首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously reported the essential structure of the opioid κ receptor agonist nalfurafine hydrochloride (TRK-820) for binding to the κ receptor. In the course of this study, we focused on the effect of the substituent at 17-N in nalfurafine on the binding affinity for the κ receptor. The exchange of the 17-N substituent in nalfurafine from cyclopropylmethyl to fluoro-substituted alkyl groups, which are strong electron withdrawing substituents, almost completely diminished the binding affinities for the μ and δ opioid receptors, but the binding affinity for the κ receptor was still maintained. As a result, nalfurafine derivatives with 17-fluoro-substituted alkyl groups showed higher selectivities for the κ receptor than did nalfurafine itself. With regard to the κ agonistic activities, the conversion of the 17-N substituent in nalfurafine from cyclopropylmethyl to fluoro-substituted alkyl groups led to the gradual decrease of the agonistic activities in the order corresponding to their binding affinities for the κ receptor. In contrast, the derivative with the bulky 17-isobutyl group showed lower affinity and agonistic activity for the κ receptor than the derivatives with the smaller functional groups. This research suggested that both the electronic property and the steric characteristics of the 17-N substituent would have a great influence on the binding property for the κ receptor.  相似文献   

2.
To clarify the essential structures of an opioid κ receptor selective agonist, nalfurafine, for binding to the κ receptor, we designed and synthesized some nalfurafine derivatives and the decahydro(iminoethano)phenanthrene derivatives with a cyclohexene moiety as a surrogate for the phenol ring. In addition to the 6-amide side chain and the 17-nitrogen substituted by a cyclopropylmethyl group, the 4,5-epoxy ring, phenolic hydroxy group, and angular hydroxy group played important roles in eliciting the binding properties of nalfurafine but these three moieties were not indispensable for binding to the κ receptor. Moreover, the phenol ring was also not essential for the binding to the κ receptor, and the cyclohexene moiety would play an important role in fixing the conformation of decahydro(iminoethano)phenanthrene derivatives to effectively raise the amide side chain, rendering a conformation that resembled the active one of nalfurafine.  相似文献   

3.
4.
Exposure of DNA to UV radiation causes covalent linkages between adjacent pyrimidines. The most common lesion found in DNA from these UV-induced linkages is the cis-syn cyclobutane pyrimidine dimer. Human DNA polymerase κ (Polκ), a member of the Y-family of DNA polymerases, is unable to insert nucleotides opposite the 3'T of a cis-syn T-T dimer, but it can efficiently extend from a nucleotide inserted opposite the 3'T of the dimer by another DNA polymerase. We present here the structure of human Polκ in the act of inserting a nucleotide opposite the 5'T of the cis-syn T-T dimer. The structure reveals a constrained active-site cleft that is unable to accommodate the 3'T of a cis-syn T-T dimer but is remarkably well adapted to accommodate the 5'T via Watson-Crick base pairing, in accord with a proposed role for Polκ in the extension reaction opposite from cyclobutane pyrimidine dimers in vivo.  相似文献   

5.
We synthesized pyrrolomorphinan derivatives 6, 7, and 9 to examine whether the pyrrole ring would be an accessory site in the κ opioid receptor selective antagonist, nor-binaltorphimine. Derivative 6 had an α,β-unsaturated ketone substituent that strongly bound to the κ receptor. The compound with the highest κ receptor selectivity, 6e, produced a dose-dependent antinociceptive effect in the mouse acetic acid writhing test. However, derivatives 7 and 9, which did not have α,β-unsaturated ketone substituents, showed less κ receptor selectivity than compound 6. Based on structure–activity relationships, we proposed that these compounds adopted active structures for κ selective agonist activity. The pyrrole ring would not function as an accessory site, but the ability of the side chain on the pyrrole ring to localize above the C-ring appeared to confer κ selective agonist activity. These results will promote the design of novel κ agonists.  相似文献   

