首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Protein secretion from mouse blastocysts undergoing attachment and trophoblast outgrowth in vitro was assessed. When Day 5 blastocysts were cultured in serum-containing medium, secretion of several 'attachment-associated' proteins (PAS) was initiated within 24 h, coincident with attachment and outgrowth. Those proteins characteristic of the pre-attachment blastocyst disappeared or made-up only a small portion of the secretions once attachment began. The major secreted protein from attached embryos, PA1, is a 35,000-45,000 Mr acidic glycoprotein with multiple isoelectric forms. PA2, a group of basic 40,000 Mr proteins and PA3 a group of 72,000 Mr proteins were also produced during outgrowth. PAS were secreted during outgrowth on fibronectin-coated plastic in serum-free medium, but not by blastocysts held in a non-attachment state during culture in serum-free medium on uncoated plastic. In pre-attachment blastocysts, secreted proteins were produced by trophoblast vesicles, but not by isolated inner cell masses. Both trophoblast vesicles growing out in vitro and surgically isolated trophoblast from spreading blastocysts had secreted protein patterns qualitatively similar to those of intact blastocyst outgrowths. The results indicate that development of trophoblast protein secretion continues through the period of outgrowth and giant cell transformation. These changes are apparently dependent on attachment of the blastocyst to a suitable substrate, but not dependent on any other serum influence.  相似文献   

3.
We have examined the tissue and embryonic distribution of an antigen on a large polysaccharide that is recognized by a monoclonal antibody, IIC3, prepared against F9 teratocarcinoma cells. By immunofluorescence the antigen is first detected on compacted morulae and early blastocysts. It is strongly expressed on the primary endoderm and trophoblast of expanded blastocysts, but then disappears from the trophoblast of attached blastocysts in vitro. The binding of the antibody is completely inhibited by D-galactose and N-acetylgalactosamine. Fluoresceinated lectins were used to study further the changes in cell surface carbohydrates on trophoblast during implantation. Ricinus I, specific for terminal galactose, binds to preimplantation stages but does not bind to the trophoblast of the attached blastocyst. On the other hand, wheat germ agglutinin, specific for N-acetylglucosamine and sialic acid, binds to all preimplantation embryos and also to attached blastocysts (embryo proper and trophoblast). Neuraminidase treatment of blastocyst outgrowths enhances binding of both IIC3 and Ricinus I to the trophoblast; conversely, the binding of wheat germ agglutinin is decreased by this treatment. The results obtained in this study show changes of cell surface carbohydrates during early mouse development and suggest that sialic acid may be masking molecules on the surface of the trophoblast at the time of implantation.  相似文献   

4.
The expression of a battery of trophoblast-specific mRNAs was studied during trophectoderm development in vivo and in vitro to assess the use of these mRNAs as markers of trophoblast differentiation and to examine lineage relationships between various trophectoderm derivatives. In situ hybridization of sectioned day 6.5–18.5 mouse embryos localized mRNAs for mouse placental lactogens I and II and mouse proliferin (PLF) to trophoblast giant cells and proliferin-related protein mRNA to the spongiotrophoblast and giant cell layers. A fifth marker, cDNA 4311, was found only in spongiotrophoblast. Day 3.5 blastocyst outgrowths and day 7.5 diploid extraembryonic ectoderm (EX) and ectoplacental cone (EPC) were then cultured to produce polyploid giant cells in vitro. Cultures were processed for in situ hybridization after 2, 4, or 6 days. EX and EPC both formed secondary giant cells, which expressed all markers in the same sequence as was observed in vivo, and primary giant cells in blastocyst outgrowths expressed the early giant cell markers PLF and PL-I on days 4 and 6 of culture. EPC progressed through the sequence 2 days ahead of EX, indicating commitment of EPC to giant cell formation. These results suggest that EX, EPC, and primary and secondary giant cells all share in a common pathway of differentiation and that the highly ordered sequence of gene expression characteristic of this pathway occurs similarly in vivo and in vitro. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Development of preimplantation embryos of the Siberian hamster (Phodopus sungorus) in vivo and in vitro was examined. The timing of early development in vivo was found to be slower than that reported for the golden hamster. Progression through the cleavage stages, cavitation, and hatching from the zona pellucida occurred later, with blastocyst formation beginning on the afternoon of day 4 and uterine attachment occurring early on day 5. In vitro, morulae, and early blastocysts collected on day 4 and cultured in serum-containing medium formed expanded blastocysts and some began to hatch from the zona pellucida. With extended culture, blastocysts attached and formed trophoblast outgrowths. Outgrowth was characterized by an initial migration of small cells from the blastocyst, followed by formation of a sheet of trophoblast giant cells. Differences in the morphology of outgrowth between the hamster and mouse suggest that further comparative studies with the Siberian hamster may be useful.  相似文献   

