首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large conductance Ca2+-activated K+ channel (BKCa) is a potential target for coronary artery-relaxing medication, but its functional regulation is largely unknown. Here, we report that inositol trisphosphate (IP3) activated BKCa channels in isolated porcine coronary artery smooth muscle cells and by which decreased the coronary artery tone. Both endogenous and exogenous IP3 increased the spontaneous transient outward K+ currents (STOC, a component pattern of BKCa currents) in perforated and regular whole-cell recordings, which was dependent on the activity of IP3 receptors. IP3 also increased the macroscopic currents (MC, another component pattern of BKCa currents) via an IP3 receptor- and sarcoplasmic Ca2+ mobilization-independent pathway. In inside-out patch recordings, direct application of IP3 to the cytosolic side increased the open probability of single BKCa channel in an IP3 receptor-independent manner. We conclude that IP3 is an activator of BKCa channels in porcine coronary smooth muscle cells and exerts a coronary artery-relaxing effect. The activation of BKCa channels by IP3 involves the enhancement of STOCs via IP3 receptors and stimulation of MC by increasing the Ca2+ sensitivity of the channels.  相似文献   

2.
The patch-clamp technique of cell-attached and inside-out configurations was used to study the single potassium channels in isolated guinea pig hepatocytes. The single potassium channels in isolated guinea pig hepatocytes were recorded at different K+ concentrations. A linear single-channel current-voltage relationship was obtained at the voltage range of -80 to -20 mV with slope conductance of 70 ± 6 pS (n = 10). Under symmetrical high K+ concentration of 148 mM in the cell-attached patch membrane, the I-V curve exhibited a mild inward rectification at potentials positive to +20 mV. The values of reversal potential was +5 ± 2 mV (n = 10). When the external potassium concentration ([K+]0) was decreased to 74 mM and 20 mM, the slope conductance was decreased to 48 ± 2 pS (n = 4) and 24 ± 3 pS (n = 3), respectively. The reversal potential was changed by 58 mV for a tenfold change in [K+]0, indicating that this channel was highly selective for K+. Open probabilities (P0) of the channel were 73-93% without apparent voltage dependence. The distributions of open time of the channels were fitted to two exponentials, while those of closed time were fitted to three exponentials, exhibiting no voltage dependence. The success rate of K+ channel activity to be recorded was 28% at room temperature, and there were no increases in the success rate nor in the channel opening probabilities at a temperature of 34-36°C. P0 in inside-out patches was not changed by application of 1 μM Ca2+ nor 1 mM Mg2+ to the internal side of patch membranes. It is concluded that a novel type of the K+ channels in guinea pig hepatocytes had different properties of slope conductance, channel kinetics, and sensitivity to [Ca2+]i, from those in other species. © 1994 Wiley-Liss, Inc.  相似文献   

3.
We investigated the properties of single K+ channels in the soma membrane of embryonic leech ganglion cells using the patch-clamp technique. We compared these K+ channels with the K+ channels found previously in Retzius neurons of the adult leech. In ganglion cells of 9- to 15-day-old embryos we characterized eight different types of K+ channels with mean conductances of 21, 55, 84, 111, 122, 132, 149 and 223 pS. The 55 pS and 84 pS channels showed flickering and were active for less than 2 min after excising the patch. The 111 pS channel was an outward rectifier, and the open state probability (p o ) decreased in the inside-out configuration when the Ca2+ concentration was raised from pCa 7 to pCa 3. The 122 pS channel also showed outward rectification. This type of channel was activated after changing from the cell-attached to the inside-out configuration and it did not inactivate during more than 30 min. The p o was Ca2+- and voltage-insensitive. One hundred μm glibenclamide reversibly reduced p o . The 132 pS channel was an outward rectifier and was Ca2+-insensitive. The 149 pS channel inactivated in the inside-out configuration. The 149- and the 223 pS channel showed inward rectification. The 111 pS channel had similar properties to the Ca2+-dependent K+ channel and the 122 pS channel resembled the ATP-inhibited K+ channel found previously in Retzius neurons of the adult leech. Received: 20 April 1995/Revised: 18 January 1996  相似文献   

