首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The effect of a new PAF antagonist BN 50739 was studied on PAF-induced [3H]-serotonin release from washed rabbit platelets in vitro and on PAF-induced hypotension in vivo. BN 50739 competitively inhibited PAF-induced [3H]-serotonin release from the platelets in a dose-dependent manner. In the presence of 4, 10 and 50 nM of BN 50739, the concentration of PAF inducing 50% maximal [3H]-serotonin release from the platelets (EC50) increased from 2.15 nM to 5.10, 45.10 and 900 nM, respectively. The IC50 of BN 50739 for PAF (10 nM) induced [3H]-serotonin release was 3.67 nM. Under the same experimental condition, the IC50s of BN 50726, BN 50730, BN 50741, WEB 2086, SRI 63-441 and BN 52021 were 5.40, 4.61, 6.88, 5.98, 40.90 nM and 14.90 microM, respectively. PAF-induced hypotension in conscious rats was also inhibited dose-dependently by i.p. pretreatment of BN 50739 (3 and 10 mg/kg). PAF-induced hypotension was diminished both in magnitude and duration in rats pretreated with BN 50739. These data taken together indicate that BN 50739 is a most potent PAF antagonist in vitro and in vivo.  相似文献   

2.
The effects of the PAF receptor antagonists WEB 2086, WEB 2170, BN 50739 and BN 52021 on AA-induced platelet aggregation (PA) and TXA2 formation were investigated in comparison with the TXA2 synthetase inhibitor HOE 944 and the TXA2 receptor antagonist BM 13.177. All PAF antagonists tested were weak inhibitors of AA-induced PA and TXA2 formation (IC50 values between 80 and 2,737 mumol/l). HOE 944 was effective in concentrations 2-3 orders of magnitude lower than PAF antagonists in inhibiting TXA2 generation. These results imply that the inhibition of TXA2 formation is of minor relevance for the actions of the investigated PAF antagonists in AA-induced PA.  相似文献   

3.
Two new antagonists of platelet-activating factor (PAF), the pyrrolothiazole derivative 52770 RP and the triazolodiazepine WEB 2086, have been studied as radioligands in intact human platelets. [3H]52770 RP and [3H]WEB 2086 bound specifically to high-affinity sites with dissociation constants (Kd) of 14.8 and 6.1 nM, respectively. The maximal number of sites for [3H]52770 RP binding was approx. 15-fold higher than for [3H]PAF and [3H]WEB 2086. In addition, C16-PAF, lyso-PAF, WEB 2086 and 52770 RP had Ki values which were nearly identical for both [3H]PAF and [3H]WEB 2086, whereas only 52770 RP competed for [3H]52770 RP-binding sites. These results demonstrate that in human platelets the sites of [3H]WEB 2086 binding are identical to [3H]PAF-binding sites, whereas those of [3H]52770 RP are not. [3H]WEB 2086 appears, therefore, to be a suitable antagonist radioligand for labelling PAF receptors.  相似文献   

4.
The hypothesis was tested that the hetrazepine WEB 2086 acts as an inhibitor of PAF-induced platelet aggregation via interaction with the platelet benzodiazepine receptor(BDZR). WEB 2086 is a potent inhibitor of rabbit platelet aggregation and ATP secretion induced by 370 nM PAF. The two BDZR ligands RO 5-4864 and RO 15-1788 (7-96 microM) are inactive as PAF antagonists. When platelets were pretreated with either BDZR ligand, and then exposed to various concentrations of WEB 2086, there was no alteration of the dose-response relationship of the hetrazepine on PAF-induced aggregation, as reflected by threshold concentration, ED50, or maximum inhibition seen with WEB 2086. Pretreatment of platelets with the BDZR ligands also failed to block the inhibitory action of WEB 2086 on PAF-induced ATP release. The data are consistent with the notion that WEB 2086 acts as a PAF antagonist through its action at a specific PAF receptor, and is dissociated from, and independent of, interaction with the benzodiazepine receptor.  相似文献   

5.
G Dent  D Ukena  P Chanez  G Sybrecht  P Barnes 《FEBS letters》1989,244(2):365-368
The antagonism of PAF effects by WEB 2086 and the receptor binding of [3H]WEB 2086 were investigated in isolated human neutrophils. WEB 2086 inhibited PAF-induced beta-glucuronidase release and [3H]WEB 2086 bound specifically to high-affinity sites on the cells. Close concordance between affinity constants for WEB 2086 from functional and radioligand-binding studies suggests that WEB 2086 interacts with the neutrophil PAF receptors and that [3H]WEB 2086 may be a useful ligand in investigation of these receptors.  相似文献   