6.
7.
8.
A series of chimeras was generated by injecting single normal, parthenogenetic, or androgenetic blastomeres carrying transgenic markers under the zona pellucida of nontransgenic eight-cell embryos. These chimeras were cultured to the blastocyst stage and sectioned, and the transgenic component was detected by in situ hybridization. No statistically significant difference was found among the normal, parthenogenetic, and androgenetic chimeras in the number of chimeric blastocysts with a transgenic contribution to the inner cell mass (ICM), the trophectoderm, or both the ICM and trophectoderm. Since androgenetic and parthenogenetic cells were present in chimeras at a high frequency in both the ICM and trophectoderm at the blastocyst stage, but not in similar chimeras at late gastrulation, these cells must not respond normally to developmental signals subsequent to blastocyst formation and prior to late gastrulation.  相似文献   

9.
A bovine trophectoderm cell line was established from a parthenogenetic in vitro-produced blastocyst. To initiate the cell line, 8-day parthenogenetic blastocysts were attached to a feeder layer of STO fibroblasts and primary outgrowths occurred that consisted of trophectoderm, endoderm, and very occasionally epiblast tissue. Any endoderm and epiblast outgrowths were removed from the primary cultures within the first 10 days of culture by dissection. One of the primary trophectoderm cell cultures was chosen for further propagation and was passaged by physical dissociation and replating on STO feeder cells. The cell culture, designated BPT-1, was maintained in T25 flasks and passaged at a 1:3 split ratio for the first 15 passages approximately once every 2 weeks. Thereafter, the cell culture was passaged at 1:10-1:40 split ratios. Transmission electron microscopic examination showed the cells to be a polarized epithelium with apical microvilli, a thin basal lamina, and lateral junctions consisting of tight junctions and desmosomes. Lipid vacuoles and digestive vacuoles were also prominent features of the BPT-1 cells. Metaphase spread analysis at passage 59 indicated a near diploid cell population (2n = 60) with a mode and median of 60 and a mean of 64. BPT-1 cells secreted interferon-tau into the medium as measured by anti-viral assay and Western blot analysis. The cell line provides an in vitro model of parthenogenote trophectoderm whose biological characteristics can be compared to trophectoderm cell lines derived from bovine embryos produced by normal fertilization or nuclear transfer.  相似文献   

10.
Previous studies have suggested that fibroblast growth factor-4 (FGF-4) may be a paracrine signal used by inner cell mass (ICM) cells to maintain adjacent trophectoderm (TE) cells in an undifferentiated state. In the present work, immunocytochemical analysis of mouse blastocysts confirmed that FGF-4 was predominantly detected in the ICM before and after spreading over a fibronectin-coated culture substrate. Addition of human recombinant FGF-4 did not influence morphological progression, cell allocation and proliferation in ICM and TE lineages or mitosis and karyorhexis frequencies during blastocyst expansion. Addition of FGF-4 to outgrowing blastocysts, in contrast, induced a significant decrease in the surface of the trophoblast outgrowths formed by the TE cells and in the proportion of giant trophoblasts per outgrowth. The fact that blastocysts display excessive trophoblast expansion and spreading over their culture substrate upon pre-exposure to high concentrations of glucose in vitro was used to further assess the regulatory effect of FGF-4. Addition of FGF-4 was indeed found to fully neutralize the disruptive impact of high glucose on trophoblast outgrowths. Altogether, our data indicate that ICM-derived FGF-4 participates actively in the regulation of trophoblast development.  相似文献   

11.
Parthenogenetic embryos of mice die shortly after implantation and characteristically contain poorly developed extraembryonic tissue. To investigate the basis of the abnormal development of parthenotes, we combined them with normal embryos to produce chimeras and examined the distribution of the parthenogenetically derived cells during preimplantation and early postimplantation development. The parthenogenetic embryos were derived from a transgenic mouse line bearing a large insert, which allowed these cells to be identified in histological sections using in situ hybridization. At the blastocyst stage, the parthenogenetic embryos contributed cells to the trophectoderm (TE) and inner cell mass (ICM) of chimeras. By 6.5 days, however, in almost every embryo, parthenogenetically derived cells were not detected in the extraembryonic trophoblast tissue descended from the TE. In contrast, parthenogenetically derived cells could contribute to all descendants of the ICM of 6.5-and 7.5-day chimeras, including the extraembryonic visceral and parietal endoderm. Quantitative analysis of the degree of chimerism in the embryonic ectoderm at 6.5-7.5 days indicated that parthenogenetically derived cells could contribute as extensively as normal cells. These results indicate that normal trophoblast development requires gene expression from the paternally inherited genome before 6.5 days of embryogenesis. Tissues of the ICM lineage, however, apparently can develop independently of the paternal genome at least to 7.5 days of embryogenesis. Comparison of these results with those of others suggests that the influence of imprinted genes is manifested at different times and in a variety of tissues during development.  相似文献   