4.
Apelin-13 causes vasoconstriction by acting directly on APJ receptors in vascular smooth muscle (VSM) cells; however, the ionic mechanisms underlying this action at the cellular level remain unclear. Large-conductance Ca2+-activated K+ (BKCa) channels in VSM cells are critical regulators of membrane potential and vascular tone. In the present study, we examined the effect of apelin-13 on BKCa channel activity in VSM cells, freshly isolated from rat middle cerebral arteries. In whole-cell patch clamp mode, apelin-13 (0.001-1 μM) caused concentration-dependent inhibition of BKCa in VSM cells. Apelin-13 (0.1 µM) significantly decreased BKCa current density from 71.25±8.14 pA/pF to 44.52±7.10 pA/pF (n=14 cells, P<0.05). This inhibitory effect of apelin-13 was confirmed by single channel recording in cell-attached patches, in which extracellular application of apelin-13 (0.1 µM) decreased the open-state probability (NPo) of BKCa channels in freshly isolated VSM cells. However, in inside-out patches, extracellular application of apelin-13 (0.1µM) did not alter the NPo of BKCa channels, suggesting that the inhibitory effect of apelin-13 on BKCa is not mediated by a direct action on BKCa. In whole cell patches, pretreatment of VSM cells with LY-294002, a PI3-kinase inhibitor, markedly attenuated the apelin-13-induced decrease in BKCa current density. In addition, treatment of arteries with apelin-13 (0.1 µM) significantly increased the ratio of phosphorylated-Akt/total Akt, indicating that apelin-13 significantly increases PI3-kinase activity. Taken together, the data suggest that apelin-13 inhibits BKCa channel via a PI3-kinase-dependent signaling pathway in cerebral artery VSM cells, which may contribute to its regulatory action in the control of vascular tone.  相似文献   

5.
Ion channel activity in cell-attached patch recordings shows channel behavior under more physiological conditions than whole-cell and excised patch measurements. Yet the analysis of cell-attached patch measurements is complicated by the fact that the system is ill defined with respect to the intracellular ion activities and the electrical potential actually experienced by the membrane patch. Therefore, of the several patch-clamp configurations, the information that is obtained from cell-attached patch measurements is the most ambiguous. The present study aims to achieve a better understanding of cell-attached patch measurements. Here we describe a method to calculate the intracellular ion concentration and membrane potential prevailing during cell-attached patch recording. The first step is an analysis of the importance of the input resistance of the intact cell on the cell-attached patch measurement. The second step, and actual calculation, is based on comparison of the single channel conductance and reversal potential in the cell-attached patch and excised patch configurations. The method is demonstrated with measurements of membrane potential and cytosolic K+ concentrations in Vicia faba guard cells. The approach described here provides an attractive alternative to the measurement of cytosolic ion concentrations with fluorescent probes or microelectrodes. Received: 3 April 1998/Revised: 6 August 1998  相似文献   

6.
Large Conductance Ca2+-Activated K+ Channels in Human Meningioma Cells   总被引:2,自引:0,他引:2  
Cells from ten human meningiomas were electrophysiologically characterized in both living tissue slices and primary cultures. In whole cells, depolarization to voltages higher than +80 mV evoked a large K+ outward current, which could be blocked by iberiotoxin (100 nm) and TEA (half blocking concentration IC50= 5.3 mm). Raising the internal Ca2+ from 10 nm to 2 mm shifted the voltage of half-maximum activation (V 1/2) of the K+ current from +106 to +4 mV. Respective inside-out patch recordings showed a voltage- and Ca2+-activated (BK Ca ) K+ channel with a conductance of 296 pS (130 mm K+ at both sides of the patch). V 1/2 of single-channel currents was +6, −12, −46, and −68 mV in the presence of 1, 10, 100, and 1000 μm Ca2+, respectively, at the internal face of the patch. In cell-attached patches the open probability (P o ) of BK Ca channels was nearly zero at potentials below +80 mV, matching the activation threshold for whole-cell K+ currents with 10 nm Ca2+ in the pipette. Application of 20 μm cytochalasin D increased P o of BK Ca channels in cell-attached patches within minutes. These data suggest that the activation of BK Ca channels in meningioma cells does not only depend on voltage and internal Ca2+ but is also controlled by the cytoskeleton. Received 18 June 1999/Revised: 18 January 2000  相似文献   

