首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R C Chou  R Wyss  C A Huselton  U W Wiegand 《Life sciences》1991,49(21):PL169-PL172
Formation of etretinate, ethyl ester of acitretin, can be confirmed in vitro and in vivo using acitretin as the substrate. Etretinate was identified by LC/MS. The in vitro incubation was performed using rat and human liver 12,000 g supernatant, and the in vivo experiment was conducted in rats after oral dosing of acitretin. The ethyl ester formation was greatly enhanced by addition of or dosing with ethanol.  相似文献   

2.
Etretinate or acitretin are efficiently delivered to cultured human fibroblasts in the presence of low density lipoproteins, high density lipoproteins or human serum albumin. In contrast to acitretin, delivery of etretinate to fibroblasts is more efficiently achieved with human serum albumin than with lipoproteins. The uptake of etretinate and acitretin via low density lipoproteins delivery, does not take place via the low density lipoprotein-receptor endocytotic pathway but mostly through a passive exchange with the plasma membrane. However, in contrast to acitretin, the exchange of etretinate seems to occur alter binding of etretinate-loaded low density lipoproteins to the apolipoprotein B receptors. No differences are observed in binding, internalization and degradation of native, etretinate-loaded low density lipoproteins and acitretin-loaded low density lipoproteins, suggesting that the presence of these retinoids in low density lipoproteins does not alter their processing by the cells. Furthermore, the presence of these retinoids in the cells does not notably affect, under our experimental conditions, the catabolism of native low density lipoproteins.  相似文献   

3.
Serum lipoproteins are good carriers for the aromatic retinoid Ro 10-9359 (etretinate) and to a lesser extent for its main metabolite in human Ro 10-1670 (acitretin). Up to about 200 and 130 etretinate molecules and 200 and 70 acitretin molecules can bind to one LDL and one HDL, respectively. In contrast human serum albumin only binds about 10 etretinate or 30 acitretin molecules. In whole human serum loaded with the retinoids, lipoproteins carry approx. 67% of total etretinate or approx. 37% of total acitretin. In the particular case of etretinate, low density lipoproteins account for about 30% of the lipoprotein-carried etretinate.  相似文献   

4.
Biosynthesis of sebaceous gland waxes was studied with the uropygial gland of the white-crowned sparrow as the experimental tissue. A 27,000g particulate preparation from this gland catalyzed reduction of palmitoyl-CoA to hexadecanol at an optimum pH near 5.0 with NADPH as the preferred reductant. At low protein concentrations, palmitoyl-CoA inhibited the reductase and bovine serum albumin prevented this inhibition. An apparent Km of 0.3 mm was calculated for palmitoyl-CoA from linear double-reciprocal plots ignoring the inhibitory concentration of the substrate. An apparent Km of 3 mm was calculated for NADPH from linear double-reciprocal plots. Palmitoyl-CoA reduction was inhibited by thiol directed reagents such as p-chloromercuribenzoate, N-ethylmaleimide, and iodoacetamide. The particulate fraction also catalyzed esterification of hexadecanol with endogenous C16 and C18 acyl moieties with an optimum pH of 7.5. Stimulation of esterification of hexadecanol by ATP and CoA as well as by low concentrations of palmitoyl-CoA suggests that the CoA esters of fatty acids are involved in esterification. Tween-20 stimulated esterification of hexadecanol and hexadecyl dodecanoate was the major wax ester formed in the presence of Tween-20 suggesting that the C12 acid of Tween-20 participated in esterification. Ignoring the inhibitory concentrations of hexadecanol (>0.2 mm), an apparent Km of 0.1 mm was calculated from linear double-reciprocal plots. α-Hydroxylation of palmitic acid was demonstrated in cell-free extracts of the uropygial gland. A 27,000g particulate preparation from the gland catalyzed the reduction of α-hydroxypalmitic acid to hexadecane-1,2-diol with NADPH as the preferred reductant at an optimum pH near 6.5. This reduction required both ATP and CoA, suggesting that α-hydroxyacyl-CoA was the true substrate for the reductase. With stereospecifically labeled NADP3H, it was shown that both acyl-CoA reduction and α-hydroxy acid reduction involved transfer of the hydride specifically from the B-side of the nicotinamide ring of NADPH. Subcellular fractionation using sucrose density gradient centrifugation strongly suggested that the enzymes which catalyzed reduction of palmitoyl-CoA and α-hydroxypalmitic acid as well as the esterification of hexadecanol are localized in the microsomal membranes of the gland.  相似文献   

