首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined whether the improvement of impaired NO-dependent vasorelaxation by exercise training could be mediated through a BH4-dependent mechanism. Male spontaneously hypertensive rats (SHR, n?=?20) and Wistar-Kyoto rats (WKY, n?=?20) were trained (Tr) for 9 weeks on a treadmill and compared to age-matched sedentary animals (Sed). Endothelium-dependent vasorelaxation (EDV) was assessed with acetylcholine by measuring isometric tension in rings of femoral artery precontracted with 10?5?M phenylephrine. EDV was impaired in SHR-Sed as compared to WKY-Sed (p?=?0.02). Training alone improved EDV in both WKY (p?=?0.01) and SHR (p?=?0.0001). Moreover, EDV was not different in trained SHR than in trained WKY (p?=?0.934). Pretreatment of rings with L-NAME (50 μM) cancelled the difference in ACh-induced relaxation between all groups, suggesting that NO pathway is involved in these differences. The presence of 10?5?M BH4 in the organ bath significantly improved EDV for sedentary SHR (p?=?0.030) but not WKY group (p?=?0.815). Exercise training turned the beneficial effect of BH4 on SHR to impairment of ACh-induced vasorelaxation in both SHR-Tr (p?=?0.01) and WKY-Tr groups (p?=?0.04). These results suggest that beneficial effect of exercise training on endothelial function is due partly to a BH4-dependent mechanism in established hypertension.  相似文献   

2.
Light to moderate drinking in humans lowers the risk of coronary heart disease and may lower blood pressure. We examined the effect of chronic low daily alcohol consumption on blood pressure, platelet cytosolic free calcium [Ca2+]i, tissue aldehyde conjugates and renal vascular changes in normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). We also examined the effects of the same weekly amount of alcohol consumption over a one day period each week simulating weekend drinking in humans. Animals, age 7 weeks, were divided into six groups of six animals each and were treated as follows: WKY and SHR control, normal drinking water; WKY and SHR, 0.5% ethanol in drinking water; WKY and SHR, 3.5% ethanol in drinking water one day/week. After 14 weeks systolic blood pressure, platelet [Ca2+]i, liver, kidney and aortic aldehyde conjugates were significantly higher (p < 0.05) in untreated SHRs as compared to untreated WKYs. Daily 0.5% ethanol consumption in SHRs significantly (p < 0.05) attenuated these changes and also attenuated smooth muscle cell hyperplasia and narrowing of the lumen in small arteries and arterioles of the kidney. WKY rats treated with 0.5% ethanol had lower aldehyde conjugates without any significant effect on blood pressure and platelet [Ca2+]i as compared to WKY controls. Consumption of 3.5% ethanol one day/week did not affect blood pressure and associated changes in normotensive WKY rats or hypertensive SHRs as compared to their respective controls. These results suggest that chronic daily low ethanol intake lowers blood pressure in SHRs by lowering tissue aldehyde conjugates and cytosolic free calcium.  相似文献   

