首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclin-dependent kinases (Cdks) play a key role in orchestrating the coordination of cell cycle progression in proliferating cells. The escape from the proper control of the cell cycle by the upregulation of cyclins or aberrant activation of Cdks leads to malignant transformation. In quiescent cells and/or terminally differentiated cells, the expression pattern and activity of Cdks is altered. In postmitotic neurons, expression of mitotic kinases is downregulated, whereas Cdk5 expression becomes upregulated. Similarly to other Cdks, free Cdk5 displays no enzymatic activity and requires complex formation with a specific regulatory subunit. Two activators of Cdk5 have been identified. p35 and its isoform p39 bind to, and thereby activate, Cdk5. Unlike mitotic kinases, Cdk5 does not require activating phosphorylation within the T-loop. Because p35 is a short-lived protein, the p35/Cdk5 complexes are unstable. The stability of the p35 protein is regulated by its Cdk5-mediated phosphorylation of p35. Activated p35/Cdk5 kinase phosphorylates numerous physiological targets. The proper phosphorylation of the most important substrates, such as tau protein and neurofilament H, is essential for the correct regulation of the cytoskeletal organization, thereby regulating cell adhesion, motility, and synaptic plasticity. Moreover, Cdk5 regulates the activity of the p53 tumor suppressor via phosphorylation. p53 is upregulated in multiple neuronal death paradigms, including hypoxia, ischemia, and excitotoxicity, and plays a key role in the induction of apoptosis. On the other hand, an abnormally high expression and elevated activity of Cdk5 was observed in neurodegenerative diseases, suggesting the application of Cdk inhibitors for their therapy. Considering the action of some Cdk inhibitors on the expression and activity of the p53 protein, their therapeutic efficacy must be carefully evaluated.  相似文献   

2.
Cyclin-dependent kinases (Cdks) play a key role in orchestrating the coordination of cell cycle progression in proliferating cells. The escape from the proper, control of the cell cycle by the upregulation of cyclins or aberrant activation of Cdks leads to malignant transformation. In quiescent cells and/or terminally differentiated cells, the expression pattern and activity of Cdks is altered. In postmitotic neurons, expression of mitotic kinases is downregulated, whereas Cdk5 expression becomes upregulated. Similarly to other Cdks, free Cdk5 displays no enzymatic activity and requires complex formation with a specific regulatory subunit. Two activators of Cdk5 have been identified. p35 and its isoform p39 bind to, and thereby activate, Cdk5. Unlike mitotic kinases, Cdk5 does not require activating phosphorylation within the T-loop. Because p35 is a short-lived protein, the p35/Cdk5 complexes are unstable. The stability of the p35 protein is regulated by its Cdk5-mediated phosphorylation of p35. Activated p35/Cdk5 kinase phosphorylates numerous physiological targets. The proper phosphorylation of the most important substrates, such as τ protein and neurofilament H, is essential for the correct regulation of the cytoskeletal organization, thereby regulating cell adhesion, motility, and synaptic plasticity. Moreover, Cdk5 regulates the activity of the p53 tumor suppressor via phosphorylation. p53 is upregulated in multiple neuronal death paradigms, including hypoxia, ischemia, and excitotoxicity, and plays a key role in the induction of apoptosis. On the other hand, an abnormally high expression and elevated activity of Cdk5 was observed in neurodegenerative diseases, suggesting the application of Cdk inhibitors for their therapy. Considering the action of some Cdk inhibitors on the expression and activity of the p53 protein, their therapeutic efficacy must be carefully evaluated.  相似文献   

3.
Cyclin-dependent kinases (Cdks) play a key role in orchestrating the coordination of cell cycle progression in proliferating cells. The escape from the proper control of the cell cycle by the upregulation of cyclins or aberrant activation of Cdks leads to malignant transformation. In quiescent cells and/or terminally differentiated cells, the expression pattern and activity of Cdks is altered. In postmitotic neurons, expression of mitotic kinases is downregulated, whereas Cdk5 expression becomes upregulated. Similarly to other Cdks, free Cdk5 displays no enzymatic activity and requires complex formation with a specific regulatory subunit. Two activators of Cdk5 have been identified. p35 and its isoform p39 bind to, and thereby activate, Cdk5. Unlike mitotic kinases, Cdk5 does not require activating phosphorylation within the T-loop. Because p35 is a short-lived protein, the p35/Cdk5 complexes are unstable. The stability of the p35 protein is regulated by its Cdk5-mediated phosphorylation of p35. Activated p35/Cdk5 kinase phosphorylates numerous physiological targets. The proper phosphorylation of the most important substrates, such as tau protein and neurofilament H, is essential for the correct regulation of the cytoskeletal organization, thereby regulating cell adhesion, motility, and synaptic plasticity. Moreover, Cdk5 regulates the activity of the p53 tumor suppressor via phosphorylation. p53 is upregulated in multiple neuronal death paradigms, including hypoxia, ischemia, and excitotoxicity, and plays a key role in the induction of apoptosis. On the other hand, an abnormally high expression and elevated activity of Cdk5 was observed in neurodegenerative diseases, suggesting the application of Cdk inhibitors for their therapy. Considering the action of some Cdk inhibitors on the expression and activity of the p53 protein, their therapeutic efficacy must be carefully evaluated.  相似文献   