6.
《Life sciences》1987,40(15):1537-1543
The pineal gland and particularly its major hormone, melatonin, may participate in several physiological functions, including sleep promotion, anticonvulsant activity and the modulation of biological rhythms and affective disorders. These effects may be related to an interaction with benzodiazepine receptors, which have been demonstrated to be present in the pineal gland of several species including man. The present study examined the characteristics of benzodiazepine binding site subtypes in the human pineal gland, using [3H] flunitrazepam and [3H] PK 11195 as specific ligands for central and peripheral type benzodiazepine binding sites respectively. Scatchard analysis of [3H] flunitrazepam binding to pineal membrane preparations was linear, indicating the presence of a single population of sites. Clonazepam and RO 15-1788, which have a high affinity for central benzodiazepine binding sites, were potent competitors for [3H] flunitrazepam binding in the human pineal, whereas RO 5-4864 had a low affinity for these sites. Analyses of [3H] PK 11195 binding to pineal membranes also revealed the presence of a single population of sites. RO 5-4864, a specific ligand for peripheral benzodiazepine binding sites was the most potent of the drugs tested in displacing [3H] PK 11195, whereas clonazepam and RO 15-1788 were weak inhibitors of [3H] PK 11195 binding to pineal membranes. Overall, these results demonstrate, for the first time, the coexistence of peripheral and central benzodiazepine binding sites in the human pineal gland.  相似文献   

7.
A human promyelocytic leukemia cell line (undifferentiated HL-60 cells) as well as a granulocyte form of HL-60 cells induced in vitro by exposure to dimethyl sulfoxide were examined for binding, metabolism, and biological responses to platelet-activating factor (PAF). Undifferentiated and differentiated HL-60 cells each exhibit a high capacity to incorporate and metabolize [3H]PAF at 37 degrees C; however, the amount of [3H]PAF that is assimilated by both cell populations is greatly reduced and its metabolism abolished at less than or equal to 4 degrees C. At 0 degrees C HL-60 granulocytes bind more [3H]PAF than their undifferentiated counterparts. Binding to differentiated cells reaches equilibrium within 80 min and is saturable, reversible and specific; PAF receptor antagonists WEB 2086, L-659,989, BN 52021, and kadsurenone abolish this specific [3H]PAF binding. In contrast, [3H]PAF uptake by undifferentiated HL-60 cells is neither saturable nor sensitive to specific receptor antagonists. Scatchard analyses reveal 5850 +/- 850 binding sites per differentiated HL-60 cell with a dissociation constant of 0.66 +/- 0.15 nM. In the presence of cytochalasin B, PAF (200 nM) induces degranulation only in differentiated cells and this response also is blocked by PAF receptor antagonists. Our results demonstrate that HL-60 cells develop specific and functionally active PAF receptors only after chemically induced differentiation into granulocytes.  相似文献   

8.
The biochemical and pharmacological properties of nuclear [3H]flunitrazepam in brain tissues were studied. Nuclear [3Hflunitrazepam binding is saturable for both central and peripheral binding sites. Inosine and hypoxanthine displace nuclear [3H]flunitrazepam binding with greater potency than the membrane [3H]flunitrazepam binding. Triiodothyronine (T3) increases the maximum number of binding sites (Bmax) of nuclear [3H]flunitrazepam binding in vitro while thyroxine (T4) does not have any effect. Diazepam reduces the affinity of nuclear125I-T3 binding in vitro, while the Bmax is not affected significantly. Mild digestion of chromatin, using micrococcal nuclease, reveals that a major portion of nuclear [3H]flunitrazepam binding sites are located on chromatin. These data suggest a functional role for nuclear benzodiazepine binding and a possible modulatory effect of benzodiazepines on T3 binding with its nuclear receptors.  相似文献   