3.
We previously reported a significant derangement of intracellular free calcium ion concentration in the isolated perfused kidney of adult spontaneously hypertensive rat (SHR) (J. Biol. Chem. 267, 3637–3643, 1992). In order to investigate whether an abnormality in intracellular free calcium or another ion precedes the development of elevated blood pressure in SHR, we have now compared intracellular free Ca2+, Na+ and pH, using 31P, 19F, and triple quantum-filtered (TQ) 23Na NMR, in perfused kidneys from prehypertensive young SHR and normotensive young Wistar-Kyoto (WKY) rats (5–6 weeks old) which showed no significant difference in blood pressure B.P.=120±5 mmHg and 115±3 mmHg, for SHR and WKY rats, respectively). Like the adult kidney, no significant differences in intracellular ATP concentration or intracellular pH were found between young prehypertensive SHR and normotensive WKY rat kidneys. The TQ 23Na NMR signal was 47% higher in the SHR kidney, but, due to biological variability and measurement errors, this difference could not be shown to be statistically significant. However, a significant (40%; P<0.05) increase was found in O2 consumption rate, a measure of the Na+/K+-ATPase activity, of the young prehypertensive SHR kidney in comparison to the age-matched WKY rat kidney (7.25±0.75 for SHR vs. 5.17±0.18 μmola O2/min g for WKY rat, n = 6). Furthermore, a highly significant (92%; P<0.02) increase in intracellular free Ca2+ concentration was observed in kidneys from young SHR that had noy yet been developed high blood pressure in comparison to the kidneys from young normotensive WKY rats (648±76 nM vs. 339±39 nM, n = 4, despite the fact that there was no significant difference in blood pressure. Increased intracellular free Ca2+ thus appears to be part of a primary defect, in the prehypertesive young SHR kidney, which may, by way of increased release of arachidonic acid, and subsequent increased production of vasoconstricting arachidonic acid metabolites via the cytochrome P450 pathway, induce elevated blood pressure in the adult SHR.  相似文献   

4.
The aim of this study was to investigate nitric oxide (NO) production and L-NAME-sensitive component of endothelium-dependent vasorelaxation in adult normotensive Wistar-Kyoto rats (WKY), borderline hypertensive rats (BHR) and spontaneously hypertensive rats (SHR). Blood pressure (BP) of WKY, BHR and SHR (determined by tail-cuff) was 111+/-3, 140+/-4 and 184+/-6 mm Hg, respectively. NO synthase activity (determined by conversion of [(3)H]-L-arginine) was significantly higher in the aorta of BHR and SHR vs. WKY and in the left ventricle of SHR vs. both BHR and WKY. L-NAME-sensitive component of endothelium-dependent relaxation was investigated in the preconstricted femoral arteries using the wire myograph during isometric conditions as a difference between acetylcholine-induced relaxation before and after acute N(G)-nitro-L-arginine methyl ester pre-treatment (L-NAME, 10(-5) mol/l). Acetylcholine-induced vasorelaxation of SHR was significantly greater than that in WKY. L-NAME-sensitive component of vasorelaxation in WKY, BHR and SHR was 20+/-3 %, 29+/-4 % (p<0.05 vs. WKY) and 37+/-3 % (p<0.05 vs. BHR), respectively. There was a significant positive correlation between BP and L-NAME-sensitive component of relaxation of the femoral artery. In conclusion, results suggest the absence of endothelial dysfunction in the femoral artery of adult borderline and spontaneously hypertensive rats and gradual elevation of L-NAME-sensitive component of vasorelaxation with increasing blood pressure.  相似文献   

5.
Vascular heme oxygenase (HO) metabolizes heme to form carbon monoxide. Carbon monoxide inhibits nitric oxide synthase and promotes endothelium-dependent vasoconstriction. We reported HO-1-mediated endothelial dysfunction in Dahl salt-sensitive hypertension. Previous studies suggested that salt-sensitive hypertensive rats, but not spontaneously hypertensive rats (SHR), display endothelial dysfunction. This study examines the hypothesis that HO-1-mediated arteriolar endothelial dysfunction develops in deoxycorticosterone acetate (DOCA)-salt hypertensive (DOCA) rats, but not in SHR. Uninephrectomized (isoflurane anesthesia) male Sprague-Dawley rats received DOCA injections and saline drinking solution for 4 wk. Rats subjected to sham surgery received vehicle injections and tap water. Blood pressure was elevated in DOCA rats and SHR compared with sham and Wistar-Kyoto (WKY) groups. Aortic HO-1 expression and blood carboxyhemoglobin levels were elevated in the DOCA group, but not in SHR. In isolated gracilis muscle arterioles, ACh caused concentration-related vasodilation in all groups, with attenuated maximum responses in DOCA, but not in SHR, arterioles. Acute pretreatment with an inhibitor of HO, chromium mesoporphyrin, restored ACh-induced responses in DOCA arterioles to sham levels. ACh responses remained the same in SHR and WKY arterioles after chromium mesoporphyrin treatment. These data show that HO-1 levels and activity are increased and arteriolar responses to ACh are decreased in DOCA rats, but not in SHR. Furthermore, in DOCA arterioles, an inhibitor of HO restores ACh-induced vasodilation to sham levels. These results suggest that elevated HO-1 levels and activity, not resulting from hypertension per se, contribute to endothelial dysfunction in DOCA rats.  相似文献   