5.
Cell free preparations of Tetrahymena thermophila contain an enzyme that catalyzes the direct desaturation of stearoyl CoA to octadecenoic acid. The enzyme is associated with the microsomal fraction of the ciliate. Substrate for the enzyme consists of either free stearic acid or stearoyl CoA. Both ATP and CoA are required when free stearate is the substrate and are also highly stimulatory when stearoyl CoA is the substrate. With stearoyl CoA as the substrate, either NADH or NADPH are required for desaturase activity. In the presence of ATP and CoA, either NAD or NADP can replace NADH and NADPH. Desaturase activity is optimal when the enzyme is incubated at a pH of 7.2 and a temperature of 30–35°C. Highest levels of the stearoyl CoA desaturase are found in stationary phase ciliates grown at 35°C.  相似文献   

6.
Investigations on the cholic acid CoA ligase activity of rat liver microsomes were made possible by the development of a rapid, sensitive radiochemical assay based on the conversion of [3H]choloyl-CoA. More than 70% of the rat liver cholic acid CoA ligase activity was associated with the microsomal subcellular fraction. The dependencies of cholic acid CoA ligase activity on pH, ATP, CoA, Triton WR-1339, acetone, ethanol, magnesium, and salts were investigated. The hypothesis that the long chain fatty acid CoA ligase activity and the cholic acid CoA ligase activity are catalyzed by a single microsomal enzyme was investigated. The ATP, CoA, and cholic (palmitic) acid kinetics neither supported nor negated the hypothesis. Cholic acid was not an inhibitor of the fatty acid CoA ligase and palmitic acid was not a competitive inhibitor of the cholic acid CoA ligase. The cholic acid CoA ligase activity utilized dATP as a substrate more effectively than did the fatty acid CoA ligase activity. The cholic acid and fatty acid CoA ligase activities appeared to have different pH dependencies, differed in thermolability at 41 degrees, and were differentially inactivated by phospholipase C. Moreover, fatty acid CoA ligase activity was present in microsomal fractions from all rat organs tested while cholic acid CoA ligase activity was detected only in liver microsomes. The data suggest that separate microsomal enzymes are responsible for the cholic acid and the fatty acid CoA ligase activities in liver.  相似文献   

7.
When leukotriene B4 (LTB4) was incubated with rat liver microsomal fraction in the presence of coenzyme A (CoA) and ATP, a more polar product (compound I) was detected on reverse-phase high-performance liquid chromatography (RP-HPLC). The product was identified as LTB4-CoA ester on the basis of ultraviolet spectrometry, alkaline hydrolysis followed by RP-HPLC, and fast atom bombardment mass spectrometry (FAB-MS). The activity forming LTB4-CoA ester was localized in the microsomal fraction. The reaction was proportional to the concentration of the microsomal protein with an optimal pH of 7.5-8.0 and completely dependent on CoA and ATP. Palmitic acid and myristic acid significantly inhibited the formation.  相似文献   

8.
Cell free preparations of Tetrahymena thermophila contain an enzyme that catalyzes the direct desaturation of stearoyl CoA to octadecenoic acid. The enzyme is associated with the microsomal fraction of the ciliate. Substrate of the enzyme consists of either free stearic acid or stearoyl CoA. Both ATP and CoA are required when free stearate is the substrate and are also highly stimulatory when stearoyl CoA is the substrate. With stearoyl CoA as the substrate, either NADH or NADPH are required for desaturase activity. In presence of ATP and CoA, either NAD or NADP can replace NADH and NADPH. Desaturase activity is optimal when the enzyme is incubated at pH of 7.2 and a temperature of 30-35 degrees C. Highest levels of the stearoyl CoA desaturase are found in stationary phase ciliates grown at 35 degrees C.  相似文献   