6.
《Life sciences》1994,55(4):PL79-PL84
The selective δ2 receptor antagonist Naltriben (NTB) has played an important role in the identification of subtypes of the δ opioid receptor, termed δ1 and δ2, and their role in antinociception. However, the majority of these studies have been conducted in the mouse. The present study determined the opioid receptor selectivity of subcutaneously (s.c.) administered NTB in the rat. Five minute pretreatment with 1 mg/kg s.c. NTB antagonized the increase in TFL produced by i.t. administration of equieffective doses of the δ2 receptor agonist [D-Ala2, Glu4]deltorphin (DELT) or the δ1 receptor agonist [D-Pen2, D-Pen5]enkephalin (DPDPE), but did not antagonize the μ receptor agonist [D-Ala2, MePhe4, Gly-ol5]enkephalin (DAMGO). These data confirm previous reports that NTB is a selective δ opioid receptor antagonist. However, this dose of NTB antagonized DELT and DPDPE to an equivalent extent, suggesting that its selectivity for the δ2 receptor is not maintained after s.c. administration in the rat. A lower dose of NTB (0.56 mg/kg s.c.) was ineffective. When the dose of NTB was increased to 3 mg/kg s.c. the antagonism of DELT and of DPDPE was unexpectedly lost. Pretreatment with the κ receptor antagonist nor-binaltorphimine (nor-BNI) partially restored the antagonism of DELT, but not DPDPE by this dose of NTB and did not modify the antagonism of DAMGO by NTB. These data suggest that high doses of NTB have κ receptor agonist-like activity and support the proposal that κ opioid agonists diminish the actions of δ receptor antagonists. They also suggest that nor-BNI-sensitive κ opioid receptors interact with δ2, but not δ1 opioid receptors in the spinal cord.  相似文献   

7.
Two forms of gamma-glutamyltransferase from human brain cortex microvessels were partially purified by gel permeation and ion-exchange and group-affinity chromatography. The specific activity of the purified preparations was 320-fold (detergent form) and 830-fold (proteolytic form) higher than that of the enzyme in the brain cortex homogenate. The relative molecular mass of the proteolytic form of the enzyme was about 90,000 as determined by gel permeation chromatography. The major part of the enzyme (about 80%) was absorbed on Con A-Sepharose 4B. The pH optima for transfer reactions with -glutamyl-4-nitroanilide as donor and glycylglycine andl-cystine as acceptors were in the range of 8.2 to 9.0. The studied enzyme was inhibited by a mixture ofl-serine and borate and by bromcresol green.  相似文献   

8.
To clarify the essential structures of an opioid κ receptor selective agonist, nalfurafine, for binding to the κ receptor, we designed and synthesized the decahydro(iminoethano)phenanthrene derivatives with an oxygen functionality at the 3-position. The introduction of a hydroxy group to the derivatives increased the affinity and selectivity to the κ receptor regardless of the configuration at the 3-position. However, their affinities were lower than those of nalfurafine with the phenolic hydroxy group. The results suggested that the acidity of the hydroxy group would play an important role in the interaction with the opioid receptor. The low affinities of the 3-keto derivatives indicated that the 3-hydroxy group may participate in the hydrogen bonding with the receptor site not as a hydrogen acceptor but as a hydrogen donor. This is the first experimental evidence for a role as a hydrogen donor for the 3-hydroxy group in morphinans. Furthermore, the κ selectivities in these derivatives with the 6α-amide side chain were affected by the the 3-hydroxy group. The obtained structure–activity relationship information is expected to be useful for the design of more selective ligands for the κ receptor.  相似文献   

9.
Aminobenzyloxyarylamide derivatives 1a-i and 2a-t were designed and synthesized as novel selective κ opioid receptor (KOR) antagonists. The benzoyl amide moiety of LY2456302 was changed into N-hydroxybenzamide and benzisoxazole-3(2H)-one to investigate whether it could increase the binding affinity or selectivity for KOR. All target compounds were evaluated in radioligand binding assays for opioid receptor binding affinity. These efforts led to the identification of compound 1c (κ Ki = 179.9 nM), which exhibited high affinity for KOR. Moreover, the selectivity of KOR over MOR and DOR increased nearly 2-fold and 7-fold, respectively, compared with (±)LY2456302.  相似文献   