6.
This study investigated the effects of exercise training on the regional release of endothelium-derived nitric oxide (EDNO) in spontaneously hypertensive rats (SHR). Male SHR and Wistar-Kyoto rats were divided into control and training groups, respectively. The training groups received moderate exercise by running on a drum exerciser for 60 min/day, 5 days/week for 10 weeks. At the end of experiments, thoracic aortae and common carotid arteries were excised. Acetylcholine (ACh)-induced relaxing responses due to EDNO release were evaluated in the presence of indomethacin. Vascular relaxing responses to A23187 or to sodium nitroprusside (SNP) were also studied. Our results indicated that after training, (1) the vascular sensitivity of thoracic aortae to ACh-induced relaxation was elevated when indomethacin was present; this effect was absent in the common carotid artery and it was abolished by adding N-nitro-L-arginine, and (2) no significant changes in SNP- or A23187-induced vascular relaxing responses, both being nonreceptor-mediated processes, were observed. We can conclude that for both hypertensive and normotensive rats, exercise training may increase receptor-mediated agonist-stimulated EDNO release in the thoracic aorta, but not in the common carotid artery.  相似文献   

7.
In an earlier study, we found increased NO production and NO synthase (NOS) expression in renal and vascular tissues of prehypertensive and adult spontaneously hypertensive rats (SHR). This study was designed to determine the effects of aging and AT-1 receptor blockade (losartan 30 mg/kg/day beginning at 8 weeks of age) on NO system in this model. Compared to the Wistar Kyoto (WKY) control rats, untreated SHR showed severe hypertension, elevated urinary NO metabolite (NO(chi)) excretion, marked upregulations of renal and vascular eNOS and iNOS proteins, normal renal function and heart weight at 9 weeks of age. Hypertension control with either AT-1 receptor or calcium channel blockade (felodipine 5 mg/kg/day) mitigated upregulation of NOS isoforms in the young SHR. With advanced age (63 weeks), the untreated SHR showed increased proteinuria, renal insufficiency, cardiomegaly, reduced urinary NO(chi) excretion and depressed renal and vascular NOS protein expressions as compared to the corresponding WKY group. AT-1 receptor blockade prevented proteinuria, renal insufficiency, cardiomegaly, and renal and vascular NOS deficiency. Thus, in young SHR, hypertension results in compensatory upregulation of renal and vascular NOS, which can be attenuated by vigorous antihypertensive therapy. With advanced age, untreated SHR exhibit cardiomegaly, renal dysfunction and marked reductions of eNOS and iNOS compared with the aged WKY rats. Hypertension control with AT-1 receptor blockade initiated early in the course of the disease prevents target organ damage and preserves renal and vascular NOS.  相似文献   

8.
The present study examined in vitro vasomotor function and expression of enzymes controlling nitric oxide (NO) bioavailability in thoracic aorta of adult male normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) that either remained sedentary (Sed) or performed 6 wk of moderate aerobic exercise training (Ex). Training efficacy was confirmed by elevated maximal activities of both citrate synthase (P = 0.0024) and beta-hydroxyacyl-CoA dehydrogenase (P = 0.0073) in the white gastrocnemius skeletal muscle of Ex vs. Sed rats. Systolic blood pressure was elevated in SHR vs. WKY (P < 0.0001) but was not affected by Ex. Despite enhanced endothelium-dependent relaxation to 10(-8) M ACh in SHR vs. WKY (P = 0.0061), maximal endothelium-dependent relaxation to 10(-4) M ACh was blunted in Sed SHR (48 +/- 12%) vs. Sed WKY (84 +/- 6%, P = 0.0067). Maximal endothelium-dependent relaxation to 10(-4) M ACh was completely restored in Ex SHR (93 +/- 9%) vs. Sed SHR (P = 0.0011). N(omega)-nitro-l-arginine abolished endothelium-dependent relaxation in all groups (P 相似文献   