12.
Summary In preimplantation stages of normal and spontaneously activated parthenogenetic embryos of the LT/Sv mouse strain, protein synthesis was analyzed by using two-dimensional polyacrylamide gel electrophoresis. Fertilization and parthenogenetic activation cause similar changes of polypeptide synthesis when compared with those of unfertilized eggs. The overt developmental delay of early parthenotes, which is probably due to an initial retarded activation in comparison with normal fertilization, is documented molecularly by a similar delay in their protein synthesis pattern. These differences are clearly visible at the two-cell stage but gradually disappear during further cleavage. The basic protein patterns of normal and parthenogenetic embryos are remarkably similar up to the blastocyst stage. However, quantitative differences occur in all preimplantation embryos analyzed and become more distinct at the blastocyst stage. In addition, only minor qualitative changes appear during late preimplantation. These alterations in protein synthesis may reflect at the molecular level early events in abnormal development of parthenotes. Our biochemical results are discussed in context with biological experiments rescuing parthenogenetic LT/ Sv embryos by chimera formation.  相似文献   

13.
The objective of this study was to determine developmental pattern, total cell number, apoptosis and apoptosis-related gene expression in haploid and diploid embryos following parthenogenetic activation. In vitro-matured porcine oocytes were activated by electrical pulses and cultured in the absence or presence of cytochalasin B for 3 h. Zygotes with two polar bodies (haploid) and one polar body (diploid) were carefully selected and were further cultured in NCSU 23 medium containing 0.4% bovine serum albumin (BSA) for 7 days. The percentage of development to blastocyst stage was higher (p < 0.01) in the diploid than in the haploid parthenotes. In haploid blastocysts, average total cell number was significantly reduced (p < 0.05) and apoptosis was increased at day 7. The relative abundance of Bcl-xL and Bak mRNA in the diploid blastocysts was similar to that of in vivo-fertilized embryos. However, Bcl-xL was significantly decreased, and Bak mRNA was significantly increased (p < 0.05) in haploid parthenotes compared with the diploid parthenotes. These results suggest that the haploid state affects apoptosis-related gene expression which results in increased apoptosis and decreased developmental competence of haploid parthenotes.  相似文献   

14.
15.
There is very little information available on stage-specific gene expression during early embryo development, particularly in the pig. Here, we accurately identified the genes that are specifically or prominently expressed in parthenogenetic porcine blastocysts as compared with 2-cell stage embryos. We accomplished this by using a PCR technology regulated by annealing control primers (ACPs). By utilizing 120 ACPs, a total of 46 expressed sequence tags (ESTs) of genes that are differentially expressed in blastocysts as compared with 2-cell stage embryos were cloned and sequenced. The cloned genes or ESTs all exhibited significant sequence similarity with known genes or ESTs of other species. Of the known genes, six genes [renin-binding protein (RNBP), BMDP, solute carrier family 25 (SLC25A6), MTHFD1, TRK-fused gene (TFG), spermidine synthase (SRM)] were selected and their stage-specific expression levels in porcine parthenotes were determined by real-time quantitative polymerase chain reaction at the 1-, 2-, 4-cell, morula and blastocyst stages. While RNBP, BMDP, SLC25A6, MTGFD1 and SRM were highly expressed only at the blastocyst stage, TFG was highly expressed at the 1-cell stage, then declined after genomic activation, high levels of expression being again detected at the morula and blastocyst stages. This analysis suggests that the ACP system is an effective tool for use in the identification of stage-specific genes in small numbers of porcine parthenotes. Examination of the genes differentially expressed in the blastocyst, which we have identified here, will provide insight into the molecular basis of preimplantation development.  相似文献   

16.
Aneuploidy underlies failed development and possibly apoptosis of some preimplantation embryos. We employed a haploid model in the mouse to study the effects of aneuploidy on apoptosis in preimplantation embryos. Mouse metaphase II oocytes that were activated with strontium formed haploid parthenogenetic embryos with 1 pronucleus, whereas activation of oocytes with strontium plus cytochalasin D produced diploid parthenogenetic embryo controls with 2 pronuclei. Strontium induced calcium transients that mimic sperm-induced calcium oscillations, and ploidy was confirmed by chromosomal analysis. Rates of development and apoptosis were compared between haploid and diploid parthenogenetic embryos (parthenotes) and control embryos derived from in vitro fertilization (IVF). Haploid mouse parthenotes cleaved at a slower rate, and most arrested before the blastocyst stage, in contrast to diploid parthenotes or IVF embryos. Developmentally retarded haploid parthenotes exhibited apoptosis at a significantly higher frequency than did diploid parthenotes or IVF embryos. However, diploid parthenotes exhibited rates of preimplantation development and apoptosis similar to those of IVF embryos, indicating that parthenogenetic activation itself does not initiate apoptosis during preimplantation development. These results suggest that haploidy can lead to an increased incidence of apoptosis. Moreover, the initiation of apoptosis during preimplantation development does not require the paternal genome.  相似文献   

