首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sleep-wakefulness patterns in dogs were studied using computerized on-line power spectral analysis and off-line automatic stage-classification during control recordings and after oral treatment with three doses of the specific dopamine blocker pimozide. A biphasic effect on sleep-wakefulness patterns was found. At 0.016 mg/kg (the ED50-value for the antagonism of apomorphine-induced vomiting in dogs), pimozide significantly increased the time spent awake, and significantly decreased slow wave sleep and REM sleep. No significant effects were obtained with a four times higher dose of pimozide. At 0.16 mg/kg, pimozide significantly decreased the time spent awake and significantly increased slow wave sleep and REM sleep. The effects appear the opposite of those described for apomorphine and suggest that dopamine plays a role in the physiology of sleep-wakefulness regulation.  相似文献   

2.
Classical analysis of the spontaneous sleep EEG has revealed alterations of REM sleep in psychiatric diseases and under the influence of drugs. In order to elucidate possible functional differences between different REM episodes even in healthy subjects we investigated in 10 volunteers the transfer properties of the brain by measuring auditory (AEP) and visual evoked potentials (VEP) from scalp positions Fz, Cz and Pz during the night. According to linear system theory we computed the so-called amplitude-frequency characteristics (AFC) from averaged AEPs and VEPs during the first and each of the following 3 REM episodes. These functions describe the relationship between the input and output of the investigated system. A 3-factorial analysis of variances with the independent factors frequency band, REM episode and electrode position revealed a statistically significant main effect for the factor REM episode under auditory stimulation (P = 0.05), whereas no significant main effect for REM episode was found under visual stimulation (P = 0.88). Applying a 2-factorial analysis of variance with the independent factors REM episode and electrode position in the case of auditory stimulation we could demonstrate a statistically significant main effect (P = 0.029) for the factor REM episode in the beta range (12.5–20 Hz). A subsequent analysis of contrasts revealed that the first REM episodes could be differentiated from each other. For auditory stimulation the beta resonance during the first REM episode appears enhanced compared to each of the later REM episodes. These findings point to a functional difference of the brain's transfer functions between the first and the 3 following REM episodes, indicating different information processing during consecutive paradoxical sleep.  相似文献   

3.
Summary Sleep was studied by continuous 24-h recordings in adult male Syrian hamsters, chronically implanted with EEG and EMG electrodes. Three vigilance states were determined using visual scoring and EEG power spectra (0.25–25 Hz) computed for 4-s episodes.The effects of two methods of total sleep deprivation (SD) were examined on vigilance states and the EEG power spectrum. The animals were subjected to 24 h SD by: (1) forced locomotion in a slowly rotating drum, (2) gentle handling whenever the hamsters attempted a sleeping posture. In addition, the hamsters were subjected to SD by handling during the first 3 h of the L period.Sleep predominated in the L period (78.2% of 12 h) and the D period (51.2%). The power spectra of the 3 vigilance states were similar during the L and D period. In NREM sleep, power density values in the low frequency range (0.25–6.0 Hz) exceeded those of REM sleep and W by a maximum factor of 8.3 and 2.8, respectively. At frequencies above 16 Hz, NREM and REM sleep power density values were significantly lower than during W. A progressive decrease in power density for low EEG frequencies (0.25–7 Hz) during NREM sleep was seen in the course of the L period. Power density values of higher frequencies (8–25 Hz) increased at the end of the L period and remained high during the first hours of the D period.The effect of prolonged SD on vigilance states and EEG spectra was similar by both methods and strikingly small compared to similar results in rats. In contrast, 3 h SD induced a large and more prolonged effect. The similarities and differences of sleep and sleep regulation are summarized for the hamster, rat and man.Abbreviations EEG electroencephalogram - LD light dark - REM rapid eye movements - NREM sleep non REM sleep - W waking - SD sleep deprivation - TST total sleep time - L light - D dark  相似文献   