9.
We examined the importance of nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF), and neurogenic activity in agonist-induced vasodilation and baseline blood flow [i.e., nerve microvascular conductance (NMVC)] in rat sciatic nerve using laser Doppler flowmetry. Agonists were acetylcholine (ACh) and 3-morpholinosydnonimine (SIN-1). Vasodilation occurring despite NO synthase (NOS) and cyclooxygenase inhibition and showing dependence on K(+) channel activity was taken as being mediated by EDHF. NOS and cyclooxygenase inhibition with N(omega)-nitro-L-arginine (L-NNA) + indomethacin (Indo) revealed two phases of ACh-induced vasodilation: an initial, transient L-NNA + Indo-resistant vasodilation, peaking at 23 +/- 6 s and lasting 145 +/- 69 s, followed by sustained L-NNA + Indo-sensitive vasodilation. L-NNA alone did not affect sustained ACh-induced vasodilation but decreased baseline NMVC by 55%. In the presence of L-NNA + Indo, the K(+) channel blocker tetraethylammonium (TEA) inhibited transient ACh-induced vasodilation by 58% and reduced baseline NMVC by 25%. SIN-1-induced vasodilation increased fourfold in the presence of L-NNA, whereas the specific guanylyl cyclase inhibitor 1H-(1, 2, 4)oxadiazolo(4,3-alpha)quinoxalin-1-one abolished it. However, in homogenates of rat sciatic nerve, SIN-1-stimulated soluble guanylyl cyclase (sGC) activity was unaffected by L-NNA. TTX affected neither SIN-1- nor ACh-induced vasodilation. In conclusion, ACh-induced vasodilation consisted of two components, the first partially mediated by EDHF and the second by a vasodilatory prostanoid + NO. Baseline NMVC was dependent on NO and EDHF. Although L-NNA enhanced SIN-1-induced vasodilation, it had no effect on sGC-activity.  相似文献   

10.
Excess 6β-OH-corticosterone production by family 3A cytochromes P-450 may play a role in genesis of hypertension in the spontaneously hypertensive rat (SHR), by producing a renal defect in Na+ excretion. Renal cytochromes P-450 may be a causal factor in this genetic model. Since family 3A P-450 is present in rat kidney (collecting duct), the renal family 3A catalytic (6β-OHase) and immunoreactive activities were compared in SHR and normotensive control (Wistar-Kyoto; WKY) rats. Corticosterone 6β-hydroxulation is markedly higher in SHR than in WKY renal microsomal preparations. Western blot analysis with antibodies to rat and rabbit liver family 3A isoforms demonstrated related proteins. Densitometry revealed greater relative intensity of staining in SHR compared to WKY with both antibodies. Both antibodies inhibited corticosterone 6β-hydroxylation by SHR renal microsomes. Increased renal 6β-OH-corticosterone production by increased renal family 3A cytochromes P-450 may play a role in the blood pressure elevation in SHR.  相似文献   