9.
The effect of ethanol on [14C]pantothenate incorporation into CoA and on total CoA levels was measured in 3-day-old primary cultures of adult rat liver parenchymal cells. Ethanol decreased the incorporation of radioactivity into CoA a maximum of 67%, 5 mm ethanol was saturating for the inhibitory effect and 0.2 mm ethanol was sufficient for half-saturation. This inhibitory effect did not result from a loss of CoA precursors or from cell death. Ethanol concentrations up to 10 mm did not decrease the ATP content of cells or the total protein content of cells which adhered to the incubation flask. Ethanol (5 mm) had no effect on the cyteine + cystine content of the cells. Intracellular pantothenate concentrations were not affected by 5 mm ethanol, and increasing the pantothenate concentration did not affect ethanol inhibition. Ethanol inhibition of [14C]pantothenate conversion to CoA could be fully reversed by rinsing the cells free of ethanol. The ethanol inhibition could also be fully reversed by addition of 4-methylpyrazole, indicating that ethanol must be oxidized via alcohol dehydrogenase to exert its inhibitory effect. Acetaldehyde, the immediate product of alcohol dehydrogenase, was also an inhibitor of the incorporation of [14C]pantothenate into CoA; the maximum inhibition was 63%. Acetaldehyde concentrations maintained between 18 and 103 μm inhibited incorporation by 57%. The inhibition by acetaldehyde did not correlate well with changes in the NADH and NAD+ ratio of the cells (as determined by measuring changes in the lactate-to-pyruvate ratio). The ability of glucagon, dibutyryl cAMP + theophylline, or dexamethasone to stimulate [14C]pantothenate conversion to CoA was not decreased by the addition of ethanol or acetaldehyde, indicating that ethanol inhibition does not occur by reversal of the cAMP-mediated regulatory mechanism for CoA biosynthesis.  相似文献   

10.
Abstract— The enzymes for the biosynthesis of phosphatidic acid from acyl dihydroxyacetone phosphate were shown to be present in rat brain. These enzymes were mainly localized in the microsomal fraction of 12–14 day old rat brains. The brain microsomal acyl CoA: dihydroxyacetone phosphate acyl transferase (EC 2.3.1.42), exhibited a broad pH optimum between pH 5 and 9 with maximum activity at pH 5.4. K m for DHAP at pH 5.4 was 0.1 m m and V max was 0.86nmol/min/mg of microsomal protein. The corresponding microsomal enzyme for the glycerophosphate pathway (acyl CoA: sn -glycerol-3-phosphate acyl transferase EC 2.3.1.15) was shown to have a different pH optimum (pH 7.6). On the basis of the differences in pH optima, differential effects of sodium cholate in the enzymes and a common substrate competition study, these acyl transferases were postulated to be two different microsomal enzymes.
Acyl DHAP:NADPH oxidoreductase (EC 1.1.1.101) in brain microsomes was found to be quite specific for NADPH as cofactor, being able to utilize NADH only at very high concentrations. This enzyme exhibited a K m of 8.6 μ m with NADPH and V mx of 0.81 nmol/min/mg protein. The presence of these two enzymes and the known presence of l-acyl- sn -glycerol-3-phosphate: acyl CoA acyl transferase in brain (F leming & H ajra , 1977) demonstrated the biosynthesis of phosphatidic acid in brain via acyl dihydroxyacetone phosphate. Phosphatidic acid was shown to form when dihydroxyacetone phosphate, acyl CoA, NADPH and other cofactors were incubated together with brain microsomes. Further properties of the enzymes and the probable importance of the presence of this pathway in brain were discussed.  相似文献   

