首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent laboratory and epidemiological results have stimulated interest in the hypothesis that human beings may exhibit biological responses to magnetic and/or electric field transients with frequencies in the range between 100 Hz and 100 kHz. Much can be learned about the response of a system to a transient stimulation by understanding its response to sinusoidal disturbances over the entire frequency range of interest. Thus, the main effort of this paper was to compare the strengths of the electric fields induced in homogeneous ellipsoidal models by uniform 100 Hz through 100 kHz electric and magnetic fields. Over this frequency range, external electric fields of about 25–2000 V/m (depending primarily on the orientation of the body relative to the field) are required to induce electric fields inside models of adults and children that are similar in strength to those induced by an external 1 μT magnetic field. Additional analysis indicates that electric fields induced by uniform external electric and magnetic fields and by the nonuniform electric and magnetic fields produced by idealized point sources will not differ by more than a factor of two until the sources are brought close to the body. Published data on electric and magnetic field transients in residential environments indicate that, for most field orientations, the magnetic component will induce stronger electric fields inside adults and children than the electric component. This conclusion is also true for the currents induced in humans by typical levels of 60 Hz electric and magnetic fields in U.S. residences. Bioelectromagnetics 18:67–76, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
The goal of the research reported here is to narrow the range of uncertainty about peripheral nerve stimulation (PNS) thresholds associated with whole body magnetic field exposures at 50/60 Hz. This involved combining PNS thresholds measured in human subjects exposed to pulsed magnetic gradient fields with calculations of electric fields induced in detailed anatomical models of the body by that same exposure system. PNS thresholds at power frequencies (50/60 Hz) can be predicted from these data due to the wide range of pulse durations (70 mus to 1 ms), the length of the pulse trains (several tens of ms), and the exposure of a large part of the body to the magnetic field. These data together with the calculations of the rheobase electric field exceeded in 1% (E(1%)) of two anatomical body models, lead to a median PNS detection threshold of 47.9 +/- 4.4 mT for a uniform 60 Hz magnetic field exposure coronal to the body. The threshold for the most sensitive 1% of the population is about 27.8 mT. These values are lower than PNS thresholds produced by magnetic fields with sagittal and vertical orientations or nonuniform exposures.  相似文献   

3.
We have used the quasi-static impedance method to calculate the currents induced in the nominal 2 x 2 x 3 and 6 mm resolution anatomically based models of the human body for exposure to magnetic fields at 60 Hz. Uniform magnetic fields of various orientations and magnitudes 1 or 0.417 mT suggested in the ACGIH and ICNIRP safety guidelines are used to calculate induced electric fields or current densities for the various glands and organs of the body including the pineal gland. The maximum 1 cm(2) area-averaged induced current densities for the central nervous system tissues, such as the brain and the spinal cord, were within the reference level of 10 mA/m(2) as suggested in the ICNIRP guidelines for magnetic fields (0.417 mT at 60 Hz). Tissue conductivities were found to play an important role and higher assumed tissue conductivities gave higher induced current densities. We have also determined the induced current density distributions for nonuniform magnetic fields associated with two commonly used electrical appliances, namely a hair dryer and a hair clipper. Because of considerably higher magnetic fields for the latter device, higher induced electric fields and current densities were calculated.  相似文献   

4.
Acute (2 h) exposure of rats to a 60 Hz magnetic field (flux densities 0.1, 0.25, and 0.5 mT) caused a dose-dependent increase in DNA strand breaks in brain cells of the animals (assayed by a microgel electrophoresis method at 4 h postexposure). An increase in single-strand DNA breaks was observed after exposure to magnetic fields of 0.1, 0.25, and 0.5 mT, whereas an increase in double-strand DNA breaks was observed at 0.25 and 0.5 mT. Because DNA strand breaks may affect cellular functions, lead to carcinogenesis and cell death, and be related to onset of neurodegenerative diseases, our data may have important implications for the possible health effects of exposure to 60 Hz magnetic fields. Bioelectromagnetics 18:156–165, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
The effects of static and 50 Hz magnetic fields on cytochrome-C oxidase activity were investigated in vitro by strictly controlled, simultaneous polarographic measurements of the enzyme's high- and low-affinity redox reaction. Cytochrome-C oxidase was isolated from beef heart. Control experiments were carried out in the ambient geomagnetic and 50 Hz magnetic fields at respective flux densities of 45 and 1.8 μT. The experimentally applied fields, static and time-varying, were generated by Helmholtz coils at flux densities between 50 μT and 100 mT. Exposures were timed to act either on the combined enzyme-substrate interchange or directly on the enzyme's electron and proton translo-cations. Significant changes as high as 90% of the overall cytochrome-C oxidase activity resulted during exposure (1) to a static magnetic field at 300 μT or 10 mT in the high-affinity range, and (2) to a 50 Hz magnetic field at 10 or 50 mT in the low-affinity range. No changes were observed at other flux densities. After exposure to a change-inducing, static or time-varying field, normal activity returned. © 1993 Wiley-Liss. Inc.  相似文献   