11.
Spontaneously hypertensive rats (SHR) have a higher level of oxidative stress and exhibit a greater depressor response to a superoxide scavenger, tempol, than normotensive Wistar-Kyoto rats (WKY). This study determined whether an increase in oxidative stress with a superoxide/NO donor, molsidomine, would amplify the blood pressure in SHR. Male SHR and WKY were given molsidomine (30 mg.kg(-1).day(-1)) or vehicle (0.01% ethanol) for 1 wk, and blood pressure, renal hemodynamics, nitrate and nitrite excretion (NOx), renal superoxide production, and expression of renal antioxidant enzymes, Mn- and Cu,Zn-SOD, catalase, and glutathione peroxidase (GPx), were measured. Renal superoxide and NOx were higher in control SHR than in WKY. Molsidomine increased superoxide by approximately 35% and NOx by 250% in both SHR and WKY. Mean arterial blood pressure (MAP) was also higher in control SHR than WKY. Molsidomine increased MAP by 14% and caused renal vasoconstriction in SHR but reduced MAP by 16%, with no effect on renal hemodynamics, in WKY. Renal expression of Mn- and Cu,Zn-SOD was not different between SHR and WKY, but expression of catalase and GPx were approximately 30% lower in kidney of SHR than WKY. The levels of Mn- and Cu,Zn-SOD were not increased with molsidomine in either WKY or SHR. Renal catalase and GPx expression was increased by 300-400% with molsidomine in WKY, but there was no effect in SHR. Increasing oxidative stress elevated blood pressure further in SHR but not WKY. WKY are likely protected because of higher bioavailable levels of NO and the ability to upregulate catalase and GPx.  相似文献   

12.
The present study was undertaken to identify whether inflammation or oxidative stress is the primary abnormality in the kidney in spontaneously hypertensive rats (SHR). Renal inflammation and oxidative stress were evaluated in 2- and 3-week-old prehypertensive SHR and age-matched genetically normotensive control Wistar-Kyoto (WKY) rats. Blood pressure was similar in WKY and SHR rats at 2 and 3 weeks, of age. Renal inflammation (macrophage and nuclear factor-κB) was elevated in SHR at 3 weeks, but not at 2 weeks, of age compared with age-matched WKY rats. Renal oxidative stress (nitrotyrosine, 8-hydroxy-2′-deoxyguanosine and p47phox) was also clearly elevated in 3-week-old SHR compared with age-matched WKY rats. Additionally, NADPH oxidase subunit p47phox was found elevated in 2-week-old SHR compared to age-matched WKY rats. Moreover, antioxidant (N-acetyl-l-cysteine and Tempol) treatment reduced renal inflammation in prehypertensive SHR. We therefore conclude that the oxidative stress appears before inflammation as a primary abnormality in the kidney in prehypertensive SHR.  相似文献   

13.
Recipients of a kidney from spontaneously hypertensive rats (SHR) but not from normotensive Wistar-Kyoto rats (WKY) develop posttransplantation hypertension. To investigate whether renal sodium retention precedes the development of posttransplantation hypertension in recipients of an SHR kidney on a standard sodium diet (0.6% NaCl), we transplanted SHR and WKY kidneys to SHR x WKY F1 hybrids, measured daily sodium balances during the first 12 days after removal of both native kidneys, and recorded mean arterial pressure (MAP) after 8 wk. Recipients of an SHR kidney (n = 12) retained more sodium than recipients of a WKY kidney (n = 12) (7.3 +/- 10 vs. 4.0 +/- 0.7 mmol, P < 0.05). MAP was 144 +/- 6 mmHg in recipients of an SHR kidney and 106 +/- 5 mmHg in recipients of a WKY kidney (P < 0.01). Modest sodium restriction (0.2% NaCl) in a further group of recipients of an SHR kidney (n = 10) did not prevent posttransplantation hypertension (MAP, 142 +/- 4 mmHg). Urinary endothelin and urodilatin excretion rates were similar in recipients of an SHR and a WKY kidney. Transient excess sodium retention after renal transplantation may contribute to posttransplantation hypertension in recipients of an SHR kidney.  相似文献   