4.
The Djungarian hamster (Phodopus sungorus) is a markedly photoperiodic rodent which exhibits daily torpor under short photoperiod. Normative data were obtained on vigilance states, electroencephalogram (EEG) power spectra (0.25–25.0 Hz), and cortical temperature (TCRT) under a 168 h light-dark schedule, in 7 Djungarian hamsters for 2 baseline days, 4 h sleep deprivation (SD) and 20 h recovery.During the baseline days total sleep time amounted to 59% of recording time, 67% in the light period and 43% in the dark period. The 4 h SD induced a small increase in the amount of non-rapid eye movement (NREM) sleep and a marked increase in EEG slow-wave activity (SWA; mean power density 0.75–4.0 Hz) within NREM sleep in the first hours of recovery. TCRT was lower in the light period than in the dark period. It decreased at transitions from either waking or rapid eye movement (REM) sleep to NREM sleep, and increased at the transition from NREM sleep to waking or REM sleep. After SD, TCRT was lower in all vigilance states.In conclusion, the sleep-wake pattern, EEG spectrum, and time course of TCRT in the Djungarian hamster are similar to other nocturnal rodents. Also in the Djungarian hamster the time course of SWA seems to reflect a homeostatically regulated process as was formulated in the two-process model of sleep regulation.Abbreviations EEG electroencephalogram - EMG electromyogram - N NREM sleep - NREM non-rapid eye movement - R REM sleep - REM rapid eye movement - SD sleep deprivation - SWA slow-wave activity - TCRT cortical temperature - TST total sleep time - VS vigilance state - W waking  相似文献   

5.
Several studies show increases in activity for certain frequency bands (10–14 Hz) and visually scored parameters during sleep after exposure to radiofrequency electromagnetic fields. A shortened REM latency has also been reported. We investigated the effects of a double‐blind radiofrequency exposure (884 MHz, GSM signaling standard including non‐DTX and DTX mode, time‐averaged 10 g psSAR of 1.4 W/kg) on self‐evaluated sleepiness and objective EEG measures during sleep. Forty‐eight subjects (mean age 28 years) underwent 3 h of controlled exposure (7:30–10:30 PM; active or sham) prior to sleep, followed by a full‐night polysomnographic recording in a sleep laboratory. The results demonstrated that following exposure, time in Stages 3 and 4 sleep (SWS, slow‐wave sleep) decreased by 9.5 min (12%) out of a total of 78.6 min, and time in Stage 2 sleep increased by 8.3 min (4%) out of a total of 196.3 min compared to sham. The latency to Stage 3 sleep was also prolonged by 4.8 min after exposure. Power density analysis indicated an enhanced activation in the frequency ranges 0.5–1.5 and 5.75–10.5 Hz during the first 30 min of Stage 2 sleep, with 7.5–11.75 Hz being elevated within the first hour of Stage 2 sleep, and bands 4.75–8.25 Hz elevated during the second hour of Stage 2 sleep. No pronounced power changes were observed in SWS or for the third hour of scored Stage 2 sleep. No differences were found between controls and subjects with prior complaints of mobile phone‐related symptoms. The results confirm previous findings that RF exposure increased the EEG alpha range in the sleep EEG, and indicated moderate impairment of SWS. Furthermore, reported differences in sensitivity to mobile phone use were not reflected in sleep parameters. Bioelectromagnetics 32:4–14, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
To investigate the influence of radiofrequency electromagnetic fields (EMFs) of cellular phone GSM signals on human sleep electroencephalographic (EEG) pattern, all-night polysomnographies of 24 healthy male subjects were recorded, both with and without exposure to a circular polarized EMF (900 MHz, pulsed with a frequency of 217 Hz, pulse width 577 μs, power flux density 0.2 W/m2. Suppression of rapid eye movement (REM) sleep as well as a sleep-inducing effect under field exposure did not reach statistical significance, so that previous results indicating alterations of these sleep parameters could not be replicated. Spectral power analysis also did not reveal any alterations of the EEG rhythms during EMF exposure. The failure to confirm our previous results might be due to dose-dependent effects of the EMF on the human sleep profile. Bioelectromagnetics 19:199–202, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
BackgroundNormal sleep continuity and architecture show remarkable inter-individual variability. Previous studies suggest that brain morphology may explain inter-individual differences in sleep variables.MethodThirty-eight healthy subjects spent two consecutive nights at the sleep laboratory with polysomnographic monitoring. Furthermore, high-resolution T1-weighted MRI datasets were acquired in all participants. EEG sleep recordings were analyzed using standard sleep staging criteria and power spectral analysis. Using the FreeSurfer software for automated segmentation, 174 variables were determined representing the volume and thickness of cortical segments and the volume of subcortical brain areas. Regression analyses were performed to examine the relationship with polysomnographic and spectral EEG power variables.ResultsThe analysis did not provide any support for the a-priori formulated hypotheses of an association between brain morphology and polysomnographic variables. Exploratory analyses revealed that the thickness of the left caudal anterior cingulate cortex was positively associated with EEG beta2 power (24–32 Hz) during REM sleep. The volume of the left postcentral gyrus was positively associated with periodic leg movements during sleep (PLMS).ConclusionsThe function of the anterior cingulate cortex as well as EEG beta power during REM sleep have been related to dreaming and sleep-related memory consolidation, which may explain the observed correlation. Increased volumes of the postcentral gyrus may be the result of increased sensory input associated with PLMS. However, due to the exploratory nature of the corresponding analyses, these results have to be replicated before drawing firm conclusions.  相似文献   