9.
To investigate the, interaction between -aminobutyric acid (GABA) and benzodiazepine (BZD) receptor sites during development, the time-course of appearance of flunitrazepam (FNZ) binding sites and their pharmacological characterization were studied in developing chick optic lobe. At the earliest stage examined, embryonic day (Ed) 12, the receptor density was 30.9 % (0.05±0.01 pmol/mg protein) of that found in the chick optic lobes of adult chicks. The adult value was achieved on Ed 16 (0.16±0.01 pmol/mg protein). After this stage there was a sharp and transient increase in specific [3H]FNZ binding of about two-fold reaching a maximal value between hatching and the postnatal day (pnd) 2 (0.33±0.01 pmol/mg protein). Scatchard analysis at different stages of development revealed the presence of a single population of specific FNZ binding sites. The increase in [3H]FNZ binding during development was due to a large number of binding sites while their affinity remained unchanged. Competition experiments in the chick optic lobe revealed that the order of potency for displacement of specific [3H]FNZ binding paralleled the pharmacological potency of the BZDs tested. The IC50 s for clonazepam, flunitrazepam, Ro 15-1788 and chlordiazepoxide were 3.02, 4.30, 0.32, and 4778.64 nM respectively. Ro 5-4864, a potent inhibitor of BZD binding to peripheral tissues, had no effect on specific [3H]FNZ binding indicating that only central BZD binding sites are present in the chick optic lobe. The peak of maximal expression of BZD receptor sites precedes in 5–6 days the peak of GABA receptor sites indicating a precocious development of BZD receptor sites. The different appearance of both peaks may represent important events during development probably related to synaptogenesis.  相似文献   

10.
Abstract

A GABA / benzodiazepine/barbiturate receptor complex has been purified from bovine cerebral cortex by affinity chromatography on a benzodiazepine column. Depending on the detergent present during the isolation of the receptor (deoxycholate/Triton X-100 or CHAPS/Asolectin), and during the binding assays (Triton X-100 or CHAPS), the receptor displays different binding properties for the GABAA agonist [3H]muscimol and for the chloride ion channel blocking agent [35S]t-butylbicyclophosphoro-thionate (TBPS), whereas the binding properties for the benzodiazepine [3H] flunitrazepam are independent of isolation and assay conditions. Both methods of isolation yield a protein complex consisting of the same two subunits of Mr 53000 and Mr 57000. Therefore the different binding properties reflect different conformations of the isolated receptor protein. [3H] flunitrazepam binding to the CHAPS-purified receptor is stimulated by GABA and the barbiturate pentobarbital in a dose-dependent manner. Photo-affinity labeling of the purified receptor with [3H] flunitrazepam leads to incorporation of radioactivity into both subunits, but predominantly into the Mr 53000 band, as shown by fluorography. Proteolytic degradation by trypsin of the isolated photo-affinity labeled receptor in detergent solution proceeds via a labeled Mr 48000 polypeptide. Proteolytic destruction of the reversible [3H]flunitrazepam and [3H]muscimol binding activities requires > 100 fold higher concentrations of trypsin than the decomposition of the receptor polypeptides into fragments < Mr 10000.  相似文献   

11.
Ex vivo [3H]flunitrazepam receptor occupation was determined in the brain of young, mature and old male Fischer 344 rats after a single intravenous injection of a low dose of diazepam. The two benzodiazepine receptor subtypes or conformations (BZ1 and BZ2) were differentiated by the displacement of [3H]flunitrazepam specific binding with the triazolopyridazine, CL 218,872. The acute diazepam injection decreased ex vivo [3H]flunitrazepam binding in only the senescent rats. The [3H]flunitrazepam binding at both the BZ1 and BZ2 receptor or receptor conformation was significantly reduced in the old rats.  相似文献   

12.
AimsHypnotic zolpidem is a positive allosteric modulator of γ-aminobutyric acid (GABA) action, with preferential although not exclusive binding for α1 subunit-containing GABAA receptors. The pharmacological profile of this drug is different from that of classical benzodiazepines, although it acts through benzodiazepine binding sites at GABAA receptors. The aim of this study was to further explore the molecular mechanisms of GABAA receptor induction by zolpidem.Main methodsIn the present study, we explored the effects of two-day zolpidem (10 μM) treatment on GABAA receptors on the membranes of rat cerebellar granule cells (CGCs) using [3H]flunitrazepam binding and semi-quantitative PCR analysis.Key findingsTwo-day zolpidem treatment of CGCs did not significantly affect the maximum number (Bmax) of [3H]flunitrazepam binding sites or the expression of α1 subunit mRNA. However, as shown by decreased GABA [3H]flunitrazepam binding, two-day exposure of CGCs to zolpidem caused functional uncoupling of GABA and benzodiazepine binding sites at GABAA receptor complexes.SignificanceIf functional uncoupling of GABA and benzodiazepine binding sites at GABAA receptors is the mechanism responsible for the development of tolerance following long-term administration of classical benzodiazepines, chronic zolpidem treatment may induce tolerance.  相似文献   