6.
Extremely-low-frequency (ELF) magnetic fields interact with an animal by inducing internal electric fields, which represent the internal dose from an external exposure. In this study, an electric field probe of approximately 2 mm resolution was used to measure fields induced in rat carcasses by a 60 Hz magnetic field at 1 mT. With the rat lying on its side, the probe was inserted through a small hole in the body wall, and scanned at 5 mm increments from the side with frontal and axial exposure (field horizontal) and from the front with lateral exposure (field vertical). The induced electric field declined from a maximum at the entrance to the abdomen and crossed zero to negative (180° phase shift) values within the body as expected. In general, the magnitudes of the measurements inside the abdomen were less than expected from whole-body calculations that used homogeneous-ellipsoidal models of a rat in the three orientations. The low measurements did not appear to be explained by perpendicular field components, by conductivity differences between the tissue and the probe path, or by air in the lungs. The low measurements probably result from inhomogeneities in actual rats that include conductivity differences between tissues and biological membranes. For example, an alternative model considered the abdominal cavity to be electrically isolated from the body by the diaphragm and the peritoneum and calculations from this model were in better agreement with the measurements inside the abdomen (than were the whole-body calculations). Therefore, inhomogeneities in conductivity and biomembranes such as the peritoneum should be considered in order to fully understand ELF-induced field dosimetry. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Thirty-two male rats were tested in two replicates of an experiment to determine whether body currents induced by 60-Hz magnetic fields might lead to avoidance behavior comparable to that which results from exposure to strong 60-Hz electric fields. The test apparatus was a two-compartment Plexiglas shuttlebox enclosed in a sound-attenuating plywood chamber, which in turn was encompassed by two copper bus bars that, when energized, served as a source of 60-Hz magnetic fields. Location of the rat, and traverse activity in the shuttlebox were monitored by nine infra-red photo detectors equally spaced along the length of the apparatus. Rats were divided into 2 groups: 1 group of rats (n = 8 per group per replicate) was sham exposed while rats in the other group (n = 8 per group per replicate) were exposed to a 3.03 mT (30.3 G), 60-Hz magnetic field whenever they traversed to or were located on the side (L or R) predetermined as the exposed side. To control artifact incident to side preference, the side exposed (L or R) was alternated over the exposed rats. Each rat was tested individually in a 1-h session. A 2-factor ANOVA (exposed vs. control, replicate 1 vs. replicate 2) failed to reveal any significant effects due to either factor or to an interaction between factors. These data demonstrate that rats do not avoid exposure to 60-Hz magnetic fields at a flux density of 3.03 mT and further imply that the avoidance by rats of high level 60-Hz electric fields is mediated by something other than the internal body currents induced by the exposure.  相似文献   

8.
Rat tendon fibroblast (RTF) and rat bone marrow (RBM) osteoprogenitor cells were cultured and exposed to AC and/or DC magnetic fields in a triaxial Helmholtz coil in an incubator for up to 13 days. The AC fields were at 60 and 1000 Hz and up to 0.25 mT peak to peak, and the DC fields were up to 0.25 mT. At various combinations of field strengths and frequencies, AC and/or DC fields resulted in extensive detachment of preattached cells and prevented the normal attachment of cells not previously attached to substrates. In addition, the fields resulted in altered cell morphologies. When RTF and RBM cells were removed from the fields after several days of exposure, they partially reattached and assumed more normal morphologies. An additional set of experiments described in the Appendix corroborates these findings and also shows that low-frequency EMF also initiates apoptosis, i.e., programmed cell death, at the onset of cell detachment. Taken together, these results suggest that the electromagnetic fields result in significant alterations in cell metabolism and cytoskeleton structure. Further work is required to determine the relative effect of the electric and magnetic fields on these phenomena. The research has implications for understanding the role of fields in affecting bone healing in fracture nonunions, in cell detachment in cancer metastasis, and in the effect of EMF on organisms generally. Bioelectromagnetics 18:264–272, 1997. © Wiley-Liss, Inc.  相似文献   