4.
We have recently developed a rapid protocol involving NT2 cell aggregation and treatment with retinoic acid (RA) to produce terminally differentiated CNS neurons. As a first step to explore the functional roles of cell-cycle regulatory proteins in the process of neuronal differentiation, the expression profiles of cyclin-dependent kinases (Cdks) and their regulators were examined in NT2 cells following treatment with RA. One of the Cdks, Cdk5, has been demonstrated to affect the process of neuronal differentiation and suggested to play an important role in development of the nervous system. We found that the expression of Cdk5 was gradually increased, while its activators (p35 and p39) as well as Cdk5 kinase activity were induced in NT2 cells during the process of neuronal differentiation. Moreover, both p35 and p39 were localized along the axons and varicosity-like structures of differentiated NT2 neurons. Taken together, our results demonstrated that NT2 cells provide a good in vitro model system to examine signaling pathways involved in the regulation of Cdk5 activators and to elucidate the functional roles of Cdk5 in neuronal differentiation.  相似文献   

5.
Activation or inactivation of members of the cyclin-dependent kinase family is important during cell cycle progression. However, Cdk5, a member of this family that was originally identified because of its high structural homology to Cdc2, is activated during cell differentiation and cell death but not during cell cycle progression. We previously demonstrated a correlation between the up-regulation of Cdk5 protein and kinase activity and cell death during development and pathogenesis. We report here that cyclophosphamide (CP) induces massive apoptotic cell death in mouse embryos and that Cdk5 is expressed in apoptotic cells displaying fragmented DNA. During CP-induced cell death, Cdk5 protein expression is substantially increased as detected by immunohistochemistry but not by Western blot, while its mRNA level remains the same as control, and its kinase activity is markedly elevated. The up-regulation of Cdk5 during CP-induced cell death is not due to de novo protein synthesis. We also examined p35, a regulatory protein of Cdk5 in neuronal differentiation. Using a yeast two-hybrid system, we isolated p35, a neuronal differentiation specific protein, as a protein that interacts with Cdk5 in CP-treated embryos. p35 mRNA level does not change, but the protein expression of p25, a truncated form of p35, is elevated during cell death in vivo, as established here, as well as during cell death in vitro. Our results suggest a role for Cdk5 and its regulatory proteins during CP induced cell death. These results further support the view that Cdk5 and its regulation may be key players in the execution of cell death regardless of how the cell dies, whether through biological mechanisms, disease states such as Alzheimer's disease, or induction by CP.  相似文献   

6.
Cdk5 is a member of the cyclin-dependent kinase (Cdk) family. In contrast to other Cdks that promote cell proliferation, Cdk5 plays a role in regulating various neuronal functions, including neuronal migration, synaptic activity, and neuron death. Cdks responsible for cell proliferation need phosphorylation in the activation loop for activation in addition to binding a regulatory subunit cyclin. Cdk5, however, is activated only by binding to its activator, p35 or p39. Furthermore, in contrast to Cdk1 and Cdk2, which are inhibited by phosphorylation at Tyr-15, the kinase activity of Cdk5 is reported to be stimulated when phosphorylated at Tyr-15 by Src family kinases or receptor-type tyrosine kinases. We investigated the activation mechanism of Cdk5 by phosphorylation at Tyr-15. Unexpectedly, however, it was found that Tyr-15 phosphorylation occurred only on monomeric Cdk5, and the coexpression of activators, p35/p25, p39, or Cyclin I, inhibited the phosphorylation. In neuron cultures, too, the activation of Fyn tyrosine kinase did not increase Tyr-15 phosphorylation of Cdk5. Further, phospho-Cdk5 at Tyr-15 was not detected in the p35-bound Cdk5. In contrast, expression of active Fyn increased p35 in neurons. These results indicate that phosphorylation at Tyr-15 is not an activation mechanism of Cdk5 but, rather, indicate that tyrosine kinases could activate Cdk5 by increasing the protein amount of p35. These results call for reinvestigation of how Cdk5 is regulated downstream of Src family kinases or receptor tyrosine kinases in neurons, which is an important signaling cascade in a variety of neuronal activities.  相似文献   