7.
Modulation of L-type Ca2+ channels by tonic elevation of cytoplasmic Ca2+ was investigated in intact cells and inside-out patches from human umbilical vein smooth muscle. Ba2+ was used as charge carrier, and run down of Ca2+ channel activity in inside-out patches was prevented with calpastatin plus ATP. Increasing cytoplasmic Ca2+ in intact cells by elevation of extracellular Ca2+ in the presence of the ionophore A23187 inhibited the activity of L-type Ca2+ channels in cell-attached patches. Measurement of the actual level of intracellular free Ca2+ with fura-2 revealed a 50% inhibitory concentration (IC50) of 260 nM and a Hill coefficient close to 4 for Ca2+- dependent inhibition. Ca2+-induced inhibition of Ca2+ channel activity in intact cells was due to a reduction of channel open probability and availability. Ca2+-induced inhibition was not affected by the protein kinase inhibitor H-7 (10 μM) or the cytoskeleton disruptive agent cytochalasin B (20 μM), but prevented by cyclosporin A (1 μg/ ml), an inhibitor of protein phosphatase 2B (calcineurin). Elevation of Ca2+ at the cytoplasmic side of inside-out patches inhibited Ca2+ channels with an IC50 of 2 μM and a Hill coefficient close to unity. Direct Ca2+-dependent inhibition in cell-free patches was due to a reduction of open probability, whereas availability was barely affected. Application of purified protein phosphatase 2B (12 U/ml) to the cytoplasmic side of inside-out patches at a free Ca2+ concentration of 1 μM inhibited Ca2+ channel open probability and availability. Elevation of cytoplasmic Ca2+ in the presence of PP2B, suppressed channel activity in inside-out patches with an IC50 of ∼380 nM and a Hill coefficient of ∼3; i.e., characteristics reminiscent of the Ca2+ sensitivity of Ca2+ channels in intact cells. Our results suggest that L-type Ca2+ channels of smooth muscle are controlled by two Ca2+-dependent negative feedback mechanisms. These mechanisms are based on (a) a protein phosphatase 2B-mediated dephosphorylation process, and (b) the interaction of intracellular Ca2+ with a single membrane-associated site that may reside on the channel protein itself.  相似文献   

8.
The mechanosensitive properties of large-conductance Ca2+-activated K+ (BK) channels from embryonic rat neuroepithelium were investigated with the cell-attached and inside-out configurations of the patch-clamp technique. The channels were activated in both recording configurations by negative pressures applied to the patch electrode, but reversal of the effect was total and immediate in inside-out patches whereas it was incomplete and delayed in on-cell patches. This mechanosensitivity was not mediated by Ca2+ ions or fatty acids, suggesting that it is an intrinsic property of these channels. Cytochalasin B did not affect mechanosensitivity in on-cell patches but increased it in inside-out patches. Kinetic studies showed that stretch increased the mean open time of the channels and decreased the slowest time constant of their closed-time distributions. The present as well as previous results suggest complex interactions between embryonic BK channels and their membranous and submembranous environment. Received: 1 February 1996/Revised: 25 March 1996  相似文献   