9.
The aim of this study was to investigate the effects of 50 Hz magnetic fields (0.2–0.5 mT) on rabbit red blood cells (RBCs) that were exposed simultaneously to the action of an oxygen radical-generating system, Fe(II)/ascorbate. Previous data obtained in our laboratory showed that the exposure of rabbit erythrocytes or reticulocytes to Fe(II)/ascorbate induces hexokinase inactivation, whereas the other glycolytic enzymes do not show any decay. We also observed depletion of reduced glutathione (GSH) content with a concomitant intracellular and extracellular increase in oxidized glutathione (GSSG) and a decrease in energy charge. In this work we investigated whether 50 Hz magnetic fields could influence the intracellular impairments that occur when erythrocytes or reticulocytes are exposed to this oxidant system, namely, inactivation of hexokinase activity, GSH depletion, a change in energy charge, and hemoglobin oxidation. The results obtained indicate that a 0.5 mT magnetic field had no effect on intact RBCs, whereas it increased the damage in an oxidatively stressed erythrocyte system. In fact, exposure of intact erythrocytes incubated with Fe(II)/ascorbate to a 0.5 mT magnetic field induced a significant further decay in hexokinase activity (about 20%) as well as a twofold increase in methemoglobin production compared with RBCs that were exposed to the oxidant system alone. Although further studies will be needed to determine the physiological implications of these data, the results reported in this study demonstrate that the effects of the magnetic fields investigated are able to potentiate the cellular damage induced in vitro by oxidizing agents. Bioelectromagnetics 18:125–131, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
Experiments designed to evaluate the synergistic production of clastogenic effects by ionizing radiation and 60 Hz magnetic fields were performed using human lymphocytes from peripheral blood. Following exposure to ionizing radiation, cells were cultured in 60 Hz magnetic fields having field strengths up to 1.4 mT. Cells exposed to both ionizing radiation and 60 Hz magnetic fields demonstrated an enhanced frequency of near tetraploid chromosome complements, a feature not observed following exposure to only ionizing radiation. The results are discussed in the context of a multiple-stage model of cellular transformation, employing both initiating and promoting agents. © 1993 Wiley-Liss. Inc.  相似文献   