8.
The sleep electroencephalogram (EEG) is highly heritable in humans and yet little is known about the genetic basis of inter-individual differences in sleep architecture. The aim of this study was to identify associations between candidate circadian gene variants and the polysomnogram, recorded under highly controlled laboratory conditions during a baseline, overnight, 8 h sleep opportunity. A candidate gene approach was employed to analyze single-nucleotide polymorphisms from five circadian-related genes in a two-phase analysis of 84 healthy young adults (28 F; 23.21 ± 2.97 years) of European ancestry. A common variant in Period2 (PER2) was associated with 20 min less slow-wave sleep (SWS) in carriers of the minor allele than in noncarriers, representing a 22% reduction in SWS duration. Moreover, spectral analysis in a subset of participants (n = 37) showed the same PER2 polymorphism was associated with reduced EEG power density in the low delta range (0.25–1.0 Hz) during non-REM sleep and lower slow-wave activity (0.75–4.5 Hz) in the early part of the sleep episode. These results indicate the involvement of PER2 in the homeostatic process of sleep. Additionally, a rare variant in Melatonin Receptor 1B was associated with longer REM sleep latency, with minor allele carriers exhibiting an average of 65 min (87%) longer latency from sleep onset to REM sleep, compared to noncarriers. These findings suggest that circadian-related genes can modulate sleep architecture and the sleep EEG, including specific parameters previously implicated in the homeostatic regulation of sleep.  相似文献   

9.
Recent studies have reported that dim light at night (dLAN) is associated with risks of cardiovascular complications, such as hypertension and carotid atherosclerosis; however, little is known about the underlying mechanism. Here, we evaluated the effect of dLAN on the cerebrovascular system by analyzing cerebral hemodynamic oscillations using near-infrared spectroscopy (NIRS). Fourteen healthy male subjects underwent polysomnography coupled with cerebral NIRS. The data collected during sleep with dim light (10 lux) were compared with those collected during sleep under the control dark conditions for the sleep structure, cerebral hemodynamic oscillations, heart rate variability (HRV), and their electroencephalographic (EEG) power spectrum. Power spectral analysis was applied to oxy-hemoglobin concentrations calculated from the NIRS signal. Spectral densities over endothelial very-low-frequency oscillations (VLFOs) (0.003–0.02 Hz), neurogenic VLFOs (0.02–0.04 Hz), myogenic low-frequency oscillations (LFOs) (0.04–0.15 Hz), and total LFOs (0.003–0.15 Hz) were obtained for each sleep stage. The polysomnographic data revealed an increase in the N2 stage under the dLAN conditions. The spectral analysis of cerebral hemodynamics showed that the total LFOs increased significantly during slow-wave sleep (SWS) and decreased during rapid eye movement (REM) sleep. Specifically, endothelial (median of normalized value, 0.46 vs. 0.72, p = 0.019) and neurogenic (median, 0.58 vs. 0.84, p = 0.019) VLFOs were enhanced during SWS, whereas endothelial VLFOs (median, 1.93 vs. 1.47, p = 0.030) were attenuated during REM sleep. HRV analysis exhibited altered spectral densities during SWS induced by dLAN, including an increase in very-low-frequency and decreases in low-frequency and high-frequency ranges. In the EEG power spectral analysis, no significant difference was detected between the control and dLAN conditions. In conclusion, dLAN can disturb cerebral hemodynamics via the endothelial and autonomic systems without cortical involvement, predominantly during SWS, which might represent an underlying mechanism of the increased cerebrovascular risk associated with light exposure during sleep.  相似文献   