9.
Arachidonic acid has been shown to activate K+-selective, mechanosensitive ion channels in cardiac, neuronal and smooth muscle cells. Since the cardiac G protein (G K )-gated, muscarinic K+ (KACh) channel can also be activated by arachidonic acid, we investigated whether the KACh channel was also sensitive to membrane stretch. In the absence of acetylcholine (ACh), KACh channels were not active, and negative pressure failed to activate these channels. With ACh (10 m) in the pipette, applying negative pressure (0 to –80 mm Hg) to the membrane caused a reversible, pressure-dependent increase in channel activity in cell-attached and inside-out patches (100 m GTP in bath). Membrane stretch did not alter the sensitivity of the KACh channel to GTP. When G K was maximally activated with 100 m GTPS in inside-out patches, the KACh channel activity could be further increased by negative pressure. Trypsin (0.5 mg/ ml) applied to the membrane caused activation of the KACh channel in the absence of ACh and GTP; KACh channel activity was further increased by stretch. These results indicate that the atrial muscarinic K+ channels are modulated by stretch independently of receptor/G protein, probably via a direct effect on the channel protein/ lipid bilayer.  相似文献   

10.
The excised patch clamp configuration provides a unique technique for some types of single channel analyses, but maintenance of stable, long-lasting preparations may be confounded by rundown and/or rapid loss of seal. Studies were performed on the amiloride-sensitive Na+ channel, located on the apical surface of A6 cells, to determine whether the nystatininduced open cell-attached patch could serve as an alternative configuration.Compared to excised inside-out patches, stable preparations were achieved more readily with the open cell-attached patch (9% vs. 56% of attempts). In both preparations, the current voltage (I-V) relation was linear, current amplitudes were equal at opposite equivalent clamped voltages, and E rev was zero in symmetrical Na+ solutions, indicating similar Na+ activities on the cytosolic and external surfaces of the patch. Moreover, there was no evidence that nystatin altered channel activity in the patch because slope conductance (3–4pS) and E rev (75 mV), when the bath was perfused with a high K:low Na solution (E Na=80 mV), were nearly equal in both patch configurations.Our results therefore indicate that the nystatininduced open cell-attached patch can serve as an alternative approach to the excised inside-out patch when experiments require modulation of univalent ions in the cytosol.We thank Dr. Olaf S. Andersen for his suggestions in the development of the open cell-attached recording technique. This work was supported by a National Institutes of Health grant (DK-18061)  相似文献   

11.
Plasma membrane large-conductance Ca2+-activated K+ (BKCa) channels and sarcoplasmic reticulum inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are expressed in a wide variety of cell types, including arterial smooth muscle cells. Here, we studied BKCa channel regulation by IP3 and IP3Rs in rat and mouse cerebral artery smooth muscle cells. IP3 activated BKCa channels both in intact cells and in excised inside-out membrane patches. IP3 caused concentration-dependent BKCa channel activation with an apparent dissociation constant (Kd) of ∼4 µM at physiological voltage (−40 mV) and intracellular Ca2+ concentration ([Ca2+]i; 10 µM). IP3 also caused a leftward-shift in BKCa channel apparent Ca2+ sensitivity and reduced the Kd for free [Ca2+]i from ∼20 to 12 µM, but did not alter the slope or maximal Po. BAPTA, a fast Ca2+ buffer, or an elevation in extracellular Ca2+ concentration did not alter IP3-induced BKCa channel activation. Heparin, an IP3R inhibitor, and a monoclonal type 1 IP3R (IP3R1) antibody blocked IP3-induced BKCa channel activation. Adenophostin A, an IP3R agonist, also activated BKCa channels. IP3 activated BKCa channels in inside-out patches from wild-type (IP3R1+/+) mouse arterial smooth muscle cells, but had no effect on BKCa channels of IP3R1-deficient (IP3R1−/−) mice. Immunofluorescence resonance energy transfer microscopy indicated that IP3R1 is located in close spatial proximity to BKCa α subunits. The IP3R1 monoclonal antibody coimmunoprecipitated IP3R1 and BKCa channel α and β1 subunits from cerebral arteries. In summary, data indicate that IP3R1 activation elevates BKCa channel apparent Ca2+ sensitivity through local molecular coupling in arterial smooth muscle cells.  相似文献   

