related stimuli. In vertebrates, DMH serotonin (5-HT) concentrations increase rapidly in response to acute stressors or corticosterone (CORT). Recent studies suggest that CORT inhibits postsynaptic clearance of 5-HT from the extracellular fluid in the DMH by blocking organic cation transporter 3 (OCT3), a polyspecific CORT-sensitive transport protein. Because OCTs are low-affinity, high-capacity transporters, we hypothesized that CORT effects on extracellular 5-HT are most pronounced in the presence of elevated 5-HT release. We predicted that local application of CORT into the DMH would potentiate the effects of d-fenfluramine, a 5-HT-releasing agent, on extracellular 5-HT. These experiments were conducted using in vivo microdialysis in freely-moving male Sprague-Dawley rats implanted with a microdialysis probe into the medial hypothalamus (MH), which includes the DMH. In Experiment 1, rats simultaneously received intraperitoneal (i.p.) injections of 1 mg/kg d-fenfluramine or saline and either 200 ng/mL CORT or dilute ethanol (EtOH) vehicle delivered to the MH by reverse-dialysis for 40 min. In Experiment 2, 5 μM d-fenfluramine and either 200 ng/mL CORT or EtOH vehicle were concurrently delivered to the MH for 40 min using reverse-dialysis. CORT potentiated the increases in extracellular 5-HT concentrations induced by either i.p. or intra-MH administration of d-fenfluramine. Furthermore, CORT and d-fenfluramine interacted to alter home cage behaviors. Our results support the hypothesis that CORT inhibition of OCT3-mediated 5-HT clearance from the extracellular fluid contributes to stress-induced increases in extracellular 5-HT and 5-HT signaling.  相似文献   

18.
《Life sciences》1995,57(23):PL367-PL372
[3H]A-69024 has been prepared as a radioligand for studying the dopamine D1 receptor. [3H]A-69024 binds to rat striatal membranes with a KD = 14.3 ± 3.2 nM (mean ± SEM; n = 3) and Bmax = 63.5 ± 12.8 fmol/mg wet tissue (1.8 ± 0.3 pmol/mg protein). This ligand binds to only one site with a Hill coefficient close to unity. The in vivo biodistribution of [3H]A-69024 showed a high uptake in the striatum (5.9 %ID/g) at 5 min followed by clearance. As a measure of specificity, the striatum/cerebellar ratio reached a maximum of 6.7 at 30 min post-injection. Pre-treatment with the D1 antagonist R(+)SCH 23390 (1 mg/kg) reduced this ratio to unity. The dopamine antagonist (+)butaclamol and unlabeled A-69024 inhibited striatal uptake by 70 and 51%, respectively. Spiperone (D2/5-HT2A) and ketanserin (5-HT2A/5-HT2C) at doses of 1 mg/kg had no inhibitory effect on [3H]A-69024 uptake in the striatum; however, increased uptake of [3H]A-69024 by > 30% in the whole brain was observed. The selectivity and affinity of [3H]A-69024 suggests that this non-benzazepine radioligand may be useful for in vitro and in vivo studies of the dopamine D1 receptor.  相似文献   

19.
It has been demonstrated that synthesis of serotonin (5-HT) is dependent on the availability of precursor, as well as the activity of 5-HT neurons. In the present series of experiments, we examined the effects of precursor (5-HTP) loading on extracellular hypothalamic 5-HT after administration of fluoxetine alone or in combination with WAY 100635, a selective 5-HT1A antagonist. In the first experiment, fluoxetine alone (10 mg/kg i.p.) caused 5-HT levels to significantly increase to 150% of basal levels. Subsequent administration of 5-HTP at 10, 20, and 40 mg/kg i.p. caused 5-HT levels to further increase to a maximum value of 254%, 405%, and 618%, respectively. In the second experiment, either vehicle or WAY 100635 (1 mg/kg/hour s.c.) was infused, then fluoxetine (10 mg/kg i.p.) and 5-HTP (10 mg/kg i.p.) were administered. By itself, WAY 100635 led to a slight but significant increase in hypothalamic 5-HT levels one hour after the start of administration (130% of basal levels). In the WAY 100635-treated group, fluoxetine caused an increase to 240% of basal levels after one hour, which rose to 290% of basal levels after two hours. Subsequent administration of 5-HTP further increased 5-HT levels to 580% of basal levels after one hour. In the vehicle-treated group, fluoxetine caused an increase of 160% of basal levels which was stable over two hours, and subsequent administration of 5-HTP led to a slight increase in 5-HT levels of 220% after one hour. These results suggest that combining blockade of 5-HT1A autoreceptors with 5-HT uptake inhibition results in a synergistic increase in synthesis and release of 5-HT when precursor is administered.  相似文献   

20.
The serotonergic synapse is dynamically regulated by serotonin (5-hydroxytryptamine (5-HT)) with elevated levels leading to the down-regulation of the serotonin transporter and a variety of 5-HT receptors, including the 5-HT type-3 (5-HT3) receptors. We report that recombinantly expressed 5-HT3 receptor binding sites are reduced by chronic exposure to 5-HT (IC50 of 154.0 ± 45.7 μm, t½ = 28.6 min). This is confirmed for 5-HT3 receptor-induced contractions in the guinea pig ileum, which are down-regulated after chronic, but not acute, exposure to 5-HT. The loss of receptor function does not involve endocytosis, and surface receptor levels are unaltered. The rate and extent of down-regulation is potentiated by serotonin transporter function (IC50 of 2.3 ± 1.0 μm, t½ = 3.4 min). Interestingly, the level of 5-HT uptake correlates with the extent of down-regulation. Using TX-114 extraction, we find that accumulated 5-HT remains soluble and not membrane-bound. This cytoplasmically sequestered 5-HT is readily releasable from both COS-7 cells and the guinea pig ileum. Moreover, the 5-HT level released is sufficient to prevent recovery from receptor desensitization in the guinea pig ileum. Together, these findings suggest the existence of a novel mechanism of down-regulation where the chronic release of sequestered 5-HT prolongs receptor desensitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号