13.
Chronic treatment of male Wistar rats with ethanol by inhalation did not affect the binding of [3H]flunitrazepam, [3H]GABA or [3H]muscimol to extensively washed synaptic membranes. Neither the affinity (Kd) nor the number of binding sites (Bmax) for these ligands was changed. However, GABA enhancement of [3H]flunitrazepam binding was significantly decreased by approx. 40% in ethanol-treated animals (172% compared to 215%). Acute treatment with ethanol did not produce changes in the binding of [3H]flunitrazepam or [3H]muscimol. These findings suggest that chronic ethanol treatment leads to uncoupling of the various receptor sites on the GABA—benzodiazepine receptor ionophore-complex in the brain.  相似文献   

14.
Abstract: Recently, it was proposed that β-carbolines interact with a subset of benzodiazepine (BZD) binding sites in mouse brain. This postulate was based upon evidence showing changes in binding properties of the BZD receptor following photoaffinity labeling of membranes with flunitrazepam (FLU). Under conditions in which 80% of specific [3H]diazepam binding was lost in photolabeled membranes, specific [3H]propyl β-carboline-3-carboxylate ([3H]PCC) binding was spared. In this study, the binding of the BZD antagonists [3H]PCC, [3H]Ro15 1788 and [3H]CGS 8216 was examined in rat brain membranes following photoaffinity labeling with FLU. No significant changes in the apparent KD and small reductions in the Bmax of 3H antagonist binding were observed. However, in the same membranes, up to 89% of specific [3H]FLU binding was lost. When [3H]PCC (0.05 nM) was used to label the receptors in control and photolabeled membranes, the ability of BZD receptor agonists to inhibit [3H]PCC binding was greatly diminished in the photolabeled membranes. In contrast, the potency of BZD antagonists remained the same in both control and treated membranes. Based upon PCC/[3H]Ro15 1788 competition experiments, the ability of PCC to discriminate between BZD receptor subtypes was unaffected by photoaffinity labeling of cortical membranes. Overall, these findings suggest that β-carbolines do not interact with a subset of BZD binding sites per se, but may be a consequence of the differential interaction of BZD agonists and antagonists with BZD binding sites that have been photoaffinity labeled with FLU. A possible mechanism underlying this phenomenon is discussed. The ability of photolabeled membranes to differentiate between BZD agonists and antagonists provides a potential screen for agonist and antagonist activity in compounds that interact with the BZD receptor.  相似文献   

15.
Abstract

[3H]Phenytoin binding to rat cortical membrane was significantly enhanced in the presence of diazepam. This binding is saturable, reversible and displacable by unlabelled phenytoin. Analyses of the binding data either by the Scatchard plot or by the displacement curve revealed a high and a low affinity sites with Kd values of 32 ± 5 nM and 8.5 ± 1.1 μM, respectively. Similar enhancement of [3H]phenytoin binding was observed when diazepam was replaced by Ro 5–4864 (4″-chlorodiazepam) which is selective for the ‘peripheral’ type benzodiazepine binding sites. In contrast, neither the ‘central’ type receptor selective agonist clonazepam nor the antagonist Ro 15–1788 enhanced [3H]phenytoin binding. Therefore, it seems that these phenytoin binding sites in rat cerebral cortex are associated with a benzodiazepine site similar to the ‘peripheral’ type binding site for its selective affinity for Ro 5–4864. However, judging from the micromolar concentrations required for the enhancement of [3H]phenytoin binding, they appear unlikely to be the same ‘peripheral’ type binding sites as measured by [3H]Ro 5–4864 binding (Kd approx. 1 nM). The micromolar affinity benzodiazepine recognition sites are a possibility, if they indeed exist.  相似文献   

16.
R W Johnson  H I Yamamura 《Life sciences》1979,25(18):1613-1620
Clonazepam, nitrazepam and flunitrazepam were found to engage in an irreversible interaction with benzodiazepine binding sites in bovine cerebral cortex homogenates upon irradiation with ultraviolet light. Photoaffinity labeling with [3H]flunitrazepam could be substantially (approx. 85%) inhibited by a number of different benzodiazepines, including clonazepam, lorazepam, Ro5-3027, and non-radioactive flunitrazepam. Spiroperidol, atropine, naltrexone, propranolol and GABA had no effect on irreversible [3H]flunitrazepam binding, indicating that this binding is to the benzodiazepine receptor as defined in previous studies.  相似文献   