12.
The present study examined whether 20-hydroxyeicosatetraenoic acid (HETE) contributes to the vasoconstrictor effect of angiotensin II (ANG II) in renal microvessels by preventing activation of the large conductance Ca2+-activated K+ channel (KCa) in vascular smooth muscle (VSM) cells. ANG II increased the production of 20-HETE in rat renal microvessels. This response was attenuated by the 20-HETE synthesis inhibitors, 17-ODYA and HET0016, a phospholipase A2 inhibitor AACOF3, and the AT1 receptor blocker, Losartan, but not by the AT2 receptor blocker, PD123319. ANG II (10-11 to 10-6 M) dose-dependently decreased the diameter of renal microvessels by 41 ± 5%. This effect was blocked by 17-ODYA. ANG II (10-7 M) did not alter KCa channel activity recorded from cell-attached patches on renal VSM cells under control conditions. However, it did reduce the NPo of the KCa channel by 93.4 ± 3.1% after the channels were activated by increasing intracellular calcium levels with ionomycin. The inhibitory effect of ANG II on KCa channel activity in the presence of ionomycin was attenuated by 17-ODYA, AACOF3, and the phospholipase C (PLC) inhibitor U-73122. ANG II induced a peak followed by a steady-state increase in intracellular calcium concentration in renal VSM cells. 17-ODYA (10-5 M) had no effect on the peak response, but it blocked the steady-state increase. These results indicate that ANG II stimulates the formation of 20-HETE in rat renal microvessels via the AT1 receptor activation and that 20-HETE contributes to the vasoconstrictor response to ANG II by blocking activation of KCa channel and facilitating calcium entry.  相似文献   

13.
A large-conductance, Ca2+-activated K+ channel was identified and characterized in embryonic chick hepatocytes using the patch-electrode voltage-clamp technique. The channel conductance was 213 pS in excised patches bathed in symmetrical 145 mM KCl and 1 mM Ca2+. Current-voltage relationships were linear with high K+ on both sides of the membrane but showed constant field rectification as the K+ gradient was increased. The reversal potential shifted 58 mV per 10-fold change in the ratio of external to internal K+. Channel openings occurred at potentials higher than +50 mV in cell-attached patches. The open probability × voltage relationship shifted to more negative potentials in excised, inside-out patches exposed to a solution containing high Ca2+. The voltage sensitivity of the channel was not significantly affected by changes in internal Ca2+ concentration. Conversely, channel gating, reflected in the half-activation potential, shifted 118 mV per 10-fold change in internal Ca2+ at concentrations less than ∼2 μM, although at higher Ca2+, this parameter was Ca2+ insensitive. Channel open probability in cell-attached patches increased significantly following exposure of the cells to either the Ca2+ ionophore A-23187 or L-alanine, a cell-volume modulator. Channel density increased with time spent in culture from no observations in 10-hr cells, through 13 and 80% of patches in 24-and 48-hr cultured cells, respectively. The implications of delayed functional expression for ion channel studies in acutely dissociated cells is discussed. J. Cell. Physiol. 171:87–94, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
Cell-attached and inside-out patch clamp recording was used to compare the functional expression of membrane ion channels in mouse and human embryonic stem cells (ESCs). Both ESCs express mechanosensitive Ca2+ permeant cation channels (MscCa) and large conductance (200 pS) Ca2+-sensitive K+ (BKCa2+) channels but with markedly different patch densities. MscCa is expressed at higher density in mESCs compared with hESCs (70 % vs. 3 % of patches), whereas the BKCa2+ channel is more highly expressed in hESCs compared with mESCs (~50 % vs. 1 % of patches). ESCs of both species express a smaller conductance (25 pS) nonselective cation channel that is activated upon inside-out patch formation but is neither mechanosensitive nor strictly Ca2+-dependent. The finding that mouse and human ESCs express different channels that sense membrane tension and intracellular [Ca2+] may contribute to their different patterns of growth and differentiation in response to mechanical and chemical cues.  相似文献   