7.
The caspase-dependent activation of cyclin-dependent kinases (Cdks) in varied cell types in response to disparate suicidal stimuli has prompted our examination of the role of Cdks in cell death. We have tested the functional role of Cdk activity in cell death genetically, with the expression of dominant negative Cdk mutants (DN-Cdks) and Cdk inhibitory genes. Here we demonstrate that Cdk2 activity is necessary for death-associated chromatin condensation and other manifestations of apoptotic death, including cell shrinkage and the loss of adhesion to substrate. Susceptibility to the induction of the cell death pathway, including the activation of the caspase cascade, is unimpaired in cells in which Cdk2 activity is inhibited. The direct visualization of active caspase activity in these cells confirms that death-associated Cdk2 acts downstream of the caspase cascade. Cdk inhibition also does not prevent the loss of mitochondrial membrane potential and membrane phospholipid asymmetry, which may be direct consequences of caspase activity, and dissociates these events from apoptotic condensation. Our data suggest that caspase activity is necessary, but not sufficient, for the full physiological cell death program and that a requisite function of the proteolytic caspase cascade is the activation of effector Cdks.  相似文献   

8.
9.
10.
11.
12.
13.
The non-Aβ component of Alzheimer's disease (AD) amyloid (NAC) is produced from the precursor protein NACP/α-synuclein (ASN) by till now unknown mechanism. Previous study showed that like ASN, NAC peptide induced oxidative/nitrosative stress and apoptosis. Our present study focused on the mechanisms of PC12 cells death evoked by NAC peptide, with particular consideration on the role of p53 protein. On the basis of molecular and transmission electron microscopic (TEM) analysis it was found that exogenous NAC peptide (10 μM) caused mitochondria dysfunction, enhanced free radical generation, and induced both apoptotic and autophagic cell death. Morphological and immunocytochemical evidence from TEM showed marked changes in expression and in translocation of proapoptotic protein Bax. We also observed time-dependent enhancement of Tp53 gene expression after NAC treatment. Free radicals scavenger N-tert-butyl-alpha-phenylnitrone (PBN, 1 mM) and p53 inhibitor (α-Pifithrin, 20 μM) significantly protected PC12 cells against NAC peptide-evoked cell death. In addition, exposure to NAC peptide resulted in higher expression of cyclin-dependent kinase 5 (Cdk5), one of the enzymes responsible for p53 phosphorylation and activation. Concomitantly, we observed the increase of expression of Cdk5r1 and Cdk5r2 genes, coding p35 and p39 peptides that are essential regulators of Cdk5 activity. Moreover, the specific Cdk5 inhibitor (BML-259, 10 μM) protected large population of cells against NAC-evoked cell death. Our findings indicate that NAC peptide exerts its toxic effect by activation of p53/Cdk5 and Bax-dependent apoptotic signaling pathway.  相似文献   

14.
Cyclin-dependent kinase (Cdk)5 is a proline-directed Ser/Thr protein kinase that functions mainly in neurons and is activated by binding to a regulatory subunit, p35 or p39. Kinase activity is mainly determined by the amount of p35 available, which is controlled by a balance between synthesis and degradation. Kinase activity is also regulated by Cdk5 phosphorylation, but the activity of phosphorylated Cdk5 is in contrast to that of cycling Cdks. Cdk5 is a versatile protein kinase that regulates multiple neuronal activities including neuronal migration and synaptic signaling. Further, Cdk5 plays a role in both survival and death of neurons. Long-term inactivation of Cdk5 triggers cell death, and the survival activity of Cdk5 is apparent when neurons suffer from stress. In contrast, hyper-activation of Cdk5 by p25 promotes cell death, probably by reactivating cell-cycle machinery in the nucleus. The pro-death activity is suppressed by membrane association of Cdk5 via myristoylation of p35. Appropriate activity, localization, and regulation of Cdk5 may be critical for long-term survival of neurons, which is more than 80 years in the case of humans.  相似文献   

15.
Dysregulation of cyclin-dependent kinase 5 (Cdk5) by cleavage of its activator p35 to p25 by calpain is involved in the neuronal cell death observed in neurodegenerative disorders, including Alzheimer's disease. However, it is not yet clear how p25/Cdk5 induces cell death, although its cytosolic localization or extended half life are thought to be involved. We show here that endoplasmic reticulum (ER) stress causes the calpain-dependent cleavage of p35 to p25 in primary cultured cortical neurons. Generation of p25 occurred at a cell death execution step in ER-stressed neurons. p25 translocated to the nucleus in ER-stressed neurons, whereas p35/Cdk5 was perinuclear in control neurons. Cdk5 inhibitors or dominant-negative Cdk5 suppressed ER stress-induced neuronal cell death. These findings indicate that p25/Cdk5 is a proapoptotic factor that promotes ER stress-induced neuronal cell death in nuclei.  相似文献   