10.
DR4 (Death Receptor 4) belongs to the tumor necrosis factor (TNF) receptor gene family, which is defined by similar, cysteine-rich extracellular domain and a homologous cytoplasmic sequence termed as "death domain". DR4 can transmit apoptosis signal initiated by Apo2L/TRAIL (TNF-related apoptosis inducing ligand). It can activate caspases within seconds of ligand binding and cause an apoptotic demise of the cell within hours. Despite several investigations, the mechanisms of apoptosis initiation by Apo2L/TRAIL remain unclear.  相似文献   

11.
12.
13.
Animal experiments and observations in human brains have convincingly shown that sexual differentiation not only concerns the genitalia but also the brain. This has been investigated also in the light of a possible explanation of a presumed biological aetiology of transsexuality. The volume of the central subdivision of the bed nucleus of the stria terminalis, a brain area that is essential for sexual behaviour, has been reported to be larger in men than in women. Additionally, the number of somatostatin expressing neurons in this region was shown to be higher in men than in women. As neuronal production of somatostatin is involved the idea is striking whether somatostatin-receptor density in the cortex of cerebral hemispheres might be related to gender identity. We investigated in vivo the density of somatostatin-receptors in selected regions of the human brain in both sexes by means of receptor scintigraphy. Basal ganglia tracer uptake of 111-In-Pentreotide was equally low in both genders at 0,80% +/ 0,26 (related to tracer uptake of the whole brain layer). Temporal cortex accumulated at 2,9% +/ 1,1 in men and at 2,3% +/ 0,76 in women. Frontal brain region had an uptake of 3,0% +/ 1,4 in male and of 2,5% +/ 1,3 in female. This shows a tendency in males for relatively augmented uptake indicating higher somatostatin receptor density in temporal and frontal cerebral cortex.  相似文献   

14.
A conformational analysis of κ opioid receptor agonists, TRK-820 and U-50,488H indicated an active conformation of TRK-820 in which the C-ring was in the boat form with the 14-OH interacting with the amide nitrogen. Based on the obtained active conformation of TRK-820, we designed and synthesized a novel κ agonist KNT-63 with oxabicyclo[2.2.2]octane skeleton. KNT-63 showed profound antinociceptive effects via the κ receptor which were as potent as that of TRK-820.  相似文献   

15.
Cyclic tetrapeptide c[Phe-pro-Phe-trp] 2, a diastereomer of CJ-15,208 (1), was identified as a potent dual κ/μ opioid receptor antagonist devoid of δ opioid receptor affinity against cloned human receptors: Ki (2) = 3.8 nM (κ), 30 nM (μ); IC50 ([35S]GTPγS binding) = 140 nM (κ), 21 nM (μ). The d-tryptophan residue rendered 2 ca. eightfold and fourfold more potent at κ and μ, respectively, than the corresponding l-configured tryptophan in the natural product 1. Phe analogs 3–10, designed to probe the effect of substituents on receptor affinity and selectivity, possessed Ki values ranging from 14 to 220 nM against the κ opioid receptor with μ/κ ratios of 0.45–3.0. An alanine scan of 2 yielded c[Ala-pro-Phe-trp] 12, an analog equipotent to 2. Agents 2 and 12 were pure antagonists in vitro devoid of agonist activity. Ac-pro-Phe-trp-Phe-NH2 16 and Ac-Phe-trp-Phe-pro-NH2 17 two of the eight possible acyclic peptides derived from 1 and 2, were selective, modestly potent μ ligands: Ki (16) = 340 nM (μ); Ki (17) = 360 nM (μ).  相似文献   

16.
1. A marked dependence on temperature of agonist binding δ, μ and κ1−3, opioid sites in the bovine adrenal medulla was observed, at the range of 0 to 37°C. These changes concern kinetic (k1) and equilibrium constants (Kd), but not binding capacities (Bmax).2. These dependences are different for each ligand and each opioid receptor, suggesting their molecular heterogeneity.3. The comparative thermodynamics indicates that the interaction of opioid agonists with their receptor is exergonic (ΔG° < 0) and entropy driven (ΔS° > 0).4. The comparison of Van't Hoff and Arrhenius plots indicates a discrete mechanism in the binding of each opioid receptor.  相似文献   