11.
The microbial metabolism of thiophen-2-carboxylate   总被引:2,自引:2,他引:0  
1. An organism was isolated by enrichment culture that was capable of using thiophen-2-carboxylate as sole source of carbon, energy and sulphur for growth. 2. Analysis of the cellular protein after growth of the organism on thiophen-2-[14C]carboxylate showed that only glutamate, proline and arginine were labelled. All the radioactivity in the glutamate was confined to C-1. 3. In the presence of 2.1 mm-arsenite, suspensions of the organism converted thiophen-2-[14C]carboxylate into 14C-labelled 2-oxoglutarate which had the same specific radioactivity as the starting material. 4. Cell-free extracts of the organism catalysed the release of 14CO2 from thiophen-2-[14C]carboxylate. This activity was largely dependent on the presence of ATP and CoA and was stimulated by NAD+ and Mg2+. Inclusion of hydroxylamine resulted in the appearance of thiophen-2-carbohydroxamic acid, indicating that the ATP and CoA were involved in the formation of the CoA ester of thiophen-2-carboxylate. 5. High-speed centrifuging of cell-free extracts resulted in supernatants with decreased thiophen-2-carboxylate-degrading activity. Activity was restored by the addition of the high-speed pellet or by Methylene Blue. 6. The metabolism of the CoA ester of thiophen-2-carboxylate by cell-free extracts could be linked to the anaerobic reduction of Methylene Blue. 7. The sulphur atom of the thiophen nucleus was converted into sulphate by growing cultures and resting suspensions of the organism. 8. A degradative pathway is proposed involving the hydroxylation (at C-5) of the CoA ester of thiophen-2-carboxylate followed by further metabolism to 2-oxoglutarate and sulphate.  相似文献   

12.
Rabbit, pigeon and rat liver mitochondria convert exogenous phosphoenolpyruvate and acetylcarnitine to citrate at rates of 14, 74 and 8 nmol/15 min/mg protein. Citrate formation is dependent on exogenous HCO3, is increased consistently by exogenous nucleotides (GDP, IDP, GTP, ADP, ATP) and inhibited strongly by 3-mercaptopicolinate and 1,2,3-benzenetricar☐ylate. Citrate is not made from pyruvate alone or combined with acetylcarnitine. Pigeon and rat liver mitochondria make large amounts of citrate from exogenous succinate, suggesting the presence of an endogenous source of acetyl units or a means of converting oxalacetate to acetyl units. Citrate synthesis from succinate by pigeon and rabbit mitochondria is increased significantly by exogenous acetylcarnitine. Pigeon and rat liver contain 80 and 15 times, respectively, more ATP:citrate lyase activity than does rabbit liver. Data suggest that mitochondrial phosphoenolpyruvate car☐ykinasein vivo could convert glycolysis-derived phosphoenolpyruvate to oxalacetate that, with acetyl CoA, could form citrate for export to support cytosolic lipogenesis as an activator of acetyl CoA car☐ylase, a carbon source via ATP:citrate lyase and NADPH via NADP: malate dehydrogenase or NADP: isocitrate dehydrogenase.  相似文献   

13.
Homogenates of rabbit ventricular myocardium synthesize fatty acid ethyl esters using as substrates nonesterified fatty acid and ethanol in the absence of coenzyme A and ATP. This catalytic activity resides in two soluble cytosolic enzymes accounting for 19 and 81% of total fatty acid ethyl ester synthetic capability. These enzymes have been separated and partially purified by anion exchange chromatography. Gas chromatographic/mass spectrometric analyses of the catalytic products formed by these enzymes from nonesterified fatty acid and ethanol confirm their identity as ethyl esters of fatty acids. Kinetic studies indicate apparent Km values for ethanol of 0.65 M and 0.75 M for the minor and major activities, respectively. These data confirm the presence of a myocardial pathway for nonoxidative ethanol metabolism and for a metabolism of fatty acids independent of coenzyme A.  相似文献   