15.
In order to test the hypothesis that slowly activating vacuolar (SV) channels mediate Ca2+-induced Ca2+ release the voltage- and Ca2+-dependence of these K+ and Ca2+- permeable channels were studied in a quantitative manner. The patch-clamp technique was applied to barley (Hordeum vulgare L.) mesophyll vacuoles in the whole vacuole and vacuolar-free patch configuration. Under symmetrical ionic conditions the current-voltage relationship of the open SV channel was characterized by a pronounced inward rectification. The single channel current amplitude was not affected by changes in cytosolic Ca2+ whereas an increase in vacuolar Ca2+ decreased the unitary current in a voltage-dependent manner. The SV channel open-probability increased with positive potentials and elevated cytosolic Ca2+, but not with elevated cytosolic Mg2+. An increase of cytosolic Ca2+ shifted the half-activation potential to more negative voltages, whereas an increase of vacuolar Ca2+ shifted the half-activation potential to more positive voltages. At physiological vacuolar Ca2+ activities (50 μM to 2 mM) changes in cytosolic Ca2+ (5 μM to 2 mM) revealed an exponential dependence of the SV channel open-probability on the electrochemical potential gradient for Ca2+ (ΔμCa). At the Ca2+ equilibrium potential (ΔμCa = 0) the open-probability was as low as 0.4%. Higher open-probabilities required net Ca2+ motive forces which would drive Ca2+ influx into the vacuole. Under conditions favouring Ca2+ release from the vacuole, however, the open-probability further decreased. Based on quantitative analysis, it was concluded that the SV channel is not suited for Ca2+-induced Ca2+ release from the vacuole.  相似文献   

16.
Summary In cultured bovine aortic endothelial cells, elementary K+ currents were studied in cell-attached and inside-out patches using the standard patch-clamp technique. Two different cationic channels were found, a large channel with a mean unitary conductance of 150±10 pS and a small channel with a mean unitary conductance of 12.5±1.1 pS. The 150-pS channel proved to be voltag- and Ca2+-activatable and seems to be a K+ channel. Its open probability increased on membrane depolarization and, at a given membrane potential, was greatly enhanced by elevating the Ca2+ concentration at the cytoplasmic side of the membrane from 10–7 to 10–4 m. 150-pS channels were not influenced by the patch configuration in that patch excision neither induced rundown nor evoked channel activity in silent cell-attached patches. However, they were only seen in two out of 55 patches. The 12-pS channel was predominant, a nonselective cationic channel with almost the same permeability for K+ and Na+ whose open probability was minimal near –60 mV but increased on membrane hyperpolarization. An increase in internal Ca2+ from 10–7 to 10–4 m left the open probability unchanged. Although the K+ selectivity of the 150-pS channels remains to be elucidated, it is concluded that they may be involved in controlling Ca2+-dependent cellular functions. Under physiological conditions, 12-pS nonselective channels may provide an inward cationic pathway for Na+.  相似文献   

17.
Using a patch-clamp technique in the whole-cell configuration, we studied the effect of a nitric oxide (NO) donor, nitroglycerin (NG), on outward transmembrane ion current in isolated smooth muscle cells (SMC) of the main pulmonary artery of the rabbit. We also studied the characteristics of unitary high-conductance Ca2+-dependent K+ channels (KCa channels) in the SMC membrane in the cell-attached and outside-out configurations. Nitroglycerin in a 10 M concentration increased the amplitude and intensified oscillations of outward transmembrane current induced by step depolarization. In this case, the threshold of activation of the current (–40 mV) did not change. If the potential was +70 mV, the transmembrane current in the presence of NG increased, as compared with the control, by 32.6 ± 19.4% (n = 6), on average. Simultaneous addition of 10 M NG and 1 mM tetraethylammonium chloride (TEA), a blocker of KCa channels, to the external solution at the potential of +70 mV decreased the amplitude of outward transmembrane current with respect to the control by 25.2 ± 11% (n = 6) and suppressed oscillations of this current. In the series of experiments carried out in the outside-out configuration (concentration of K+ ions in the external solution was 5.9 mM), we calculated the conductance of a single KCa channel, which was approximately 150 pS. In the case where the potential was equal to +40 mV, 1 mM TEA suppressed completely the current through unitary KCa channels. In the series of experiments performed in the cell-attached configuration, 100 M NG to a considerable extent intensified the activity of unitary high-conductance KCa channels by increasing the probability of the channel open state (P 0), on average, by 80 ± 1%, as compared with the control. In this case, NG did not influence the conductance of single KCa channels. We concluded that the NO donor NG increases the amplitude of outward transmembrane current in SMC of the rabbit main pulmonary artery by stimulation of the activity of TEA-sensitive high-conductance KCa channels. Our experiments carried out on single KCa channels demonstrated that the activating effect of NG on KCa channels is realized at the expense of an increase in the P 0 of these channels, but not of a change in the conductance of single channels.  相似文献   