10.
The effects of a prolonged cognitive task prior to sleep onset on subsequent sleep patterns were examined in 14 healthy subjects who were randomly assigned to two conditions. Those assigned to a working condition were asked to engage in a prolonged cognitive task until close to bedtime (0200 hours), whereas those assigned to a relaxing condition were instructed to perform the same task during the daytime and then to stay awake in a relaxed state until the same bedtime as the work group. Visual scoring of sleep stages showed no significant differences in the amounts of stage 4 and slow wave sleep (stage 3+4) between the two conditions. Power spectrum analysis of sleep electroencephalogram (EEG) revealed that the EEG (0.5–4.0 Hz) power density in the first non-rapid eye movement (REM)-REM sleep cycle was significantly lower following the prolonged cognitive task prior to sleep onset than following the relaxed wakefulness and that the decreased EEG power density in the first sleep cycle was not compensated for during the later part of the sleep. These findings would indicate that the prolonged cognitive task prior to sleep onset may suppress EEG power density during subsequent sleep, suggesting that such a task may interfere with the development of deep non-REM sleep.  相似文献   

11.
The foetal sheep brain develops organised sleep states from 115-120 d gestational age (dGA, term 150 dGA) alternating between REM and NREM sleep. We aimed to investigate whether maturation of REM or NREM sleep generating structures leads to the development of distinct sleep states. The electrocorticogram (ECoG) was recorded from five unanaesthetised chronically instrumented foetal sheep in utero and was analysed every 5th day between 115-130 dGA by two different non-linear methods. We calculated a non-linear prediction error which quantifies the causality of the ECoG and applied bispectral analysis which quantifies non-linear interrelations of single frequency components within the ECoG signal. The prediction error during REM sleep was significantly higher than during NREM sleep at each investigated age (P<0.0001) coincidental with poor organisation of the rhythmic pattern in the ECoG during REM sleep. At 115 dGA, organised sleep states defined behaviourally were not developed yet. The prediction error, however, showed already different states of electrocortical activity that were not detectable using power spectral analysis. The prediction error of the premature NREM sleep ECoG decreased significantly during emergence of organised sleep states between 115 and 120 dGA and continued to decrease after the emergence of distinct sleep states (P<0.05). The prediction error of the premature REM sleep ECoG did not change until 120 dGA and began to increase at 125 dGA (P<0.05). Using bispectral analysis, we showed couplings between delta waves (1.5-4 Hz) and frequencies in the range of spindle waves (4-8 and 8-12 Hz) during NREM sleep that became closer during development. The results show that maturation of ECoG synchronisation mediating structures is important for the development of organised sleep states. The further divergence of the prediction error of NREM and REM sleep after development of organised sleep states reveals continuous functional development. Thus, complementary application of non-linear ECoG analysis to power spectral analysis provide new insights in the collective behaviour of the neuronal network during the emergence of sleep states.  相似文献   