14.
Two enzymes of polyisoprenoid synthesis, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase (mevalonate:NADP oxidoreductase [acylating CoA], EC 1.1.1.34) and mevalonate kinase (ATP:mevalonate 5-phosphotransferase, EC 2.7.1.36), are present in the microsomal and soluble fractions of Neurospora crassa, respectively. HMG CoA reductase specifically uses NADPH as reductant and has a K(m) for dl-HMG CoA of 30 micro M. The activities of HMG CoA reductase and mevalonate kinase are low in conidia and increase threefold during the first 12 hr of stationary growth. Maximum specific activities of both enzymes occur when aerial hyphae and conidia first appear (2 days), but total activities peak later (3-4 days). Addition to the growth media of ergosterol or beta-carotene, alone or in combination, does not affect the specific or total activity of either enzyme. The mevalonate kinase of N. crassa, purified 200-fold to a specific activity of 5 micro moles/min/mg, is free from HMG CoA reductase, phosphomevalonate kinase, ATPase, adenylate kinase, and NADH oxidase activities. Mevalonate kinase specifically requires ATP as cosubstrate and exhibits a marked preference for Mg(2+) over Mn(2+), especially at high ratios of divalent metal ion to ATP. Kinase activity is inhibited by p-hydroxymercuribenzoate, and this inhibition is partially prevented by mevalonate or MgATP. Optimum activity occurs at pH 8.0-8.5 and at about 55 degrees C. The Neurospora kinase, like that of hog liver, has a sequential mechanism for substrate addition. The Michaelis constants obtained were 2.8 mM for dl-mevalonate and 1.8 mM for MgATP(-2). Geranyl pyrophosphate is an inhibitor competitive with MgATP (K(i) = 0.11 mM).  相似文献   

15.
Preparations of rat lung microsomes containing 0.030-0.050 nmole of cytochromes P-450 and b5 per mg microsomal protein have been observed to contain significant levels of fatty acid desaturase activity. Both stearoyl CoA and palmitoyl CoA are desaturated to their monounsaturated analogues, oleic acid and palmitoleic acid, respectively. Activity (per mg microsomal protein) of the lung preparations varied according to the diet of the animals prior to killing in the order: fat free diet greater than normal rat chow greater than starvation. All preparations exhibited approximately 50% inhibition when incubated in the presence of 0.10 mM CN-. Maximal activity was obtained with the 0.50 mM NADH less activity with equal amounts of NADPH, and there was no synergistic interaction of NADH and NADPH together. The rate of desaturation was linear with protein concentrations between 0.15-1.5 mg microsomal protein/incubation at incubation times up to 8 min. A pH optimum range of 7.0-7.4 was observed. For all variables of fatty acid desaturase activity which were examined, the rate of desaturation of stearoyl CoA was approximately twice that for palmitoyl CoA. These results indicate that the same fatty acid desaturation system which is functional in the liver is also present in significant amounts in mammalian lungs.  相似文献   

16.
This laboratory has recently reported that, in a reconstituted enzyme system containing alcohol-induced isozyme 3a of liver microsomal cytochrome P-450, the sum of acetaldehyde generated by the monooxygenation of ethanol and of hydrogen peroxide produced by the NADPH oxidase activity is inadequate to account for the O2 and NADPH consumed. Studies on the stoichiometry have revealed the occurrence of an additional reaction involving an overall 4-electron transfer to molecular oxygen which is presumed to yield water: O2 + 2 NADPH + 2H+----2 H2O + 2 NADP+. The occurrence of a peroxidase reaction in which free H2O2 is reduced to water by NADPH was ruled out. When the 4-electron oxidase activity is taken into account, measurements of NADPH oxidation and O2 consumption are in accord with the amounts of products formed in the presence of various P-450 isozymes, either in the absence or presence of typical substrates, including those which undergo hydroxylation, N- or O-demethylation, or oxidation of hydroxymethyl to aldehyde groups. Of the substrates examined, some had no effect on the oxidase reaction yielding hydrogen peroxide or the 4-electron oxidase reaction, some were inhibitory, and some were stimulatory, but the same substrate did not necessarily have the same effect on the two reactions.  相似文献   