17.
18.
Detergents Triton X-100, sodium deoxycholate, and octyl--D-glucopyranoside, and proteinase papain proved to be excellent agents solubilizing the -glutamyl-transferase (-GT) from human brain cortex microvessels. Ficin also solubilized -GT but to a lesser extent than papain. The relative molecular mass of the detergent-solubilized enzyme form was greater than 200,000 (in the presence of Triton X-100). The relative molecular mass of the proteinase-solubilized form was slightly greater than that of albumine. -GTs of microvessels from five human brain regions and from the choroid plexus were tested for their specificity toward acceptors. The best acceptors were found to be (in decreasing order of activity)l-cystine, glycylglycine,l-glutamine,l-methionine, andl-alanine. The findings suggest that the main features of -GT of the human blood-brain barrier are very similar to those of -GTs from other human tissues.  相似文献   

19.
Amyloid β (Aβ) oligomers are presumed to be one of the causes of Alzheimer's disease (AD). Previously, we identified the E693Δ mutation in amyloid precursor protein (APP) in patients with AD who displayed almost no signals of amyloid plaques in amyloid imaging. We generated APP-transgenic mice expressing the E693Δ mutation and found that they possessed abundant Aβ oligomers from 8months of age but no amyloid plaques even at 24months of age, indicating that these mice are a good model to study pathological effects of Aβ oligomers. To elucidate whether Aβ oligomers affect proteome levels in the brain, we examined the proteins and phosphoproteins for which levels were altered in 12-month-old APP(E693Δ)-transgenic mice compared with age-matched non-transgenic littermates. By two-dimensional gel electrophoresis (2DE) followed by staining with SYPRO Ruby and Pro-Q Diamond and subsequent mass spectrometry techniques, we identified 17 proteins and 3 phosphoproteins to be significantly changed in the hippocampus and cerebral cortex of APP(E693Δ)-transgenic mice. Coactosin like-protein, SH3 domain-bind glutamic acid-rich-like protein 3 and astrocytic phosphoprotein PEA-15 isoform 2 were decreased to levels less than 0.6 times those of non-transgenic littermates, whereas dynamin, profilin-2, vacuolar adenosine triphosphatase and creatine kinase B were increased to levels more than 1.5 times those of non-transgenic littermates. Furthermore, 2DE Western Blotting validated the changed levels of dynamin, dihydropyrimidinase-related protein 2 (Dpysl2), and coactosin in APP(E693Δ)-transgenic mice. Glyoxalase and isocitrate dehydrogenase were increased to levels more than 1.5 times those of non-transgenic littermates. The identified proteins could be classified into several groups that are involved in regulation of different cellular functions, such as cytoskeletal and their interacting proteins, energy metabolism, synaptic component, and vesicle transport and recycling. These findings indicate that Aβ oligomers altered the levels of some proteins and phosphoproteins in the hippocampus and cerebral cortex, which could illuminate novel therapeutic avenues for the treatment of AD.  相似文献   

20.
The 5-hydroxytryptamine (5-HT)(7(a)) receptor is a G-protein-coupled receptor critically involved in human psychiatric and neurological disorders. In the present study, we evaluate the presence and the functional role of N-glycosylation of the human 5-HT(7) receptor. Western blot analysis of HEK293T cells transiently expressing the 5-HT(7(a)) receptor in the presence of tunicamycin gave rise to a band shift, indicating the existence of an N-glycosylated form of the 5-HT(7(a)) receptor. To further investigate this, we mutated the two predicted N-glycosylation sites (N5Q and N66Q) and compared the molecular mass of the immunoreactive bands with those of the wild-type receptor, indicating that both asparagines were N-glycosylated. The mutant receptors had the same binding affinity for [(3) H]5-CT and the same potency and efficacy with regard to 5-HT-induced activation of adenylyl cyclase. However, there was a reduction in maximal ligand binding for the single and double mutants compared to the wild-type receptor. Next, membrane labelling and immunocytochemical studies demonstrated that the N-glycosylation mutants were expressed at the cell surface. We conclude that N-glycosylation is not important for cell surface expression of the 5-HT(7) receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号