12.
To asses the influence of photoperiod on sleep regulation EEG, EMG, and cortical temperature were continuously recorded for two baseline days and after 4 h sleep deprivation in Djungarian hamsters (Phodopus sungorus) adapted to a short photoperiod (light dark 816). Comparison to previous data collected in a long photoperiod (lightdark 168) showed several major effects of photoperiod: 1. A prominent change in the 24-h distribution, duration and number of vigilance state episodes, whereas the total amount of sleep and waking was unchanged; 2. Cortical temperature was 0.7°C lower in the short photoperiod; 3. There was a significant negative correlation between cortical temperature and the frequency of REM sleep episodes; and 4. Absolute EEG power density showed a marked reduction in the short photoperiod. After sleep deprivation EEG slow-wave activity (mean power density 0.75–4.0 Hz) in NREM sleep showed a remarkably similar increase in both photoperiods demonstrating the robustness of the homeostatic regulation of sleep. Cortical temperature remained above baseline values after sleep deprivation in the short photoperiod whereas a negative rebound was present in the long photoperiod. Our results support the hypothesis that cortical temperature has a strong influence on REM sleep propensity and indicate the possibility of an optimum cortical temperature for recovery sleep after sleep deprivation. The lower EEG power density in the short photoperiod may contribute to energy conservation.Abbreviations LP long photoperiod - NREM non-rapid-eye-movement - REM rapid-eye-movement - SCN suprachiasmatic nucleus - SD sleep deprivation - SP short photoperiod - SWA slow-wave activity - T CRT cortical temperature  相似文献   

13.
Circadian misalignment affects total sleep time, but it may also affect sleep architecture. The objectives of this study were to examine intra-individual effects of circadian misalignment on sleep architecture and inter-individual relationships between sleep stages, cortisol levels and insulin sensitivity. Thirteen subjects (7 men, 6 women, age: 24.3±2.5 y; BMI: 23.6±1.7 kg/m2) stayed in a time blinded respiration chamber during three light-entrained circadian cycles (3x21h and 3x27h) resulting in a phase advance and a phase delay. Sleep was polysomnographically recorded. Blood and salivary samples were collected to determine glucose, insulin and cortisol concentrations. Intra-individually, a phase advance decreased rapid eye movement (REM) sleep and slow-wave sleep (SWS), increased time awake, decreased sleep and REM sleep latency compared to the 24h cycle. A phase delay increased REM sleep, decreased stage 2 sleep, increased time awake, decreased sleep and REM sleep latency compared to the 24h cycle. Moreover, circadian misalignment changed REM sleep distribution with a relatively shorter REM sleep during the second part of the night. Inter-individually, REM sleep was inversely associated with cortisol levels and HOMA-IR index. Circadian misalignment, both a phase advance and a phase delay, significantly changed sleep architecture and resulted in a shift in rem sleep. Inter-individually, shorter REM sleep during the second part of the night was associated with dysregulation of the HPA-axis and reduced insulin sensitivity. Trial Registration: International Clinical Trials Registry Platform NTR2926 http://apps.who.int/trialsearch/  相似文献   

14.

Background

Previous studies have observed an altitude-dependent increase in central apneas and a shift towards lighter sleep at altitudes >4000 m. Whether altitude-dependent changes in the sleep EEG are also prevalent at moderate altitudes of 1600 m and 2600 m remains largely unknown. Furthermore, the relationship between sleep EEG variables and central apneas and oxygen saturation are of great interest to understand the impact of hypoxia at moderate altitude on sleep.

Methods

Fourty-four healthy men (mean age 25.0±5.5 years) underwent polysomnographic recordings during a baseline night at 490 m and four consecutive nights at 1630 m and 2590 m (two nights each) in a randomized cross-over design.

Results

Comparison of sleep EEG power density spectra of frontal (F3A2) and central (C3A2) derivations at altitudes compared to baseline revealed that slow-wave activity (SWA, 0.8–4.6 Hz) in non-REM sleep was reduced in an altitude-dependent manner (∼4% at 1630 m and 15% at 2590 m), while theta activity (4.6–8 Hz) was reduced only at the highest altitude (10% at 2590 m). In addition, spindle peak height and frequency showed a modest increase in the second night at 2590 m. SWA and theta activity were also reduced in REM sleep. Correlations between spectral power and central apnea/hypopnea index (AHI), oxygen desaturation index (ODI), and oxygen saturation revealed that distinct frequency bands were correlated with oxygen saturation (6.4–8 Hz and 13–14.4 Hz) and breathing variables (AHI, ODI; 0.8–4.6 Hz).