17.
It was found that in the livers of db/db mice with hyperinsulinemia, obesity and non-insulin-dependent diabetes the rates of cholesterol biosynthesis from pyruvate and, to a lesser extent, from acetate and mevalonate as well as of cholesterol ester biosynthesis from pyruvate (but not from acetate and mevalonate) are increased. Presumably, the observed changes are mediated by structural alterations in the CoA reserves, i.e., increase of free CoA to short-chain acyl-CoA and free CoA to long-chain fatty acyl-CoA indices, and of the ratio between enzymatic activities of generation and utilization of NADPH. Treatment of db/db mice with phosphopantothenate, besides eliciting changes in the CoA reserves structure towards normalization and inhibition of NADP-dependent dehydrogenases and pyruvate and 2-oxoglutarate dehydrogenase complexes, causes the diminution of cholesterol and its ester levels in the liver in the absence of any conspicuous changes in the rates of their biosynthesis from pyruvate.  相似文献   

18.
《Biochemical medicine》1981,25(2):160-167
The metabolism of d- and l-3-hydroxybutyrate by neonatal and suckling rats was investigated. Both isomers of 3-hydroxybutyrate were incorporated into hepatic lipid, amino acids, and protein throughout the developmental period. The enzyme activities of liver 3-oxo-CoA transferase and brain 3-hydroxybutyrate dehydrogenase were compared during the first 3 postnatal weeks. The results suggest that the enzymatic activity of liver 3-oxo-CoA transferase is sufficient to account for a major portion of the d-isomer incorporation. The production of CO2 by rat liver was greater from d-3-hydroxybutyrate than that measured from the l-isomer. The in vitro oxidation of both the d- and l-isomers by rat liver was stimulated by ATP + CoA or by GTP + CoA which suggests that their utilization may also be mediated by acyl-CoA synthetase enzymes.  相似文献   

19.
The specific activity of chicken liver pyruvate carboxylase has been shown to decrease with decreasing enzyme concentration, even at 100 microM, which is close to the estimated physiological concentration. The kinetics of the loss of enzyme specific activity following dilution were biphasic. Incubation of dilution-inactivated enzyme with ATP, acetyl CoA, Mg2+ + ATP or, to a lesser degree, with Mg2+ alone resulted in a high degree of reactivation, while no reactivation occurred in the presence of pyruvate. The association state of the enzyme before, during, and after dilution inactivation has been assessed by gel filtration chromatography. These studies indicate that on dilution, there is dissociation of the catalytically active tetrameric enzyme species into inactive dimers. Reactivation of the enzyme resulted in reassociation of enzymic dimers into tetramers. The enzyme was shown to form high molecular weight aggregates at high enzyme concentrations.  相似文献   

20.
Phosphorylation and inactivation of acetyl-coenzyme A (CoA) carboxylase by acetyl-CoA carboxylase kinase in the presence of ATP and Mg2+ requires coenzyme A. Coenzyme A did not enhance the phosphorylation of alternative substrates of the carboxylase kinase such as protamine or histones. Analogs of coenzyme A were also effective in stimulating the inactivation of carboxylase. The KA of CoA for stimulated carboxylase inactivation was 25 microM. The presence of coenzyme A did not alter the Km of the carboxylase kinase for its substrates, ATP and acetyl-CoA carboxylase. Fluorescence binding studies showed that CoA binds to carboxylase but not to the kinase. The KD of CoA binding to carboxylase is 27 microM. These results indicate that coenzyme A, acting on acetyl-CoA carboxylase, may play an important role in the regulation of the covalent modification mechanism for acetyl-CoA carboxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号