14.
Mitochondrial dysfunction is associated with cardiovascular damage; however, data on a possible association with kidney damage are scarce. Here, we aimed at investigating whether 1) kidney impairment is related to mitochondrial dysfunction; and 2) ANG II blockade, compared with Ca2+ channel blockade, can reverse potential mitochondrial changes in hypertension. Eight-week-old male spontaneously hypertensive rats (SHR) received water containing losartan (40 mg.kg-1.day-1, SHR+Los), amlodipine (3 mg.kg-1.day-1, SHR+Amlo), or no additions (SHR) for 6 mo. Wistar-Kyoto rats (WKY) were normotensive controls. Glomerular and tubulointerstitial damage, systolic blood pressure, and proteinuria were higher, and creatinine clearance was lower in SHR vs. SHR+Los and WKY. In SHR+Amlo, blood pressure was similar to WKY, kidney function was similar to SHR, and renal lesions were lower than in SHR, but higher than in SHR+Los. In kidney mitochondria from SHR and SHR+Amlo, membrane potential, nitric oxide synthase, manganese-superoxide dismutase and cytochrome oxidase activities, and uncoupling protein-2 content were lower than in SHR+Los and WKY. In SHR and SHR+Amlo, mitochondrial H2O2 production was higher than in SHR+Los and WKY. Renal glutathione content was lower in SHR+Amlo relative to SHR, SHR+Los, and WKY. In SHR and SHR+Amlo, glutathione was relatively more oxidized than in SHR+Los and WKY. Tubulointerstitial alpha-smooth muscle actin labeling was inversely related to manganese-superoxide dismutase activity and uncoupling protein-2 content. These findings suggest that oxidant stress is associated with renal mitochondrial dysfunction in SHR. The mitochondrial-antioxidant actions of losartan may be an additional or alternative way to explain some of the beneficial effects of AT1-receptor antagonists.  相似文献   

15.
The interrelationships among plasma renin activity (PRA, ng AI/ml plasma/hr), aldosterone concentration (ng%), and renal Na+-K+-ATPase activity (mumole PO4/mg protein/hr) were studied in 9 weanling normotensive spontaneously hypertensive rats (SHR), 9 adult hypertensive SHR, and 9 weanling and 9 adult normotensive Wistar-Kyoto rats (WKY). All groups were placed on a normal (0.4% sodium) diet. PRA and plasma aldosterone, measured in samples drawn from the ether-anesthetized rat, were higher in weanling SHR (15.2 +/- 2.0, 37 +/- 4.2) than in WKY. PRA measured in samples collected from a separate group of unanesthetized weanling SHR was also greater than in age-matched WKY. In adult SHR, PRA (6.1 +/- 0.9) and plasma aldosterone (20.0 +/- 2.7) were decreased. During the weanling period Na+-K+-ATPase activity in SHR was not only greater than in age-matched WKY but was also increased compared to adult normotensive and hypertensive rats (137 +/- 9 weanling SHR, 89 +/- 7 weanling WKY, 73 +/- 11 adult SHR, 84 +/- 17 adult WKY). Thus, during the weanling period the renin-angiotensin-aldosterone (R-A-A) system and renal Na+-K+-ATPase activity are activated in SHR. The elevation of Na+-K+-ATPase activity may be due to increased aldosterone levels. It was noted, however, that plasma aldosterone was similar in adult WKY and weanling SHR, while Na+-K+-ATPase activity was higher in SHR. These findings involving R-A-A and renal Na+-K+-ATPase activity prior to the elevation of blood pressure suggest that the kidneys may play a role in the initiation of hypertension in SHR.  相似文献   