Conclusions

The correlation between SWA and AHI/ODI suggests that respiratory disturbances contribute to the reduction in SWA at altitude. Since SWA is a marker of sleep homeostasis, this might be indicative of an inability to efficiently dissipate sleep pressure.  相似文献   

15.
Electroencephalographic recordings in cirrhotic patients without overt hepatic encephalopathy (HE) have mainly been performed during wakefulness. Our aim was to quantify their alterations in nocturnal sleep electroencephalogram (EEG). In 20 patients and 20 healthy volunteers, we recorded a nocturnal digital polysomnography. Different sleep parameters were measured. Besides, we performed quantitative analysis of EEG (qEEG) as follows: spectral power in the different sleep stages was calculated in the frequency bands low δ, δ, θ, α, and σ. Also, the mean dominant frequency and Sleep Indexes were obtained. In comparison with controls, the group of patients showed (1) different alterations in both the microstructure and the macrostructure of sleep; (2) an increase in, both, θ band power and the average mean dominant frequency during rapid eye movement (REM); (3) in all sleep stages, a decrease of sleep electroencephalogram spectral power in low δ band and an increase in δ band: and (4) in stages N3 and REM, significant increases in the minimum of mean dominant frequency and in the respective sleep indexes. Therefore, in cirrhotic patients without overt HE, and likely having minimal hepatic encephalopathy, we found different alterations in both the microstructure and the macrostructure of nocturnal sleep. Also, sleep qEEG showed a brain dysfunction in slow oscillatory mechanisms intrinsic of sleep stages, with an increase in the frequency of its maximal electroencephalogram synchronization, from low δ to δ band. These alterations may reflect the onset of encephalopathy; sleep qEEG may, thus, be an adequate tool for its brain functional evaluation and follow-up.  相似文献   

16.
The main goal of the present study was to explore electrophysiological differences between lucid and nonlucid dreams in REM sleep. Seven men and four women experienced in lucid dreaming underwent polysomnographic recordings in the sleep laboratory on two consecutive nights. EEG signals were subjected to spectral analysis to obtain five different frequency bands between 1 and 20 Hz. Lucidity was determined by both subjective dream reports and eye-movement signals made by the subjects in response to light stimuli indicating a REM period. The main discrimination factor between lucid and nonlucid dreaming was found in the beta-1 frequency band (13-19 Hz), which in lucid dreaming was increased in both parietal regions. The ratio of frontal to parietal beta-1 activity was 1 to 1.16 in nonlucid and 1 to 1.77 in lucid dreaming. A tendency towards the greatest increase was observed in the left parietal lobe (P3), an area of the brain considered to be related to semantic understanding and self-awareness. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

17.
Transition from a resting state with eyes closed (REC) to a resting state with eyes open (REO) is associated with visible changes in EEG, which are traditionally considered to be a sign of reorganization of the brain’s activity in response to visual stimuli. The EEGs recorded in the REC and REO states in complete darkness, when the stimulatory effect of light to the eye’s retina was absent, were compared. Thirty healthy subjects participated in the study. EEG in the range of 1.5–50 Hz was recorded from nineteen zones of the head monopolarly. It was found that, under conditions of complete darkness, the REC and REO states significantly differed in their EEG spectral power and coherence in the Δ, θ, α1, α2, β1, β2 and γ frequency bands. Under experimental conditions, these changes in the EEG could not be induced by external influence to the visual system. Therefore, we suppose that they are correlates of the switching of involuntary preliminary attention from internally directed attention specific for the REC state to externally directed attention specific for the REO state.  相似文献   