16.
The cyclin-dependent kinase inhibitors (CKIs) bind to and directly regulate the catalytic activity of cyclin-dependent kinase (Cdk)/cyclin complexes involved in cell cycle control and do not regulate other, closely related Cdks. We showed previously that the CKI, p27, binds to Cdk2/cyclin A though a sequential mechanism that involves folding-on-binding. The first step in the kinetic mechanism is interaction of a small, highly dynamic domain of p27 (domain 1) with the cyclin subunit of the Cdk2/cyclin A complex, followed by much slower binding of a more lengthy and less flexible domain (domain 2) to Cdk2. The second step requires folding of domain 2 into the kinase inhibitory conformation. Rapid binding of p27 domain 1 to cyclin A tethers the inhibitor to the binary Cdk2/cyclin A complex, which reduces the entropic barrier associated with slow binding of domain 2 to the catalytic subunit. We show here that p27/cyclin interactions are an important determinant of p27 specificity towards cell cycle Cdks. We used surface plasmon resonance, limited proteolysis, mass spectrometry, and NMR spectroscopy to study the interaction of p27 with Cdk2/cyclin A, and with another Cdk complex, Cdk5/p25, that is involved in neurodegeneration. Importantly, Cdk5/p35 (the parent complex of Cdk5/p25) is not regulated by p27 in neurons. Our results show that p27 binds to Cdk5 and Cdk2 with similar, slow kinetics. However, p27 fails to interact with p25 within the Cdk5/p25 complex, which we believe prevents formation of a kinetically trapped, inhibited p27/Cdk5/p25 complex in vivo. The helical topology of p25 is very similar to that of cyclin A. However, p25 lacks the MRAIL sequence in one helix that, in the cell cycle cyclins, mediates specific interactions with domain 1 of p21 and p27. Our results strongly suggest that p21 and p27, related Cdk inhibitors, select their cell cycle regulatory Cdk targets by binding specifically to the cyclin subunit of these Cdk/cyclin complexes as a first step in a sequential, folding-on-binding mechanism.  相似文献   

17.
An Unusual Member of the Cdk Family: Cdk5   总被引:1,自引:0,他引:1  
  相似文献   

18.
19.
Lim AC  Qu D  Qi RZ 《Neuro-Signals》2003,12(4-5):230-238
Cdk5 is a unique member of the cyclin-dependent kinase (Cdk) family of small protein kinases. In association with its neuron-specific activator p35 or p39, Cdk5 displays many regulatory properties distinct from other Cdks. A growing body of evidence has suggested that Cdk5-p35 has important implications in a variety of neuronal activities occurring in the central nervous system. In brain, Cdk5-p35 appears to exist as large molecular complexes with other proteins, and protein-protein interactions appear to be a molecular principle for Cdk5-p35 to conduct its physiological functions. Over the past decade, a number of proteins have been identified to associate with Cdk5-p35. While the majority of these proteins mediate their interaction with Cdk5 through p35, implying that p35 may act not only as an activator of Cdk5 but also as an adaptor to associate Cdk5 with its regulators and physiological targets, a small group of other proteins are found to link directly with Cdk5. In addition, Cdk5 has been found to phosphorylate a diverse list of substrates, further implicating its regulatory roles in a wide range of cellular processes. In this review, we present an updated inventory of the interacting proteins of Cdk5-p35 kinase and its substrates as well as a discussion on the implicated effects of these interactions.  相似文献   

20.
Progress in the cell cycle is governed by the activity of cyclin dependent kinases (Cdks). Unlike other Cdks, the Cdk5 catalytic subunit is found mostly in differentiated neurons. Interestingly, the only known protein that activates Cdk5 (i.e. p35) is expressed solely in the brain. It has been suggested that, besides its requirement in neuronal differentiation, Cdk5 activity is induced during myogenesis. However, it is not clear how this activity is regulated in the pathway that leads proliferative cells to differentiation. In order to find if there exists any Cdk5-interacting protein, the yeast two-hybrid system was used to screen a HeLa cDNA library. We have determined that a C-terminal 172 amino acid domain of the DNA binding protein, dbpA, binds to Cdk5. Biochemical analyses reveal that this fragment (dbpA(Cdelta)) strongly inhibits p35-activated Cdk5 kinase. The protein also interacts with Cdk4 and inhibits the Cdk4/cyclin D1 enzyme. Surprisingly, dbpA(Cdelta) does not bind Cdk2 in the two-hybrid assay nor does it inhibit Cdk2 activated by cyclin A. It could be that dbpA's ability to inhibit Cdk5 and Cdk4 reflects an apparent cross-talk between distinct signal transduction pathways controlled by dbpA on the one hand and Cdk5 or Cdk4 on the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号