11.
Exposure to extremely low frequency (ELF) magnetic fields has been shown to attenuate endogenous opioid peptide mediated antinociception or “analgaesia” in the terrestrial pulmonate snail, Cepaea nemoralis. Here we examine the roles of light in determining this effect and address the mechanisms associated with mediating the effects of the ELF magnetic fields in both the presence and absence of light. Specifically, we consider whether the magnetic field effects involve an indirect induced electric current mechanism or a direct effect such as a parametric resonance mechanism (PRM). We exposed snails in both the presence and absence of light at three different frequencies (30, 60, and 120 Hz) with static field values (BDC) and ELF magnetic field amplitude (peak) and direction (BAC) set according to the predictions of the PRM for Ca2+. Analgaesia was induced in snails by injecting them with an enkephalinase inhibitor, which augments endogenous opioid (enkephalin) activity. We found that the magnetic field exposure reduced this opioid-induced analgaesia significantly more if the exposure occurred in the presence rather than the absence of light. However, the percentage reduction in analgaesia in both the presence and absence of light was not dependent on the ELF frequency. This finding suggests that in both the presence and the absence of light the effect of the ELF magnetic field was mediated by a direct magnetic field detection mechanism such as the PRM rather than an induced current mechanism. Bioelectromagnetics 18:284–291, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
To explore possible biochemical mechanisms whereby electromagnetic fields of around 0.1 mT might affect immune cells or developing cancer cells, we studied intracellular calcium signaling in the model system Jurkat E6-1 human T-leukemia cells during and following exposure to a 60 Hz magnetic field. Cells were labeled with the intracellular calcium-sensitive fluorescent dye Fluo-3, stimulated with a monoclonal antibody against the cell surface structure CD3 (associated with ligand-stimulated T-cell activation), and analyzed on a FACScan flow-cytometer for increases in intensity of emissions in the range of 515–545 nm. Cells were exposed during or before calcium signal-stimulation to 0.15 mTrms 60 Hz magnetic field. The total DC magnetic field of 78.2 μT was aligned 17.5° off the vertical axis. Experiments used both cells cultured at optimal conditions at 37 °C and cells grown under suboptimal conditions of 24 °C, lowered external calcium, or lowered anti-CD3 concentration. These experiments demonstrate that intracellular signaling in Jurkat E6-1 was not affected by a 60 Hz magnetic field when culture and calcium signal-stimulation were optimal or suboptimal. These results do not exclude field-induced calcium-related effects further down the calcium signaling pathway, such as on calmodulin or other calcium-sensitive enzymes. Bioelectromagnetics 18:439–445, 1997. © 1997 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    13.
    A controlled pilot study was performed to examine the possibility of finding a specific electromagnetic field signal to inhibit angiogenesis during tumor growth. A 120 Hz pulsating magnetic field of 4 and 5 mT was applied to female mice which had been inoculated with murine 16/C mammary adenocarcinoma. After 11 consecutive sessions of 10 min/day exposure to the magnetic field, the animals were sacrificed and an immunohistochemistry analysis of the tumors was performed. CD31 staining indicated that both magnetic fields significantly reduced the vasculature in the tumors: 39% at 4 mT magnetic flux density and 53% at 5 mT. The positive implications for impeding tumor growth and metastasis warrant further studies.  相似文献   

    14.
    We have previously reported that exposing the vegetative plasmodia stage of Physarum polycephalum to either individual or simultaneously applied electric and magnetic fields (45-75 Hz, 0.14-2.0 G, and 0.035-0.7 V/m) lengthens their mitotic cycle, depresses their rate of reversible shuttle streaming, and lowers their respiration rate. In this article we report the effects of simultaneously applied electromagnetic fields (60 Hz, 1.0 G, 1.0 V/m), electric fields only (60 Hz, 1.0 V/m), magnetic fields only (60 Hz, 1.0 G) on the haploid amoeba of Physarum exposed for 120-180 days. Statistically significant depressions (about 8-11%) in ATP levels were observed with all field conditions; however, respiration was significantly decreased only when amoebae were subjected to either combined fields or electric fields alone. Magnetic fields alone failed to induce a significant decrease in respiration.  相似文献   

    15.
    It is widely accepted that moderate levels of nonionizing electric or magnetic fields, for example 50/60 Hz magnetic fields of about 1 mT, are not mutagenic. However, it is not known whether such fields can enhance the action of known mutagens. To explore this question, a stringent experimental protocol, which included blinding and systematic negative controls, was implemented, minimizing the possibility of observer bias or experimental artifacts. As a model system, we chose to measure mutation frequencies induced by 2 Gy gamma rays in the redox-sensitive hypoxanthine-guanine phosphoribosyl transferase (HPRT) gene in Chinese hamster ovary cells. We tested whether a 12-h exposure to a 60 Hz sinusoidally oscillating magnetic-flux density (Brms = 0.7 mT) could affect the mutagenic effects of ionizing radiation on the HPRT gene locus. We determined that the magnetic-field exposure induced an approximate 1.8-fold increase in HPRT mutation frequency. Additional experiments at Brms = 0.23 and 0.47 mT revealed that the effect was reduced at lower flux densities. The field exposure did not enhance radiation-induced cytotoxicity or mutation frequencies in cells not exposed to ionizing radiation. These results suggest that moderate-strength, oscillating magnetic fields may act as an enhancer of mutagenesis in mammalian cells.  相似文献   