18.
《Phytomedicine》2015,22(11):1000-1008
BackgroundMany antidepressants are effective in alleviating ethanol withdrawal symptoms. However, most of them suppress rapid eye movement (REM) sleep. Thus, development of antidepressants without undesirable side effects would be preferable. Previously, crude alkaloid extract from Mitragyna speciosa (MS) Korth was found to produce antidepressant activities. It was hypothesized that the alkaloid extract from MS may attenuate ethanol withdrawal without REM sleep disturbance.MethodsAdult male Wistar rats implanted with electrodes over the frontal and parietal cortices were used for two separated studies. For an acute study, 10 mg/kg fluoxetine or 60 mg/kg alkaloid extract from MS were administered intragastrically. Electroencephalographic (EEG) signals were recorded for 3 h to examine sleep profiles and EEG fingerprints. Another set of animal was used for an ethanol withdrawal study. They were rendered dependent on ethanol via a modified liquid diet (MLD) containing ethanol ad libitum for 28 days. On day 29, fluoxetine (10 mg/kg) or alkaloid extract from MS (60 mg/kg) were administered 15 min before the ethanol-containing MLD was replaced with an isocaloric ethanol-free MLD to induced ethanol withdrawal symptoms.ResultsThe sleep analysis revealed that alkaloid extract from MS did not change any REM parameters which included average duration of each REM episode, total REM time, number of REM episode and REM latency whereas fluoxetine significantly suppressed all REM parameters and delayed REM latency. However, power spectral analysis revealed similar fingerprints for fluoxetine and alkaloid extract from MS characterized by decreasing powers in the slow frequency range in frontal and parietal cortical EEG. Neither treatment affected spontaneous motor activity. Finally, both alkaloid extract from MS and fluoxetine were found to significantly attenuate ethanol withdrawal-induced hyperexcitability (increases gamma activity) in both cortices and to reduce locomotor activity.ConclusionThe present study demonstrated that the alkaloid extract from MS alleviates ethanol withdrawal severity with no side effect on REM sleep. In addition, these data suggest that suppressive effects on slow frequency powers but not REM sleep may be hallmarks of effective antidepressants for ethanol withdrawal treatment.  相似文献   

19.
With the advancement of contemporary techniques for studies of high-frequency electroencephalograms (EEGs), possible contamination of the EEG with the electromyogram (EMG) of pericranial muscles has raised more and more concern. The aim of the present study was to demonstrate if certain EEG correlates of mental activities can be revealed in a high-frequency scalp EEG in spite of EMG contamination. Nineteen healthy women who performed similar test tasks before and after cosmetic injections of Dysport in various facial regions for reduction of the activity of facial muscles took part in the study. Inductions of emotional states with different valences, memory storing, and extraction of verbal information were used in the test tasks. The default state of rest was examined as well. During performance of the tasks, parallel registrations of the EEG from the scalp surface (19 channels) and EMG from several facial muscles (6 channels) were carried out. Changes in the spectral power in β2 and low γ frequency bands (18–40 Hz) in EEG- and EMG-derivations after Dysport injections were analyzed. Changes in the spectral power in the same bands in pairwise comparisons for the test tasks before and after Dysport injections were also analyzed separately. It was demonstrated that Dysport injections lead to reduction of the EMG power in areas of the injections and to reduction of EEG power in the frontal and temporal derivations. However, the EEG-correlates revealed when comparing different test tasks remained qualitatively invariable as for after and before Disport injections. These facts confirm that EMG makes a noticeable contribution to the electric activity registered from the scalp in the frequency ranges greater than 18 Hz. At the same time, one can see that at least in certain experimental situations the influence of EMG does not make impossible identification of EEG-correlates of mental activity with EEG registration from the head surface at least in the β2 and low γ frequency bands (18–40 Hz).  相似文献   

20.
Marshall L  Kirov R  Brade J  Mölle M  Born J 《PloS one》2011,6(2):e16905
Previously the application of a weak electric anodal current oscillating with a frequency of the sleep slow oscillation (~0.75 Hz) during non-rapid eye movement sleep (NonREM) sleep boosted endogenous slow oscillation activity and enhanced sleep-associated memory consolidation. The slow oscillations occurring during NonREM sleep and theta oscillations present during REM sleep have been considered of critical relevance for memory formation. Here transcranial direct current stimulation (tDCS) oscillating at 5 Hz, i.e., within the theta frequency range (theta-tDCS) is applied during NonREM and REM sleep. Theta-tDCS during NonREM sleep produced a global decrease in slow oscillatory activity conjoint with a local reduction of frontal slow EEG spindle power (8-12 Hz) and a decrement in consolidation of declarative memory, underlining the relevance of these cortical oscillations for sleep-dependent memory consolidation. In contrast, during REM sleep theta-tDCS appears to increase global gamma (25-45 Hz) activity, indicating a clear brain state-dependency of theta-tDCS. More generally, results demonstrate the suitability of oscillating-tDCS as a tool to analyze functions of endogenous EEG rhythms and underlying endogenous electric fields as well as the interactions between EEG rhythms of different frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号