17.
The characteristics of [3H]flunitrazepam binding to brain specific benzodiazepine receptors were determined at varying temperatures. The rates at which [3H]flunitrazepam associated with and dissociated from benzodiazepine receptors increased with increasing temperatures. The dissociation constant (KD) also increased with increases in temperature. The (KD) determined by Scatchard analyses of saturation isotherms showed a similar change with changes in temperature. The maximal binding capacity (Bmax) did not change with changes in temperature. The inhibitory constants of several benzodiazepines to inhibit [3H]flunitrazepam binding to brain were also higher at 37°C than at 0°C, suggesting that the binding affinity of all benzodiazepines to brain benzodiazepine receptors is lower at 37°C than at 0°C. Van't Hoff analysis of [3H]flunitrazepam binding to brain at different temperatures reveals two linear components to this relationship.  相似文献   

18.
The effect of picrotoxinin on [3H]flunitrazepam binding to benzodiazepine receptors was investigated. In mouse forebrain membranes, picrotoxinin inhibited basal, GABA- and pentobarbital-stimulated [3H]flunitrazepam binding; this inhibitory activity was temperature- and chloride ion-dependent. Scatchard analysis of the data indicates that picrotoxinin decreases the number of binding sites without alterating binding affinity. In cerebellar membranes, picrotoxinin did not alter [3H]flunitrazepam receptor binding.  相似文献   

19.
A series of nucleoside transport inhibitors has been tested for their ability to displace [3H]diazepam binding to CNS membranes. No correlation between their potency as [3H]adenosine uptake blockers and as inhibitors of [3H]diazepam binding was found, either in rat or guinea-pig brain tissue. Dipyridamole, a potent adenosine transport inhibitor interacted strongly (Ki = 54 nM) with peripheral-type benzodiazepine binding sites (“acceptor sites”) and was 4–5 fold weaker in displacing [3H]methylclonazepam and [3H]Ro15-1788, ligands selective for the specific central benzodiazepine “receptor”. Unlike the benzodiazepines, dipyridamole had no anticonvulsant action against metrazole-induced convulsions in mice. Ro5-4864, a benzodiazepine which selectively interacts with the peripheral-type benzodiazepine binding site, was approximately equipotent with diazepam in inhibiting [3H]adenosine uptake in brain tissue. These results do not support the idea of a very close link between high-affinity central binding sites for clinically-active benzodiazepines and the adenosine uptake site. The possibility of a connection between benzodiazepine “acceptor” sites and the membrane nucleoside transporter is discussed.  相似文献   

20.
Abstract: Ethyl β-carboline-β-carboxylate (β-CCE) is a mixed-type inhibitor of [3H]flunitrazepam ([3H]FNM) binding to benzodiazepine receptors in noncerebellar regions of rat brain. These findings may represent the presence of either receptor multiplicity or negative cooperativity among benzodiazepine receptors. [3H]Propyl β-carboline-3-carboxylate ([3H]PrCC) has previously been shown to bind specifically to benzodiazepine receptors of rat cerebellum. In the present study we found no indication of the presence of true negative cooperativity among benzodiazepine receptors when [3H]PrCC was used as radioligand. However, we observed that [3H]PrCC labelled only 57% of [3H]FNM binding sites in rat hippocampus (Bmax values) and 71% in rat cerebral cortex, whereas the number of receptors labelled by both ligands was equal in the cerebellum. Hofstee analyses of the shallow inhibition curves seen in hippocampus and cerebral cortex when [3H]FNM binding was inhibited by β-CCE indicate that β-CCE and some other β-carboline-3-carboxylate derivatives interact preferentially with a subclass of receptors, and that the percentage of this subclass is equivalent to the number of receptors labelled by [3H]PrCC. We conclude that [3H]PrCC at low concentration (0.3–0.4 × 10-9 M) labels a subclass of benzodiazepine receptors, BZ1, while another class, BZ2 receptors, are not labelled by [3H]PrCC when filtration assays are used. By parallel determinations of the proportion between [3H]FNM and [3H]PrCC binding we calculated the percentage of BZ1 receptors in several regions of rat, guinea pig and calf brain and in mouse forebrain. The values ranged from approximately 50% in hippocampus to 90% in the guinea pig pons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号