    16.
    17.
    A miniaturized probe was designed and built to provide detailed data on fields induced by a uniform 60-Hz magnetic field in homogeneous models of rat and human. The probe employed three silver wires twisted and potted in an 8-cm hypodermic needle. The exposed tips of the wires formed three sensing electrodes with a centered ground; highly sensitive voltage measurements were enabled by a lock-in amplifier. Tests were conducted in a 1-mT rms field that was uniform within +/- 5%. The models were made by casting 1.5% agar at 1-S/m conductivity into plastic-foam molds. The rat model was scaled 1:1 as an adult (22 cm length; mass about 640 g). The human model was scaled 1:4 as an adult (height = 46.5 cm; mass 1.4 kg). The probe was inserted into each model in several regions, and readings of induced fields were made under different exposure geometries. Maximal strengths of fields induced near the surface of the torso were as high as 120 microV/cm in the laterally exposed rat model. Data extrapolated from the quarter-scale human model revealed that an induced field as high as 700 microV/cm could occur at the torso of a frontally exposed human adult. An overall size-scale factor of about 5 appears to be appropriate for experimental exposures of rats that are intended to simulate currents induced in human beings by magnetic fields. The average strength of electric fields induced in the torso by a 1-mT magnetic field is comparable to that by a vertical electric-field at 60 kV/m and 28 kV/m, respectively, for the rat and human.  相似文献   

    18.
    Proliferation of SV40-3T3 mouse fibroblasts and human HL-60 promyelocytes was studied after treatment with a sinusoidal 2 mTrms 50 Hz magnetic field. A single exposure of 60 minutes caused quasicyclic changes in the cell number of SV40-3T3 cultures as function of time after treatment, which was interpreted to be due to the induction of chronobiological mechanisms by the field. Moreover, small variations in cell cycle distribution were measured during postexposure incubation for both cell lines. To discriminate between the effect of the magnetic vector and the induced electric field, HL-60 cell exposure was also performed on organ culture dishes. These dishes consist of two coaxially centered, isolated compartments in which different electric field levels are induced in the medium during treatment. Cell growth was affected in the outer compartment only where the induced electric field ranged from 8 to 12 mVpeak/meter at 2 mT, but it was not affected in the inner compartment (field range 0–4 mVpeak/meter). This suggests that the effects on cell growth are due to the induced electric field and are expressed only above a threshold of between 4 and 8 mVpeak/meter. Bioelectromagnetics 18:177–183, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

    19.
    Chicken eggs are convenient models for observing the effects of inhomogeneities and variations, such as those found in biological membranes and in cellular conductivities, on the distribution of internal electric fields as induced by exposure to magnetic fields. The vitelline membrane separates the yolk, which has a conductivity of 0.26 S/m, from the white, which has a conductivity of 0.85 S/m. A miniaturized probe with 2.4-mm resolution was used to measure induced fields in eggs placed in a uniform, 1-mT magnetic field at 60 Hz. The E fields induced in eggs with homogenized contents agreed with expectations based on simple theory. Results were similar to intact eggs unless the probe moved the yolk off-center, which greatly perturbed the induced fields. A more reproducible arrangement, which consisted of saline-agar filled dishes with a hole cut for test samples, was developed to enhance definition of electrical parameters. With this test system, the vitelline membrane was found to be responsible for most of the perturbation of the induced field, because it electrically isolates the yolk from the surrounding white. From a theoretical viewpoint, this dosimetry for the macroscopic egg yolk is analogous to the interaction of fields with microscopic cells. These findings may have important implications for research on biological effects of ELF electromagnetic fields, especially for studies of avian embryonic development.  相似文献   

    20.
    Exposure to external extremely low-frequency (ELF) electric and magnetic fields induces the development of electric fields inside the human body, with their nature depending on multiple factors including the human body characteristics and frequency, amplitude, and wave shape of the field. The objective of this study was to determine whether active implanted cardiac devices may be perturbed by a 50 or 60 Hz electric field and at which level. A numerical method was used to design the experimental setup. Several configurations including disadvantageous scenarios, 11 implantable cardioverter-defibrillators, and 43 cardiac pacemakers were tested in vitro by an experimental bench test up to 100 kV/m at 50 Hz and 83 kV/m at 60 Hz. No failure was observed for ICNIRP public exposure levels for most configurations (in more than 99% of the clinical cases), except for six pacemakers tested in unipolar mode with maximum sensitivity and atrial sensing. The implants configured with a nominal sensitivity in the bipolar mode were found to be resistant to electric fields exceeding the low action levels, even for the highest action levels, as defined by the Directive 2013/35/EU. Bioelectromagnetics. 2020;41:136–147. © 2020 Bioelectromagnetics Society.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号