18.
The effects of a photoactivatable (DMNPE-caged) ATP-analogue on ATP-regulated K+-channels (KATP-channel) in mouse pancreatic β-cells were investigated using the inside-out patch configuration of the patch-clamp technique. The caged precursor caused a concentration-dependent reduction of channel activity with a Ki of 17 μM; similar to the 11 μM obtained for standard Mg-ATP. The small difference in the blocking capacity between the precursor and ATP is probably the reason why no change in channel activity was observed upon photolysis of the caged molecule and liberation of ATP. It is suggested that the part of the ATP molecule involved in the blocking reaction of the KATP-channel is not sufficiently protected in DMNPE-caged ATP making this compound unsuitable for studying the rapid kinetics of ATP-induced KATP-channel inhibition.  相似文献   

19.
Using the patch clamp technique, we have characterized a small conductance, calcium-activated potassium (SK) channel in the C6 glioma cell line. Elevation of cytosolic Ca2+ concentration ([Ca2+] i ) by applications of serotonin or ionomycin induced bursts of channel openings recorded in the cell-attached configuration. These channels underlie the serotonin-induced, [Ca2+] i -activated whole-cell K+ conductance described previously. [Ca2+] i directly activated SK channels in inside-out patches with a biphasic concentration dependence. Submicromolar [Ca2+] i induced bursts of channel openings with a unitary conductance of about 25 pS, similar to that of the serotonin-induced channels. Supramicromolar [Ca2+] i caused prolonged openings with a unitary conductance of about 35 pS, resulting in a pronounced increase of the average current in patches exposed to [Ca2+] i above 100 m. The two modes of opening reflect the activity of the same SK channel. The channel conductance depended on external K+ concentration with K Dof 5 m. The channel was slightly permeable to cations other than K+, with a permeability ratio for K+Ca2+Na+ of 10.0400.030, respectively. ATP was required to maintain channel activity in outside-out patches but was not essential in inside-out patches. The modulation of SK channels in C6 cells by components in their microenvironment may be related to the role of glial cells in controlling the extracellular milieu in the CNS.The authors are grateful to Dr. M. Segal for continuous support, stimulating discussions and criticism throughout the course of this work, to Dr. I. Steinberg for helpful suggestions and to Dr. H. Jarosch, for helping with the Fortran application. N.M.'s research was supported in part by BARD, the U.S.-Israel Binational Agricultural Research and Development Fund, grant no. IS-1670-89RC.  相似文献   

20.
目的观察比较3种组胺拮抗剂对缺血性心肌细胞的ATP-敏感性钾离子通道中的影响。方法利用急性酶解法分离小鼠心室肌细胞。结果组胺拮抗剂pyrilamine、chlorpheniramine及diphenhydramine均可抑制ATP-敏感性钾离子通道的活性,抑制程度为pyrilamine〉chlorpheniramine〉diphenhydramine。组胺对KATP通道活性无影响。结论第一代的组胺拮抗剂(pyrilamine、chlorpheniramine及diphenhydramine)对KATP通道活性有抑制作用,其抑制作用与膜上H1受体无关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号