16.
Exercise can ameliorate vascular dysfunction in hypertension, but its underlying mechanism has not been explored thoroughly. We aimed to investigate whether the high-intensity exercise could enhance vasorelaxation mediated by insulin and insulin-like growth factor-1 (IGF-1) in hypertension. Sixteen-week-old spontaneously hypertensive rats were randomly divided into non-exercise sedentary (SHR) and high-intensity exercise (SHR+Ex) groups conducted by treadmill running at a speed of 30 m/ min until exhaustion. Age-matched Wistar-Kyoto rats (WKY) were used as the normotensive control group. Immediately after exercise, the agonist-induced vasorelaxation of aortas was evaluated in organ baths with or without endothelial denudation. Selective inhibitors were used to examine the roles of nitric oxide synthase (NOS) and phosphatidylinositol-3 kinase (PI3K) in the vasorelaxation. By adding superoxide dismutase (SOD), a superoxide scavenger, the role of superoxide production in the vasorelaxation was also clarified. We found that, the high-intensity exercise significantly (P < 0.05) induced higher vasorelaxant responses to insulin and IGF-1 in the SHR+Ex group than that in the SHR group; after endothelial denudation and pre-treatment of the PI3K inhibitor, NOS inhibitor, or SOD, vasorelaxant responses to insulin and IGF-1 became similar among three groups; the protein expression of insulin receptor, IGF-1 receptor, and endothelial NOS (eNOS) was significantly (P < 0.05) increased in the SHR+Ex group compared with the SHR group;] the relaxation to sodium nitroprusside, a NO donor, was not different among three groups. Our findings suggested that the high-intensity exercise ameliorated the insulin- and IGF-1-mediated vasorelaxation through the endothelium-dependent pathway, which was associated with the reduced level of superoxide production.  相似文献   

17.
Spontaneously hypertensive rats (SHR) are widely used as model to investigate the pathophysiological mechanisms of essential hypertension. Catecholamine plasma levels are elevated in SHR, suggesting alterations of the sympathoadrenal axis. The residual hypertension in sympathectomized SHR is reduced after demedullation, suggesting a dysfunction of the adrenal medulla. Intact adrenal glands exposed to acetylcholine or high K+ release more catecholamine in SHR than in normotensive Wistar Kyoto (WKY) rats, and adrenal chromaffin cells (CCs) from SHR secrete more catecholamines than CCs from WKY rats. Since Ca2+ entry through voltage-gated Ca2+ channels (VGCC) triggers exocytosis, alterations in the functional properties of these channels might underlie the enhanced catecholamine release in SHR. This study compares the electrophysiological properties of VGCC from CCs in acute adrenal slices from WKY rats and SHR at an early stage of hypertension. No significant differences were found in the macroscopic Ca2+ currents (current density, IV curve, voltage dependence of activation and inactivation, kinetics) between CCs of SHR and WKY rats, suggesting that Ca2+ entry through VGCC is not significantly different between these strains, at least at early stages of hypertension. Ca2+ buffering, sequestration and extrusion mechanisms, as well as Ca2+ release from intracellular stores, must now be evaluated to determine if alterations in their function can explain the enhanced catecholamine secretion reported in CCs from SHR.  相似文献   

18.
《Life sciences》1995,56(22):PL427-PL432
We have recently reported that plasma membrane Ca2+-ATPase ( PMCA) pumping activity in rat brain synaptic plasma membranes (SPM) was reduced by in vitro or prior in vivo exposure to inhalation anesthetics (IA). In addition, rats with streptozocin-induced diabetes were found to have diminished brain synaptic PMCA pumping and a decrease in the partial pressures of several IA required to prevent movement in response to stimulation, defined as the minimum effective dose or MED. Diminished PMCA activity in erythrocytes of spontaneously hypertensive rats (SHR) has been noted. Because PMCA is ubiquitous, it seemed possible that PMCA pumping might be decreased in the brain of SHR and perhaps associated with decreased IA requirement. Eighteen SHR and 18 control, normotensive Wistar-Kyoto rats (WKY) were studied. PMCA activity was assessed by measurement of Ca2+ uptake into synaptic plasma membrane vesicles prepared from cerebrum and diencephalon-mesencephalon (D-M) in WKY and SHR. Ca2+ pumping was significantly less in SHR than in WKY, 85% of control in the cerebrum and 90% in the D-M (p < 0.01). The MEDs for halothane, isoflurane and desflurane were also lower in SHR than in WKY, 91%, 90% and 89%, respectively, of control (p < 0.05). Thus, an animal model of primary hypertension (SHR) manifested diminished brain synaptic PMCA activity and reduced MED for several volatile anesthetics. These findings provide further evidence for a role for PMCA in anesthetic action.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号