17.
The maintenance and developmental remodeling of extracellular matrix is crucial to such processes as uterine implantation and the cell migratory events of morphogenesis. When mouse blastocysts are placed in culture they adhere to extracellular matrix, and trophoblast giant cells migrate out onto the matrix and degrade it. The secretion of functional proteinases by developing mouse embryos increases dramatically at the time of implantation. By zymography we identified the major secreted gelatin-degrading proteinase, also known as type IV collagenase, as one migrating at 92 x 10(3) Mr. Several casein-degrading proteinases were also secreted. The tissue inhibitor of metalloproteinases (TIMP) inhibited all of the embryo-derived proteinases detected by gelatin gel zymography, indicating that they are metalloproteinases, whereas TIMP did not inhibit all of the caseinases. Urokinase was also secreted. Addition of TIMP at 5-500 nM effectively inhibited the degradation of matrix by the trophoblast outgrowths. Blocking antibodies directed against 92 x 10(3) Mr gelatinase abolished matrix degradation by the trophoblast cells. These observations suggest that several metalloproteinases are regulated in early development and that 92 x 10(3) Mr gelatinase, in particular, has a rate-limiting function in degradation of the maternal extracellular matrix by trophoblast cells.  相似文献   

18.
Melatonin secreted from the mammalian pineal gland is a free-radical scavenger that protects tissues from cell damage. The present study examined the effects of addition of melatonin to the culture medium on the developmental potential of parthenogenetic and somatic cell nuclear-transferred (SCNT) porcine oocytes. Supplementation of the maturation medium with melatonin did not increase the maturation rate, the proportion of oocytes that cleaved and developed into blastocysts after parthenogenetic activation, or the blastocyst cell number compared to controls. When 10-7 M melatonin was added to the culture medium, the proportion of parthenogenetic oocytes that developed to the 2-cell and 4-cell stages was significantly higher than that of controls. The potential of melatonin-treated oocytes to develop into blastocysts was high but not significantly different from that of controls. The addition of 10-7 M melatonin to the culture medium did not increase the preimplantation development of SCNT oocytes. Melatonin treatment significantly reduced the levels of reactive oxygen species in 4-cell parthenogenetic and SCNT embryos, but did not reduce the proportion of apoptotic cells in parthenogenetic and SCNT blastocysts. Although the results indicated that parthenogenetic and SCNT melatonin -treated embryos had significantly lower levels of reactive oxygen species than controls, the potential of melatonin-treated embryos to develop into blastocysts was not significantly higher than that of controls, in contrast to previous reports. The beneficial effects of melatonin on the developmental potential of oocytes might depend on the culture conditions.  相似文献   

19.
《The Journal of cell biology》1990,111(6):2713-2723
The distribution of the extracellular matrix protein thrombospondin (TSP) in cleavage to egg cylinder staged mouse embryos and its role in trophoblast outgrowth from cultured blastocysts were examined. TSP was present within the cytoplasm of unfertilized eggs; in fertilized one- to four-cell embryos; by the eight-cell stage, TSP was also densely deposited at cell-cell borders. In the blastocyst, although TSP was present in all three cell types; trophectoderm, endoderm, and inner cell mass (ICM), it was enriched in the ICM and at the surface of trophectoderm cells. Hatched blastocysts grown on matrix-coated coverslips formed extensive trophoblast outgrowths on TSP, grew slightly less avidly on laminin, or on a 140-kD fragment of TSP containing its COOH terminus and putative cell binding domains. There was little outgrowth on the NH2 terminus heparin-binding domain. Addition of anti-TSP antibodies (but not GRGDS) to blastocysts growing on TSP strikingly inhibited outgrowth. Consistent with its early appearance and presence in trophoblast cells during implantation, TSP may play an important role in the early events involved in mammalian embryogenesis.  相似文献   

20.
The importance of obtaining stem cells through alternative methods has increased progressively in the recent years due to the potential role that embryonic stem (ES) cells play in the field of regenerative medicine. In this regard, generation of parthenogenetic blastocysts allows the production of ethic-free ES cells without the need to manipulate normal embryos. Our work was aimed at clarifying whether variations in the method adopted to generate diploid parthenogenetic blastocysts could determine differences in the quality of blastocysts produced. In vitro development of mouse oocytes activated with three protocols, using Sr2+ and cytochalasin for different time, was compared with that of in vivo fertilized embryos. We have evaluated the efficiency of blastocyst formation and analysed the expression pattern of the stemness markers OCT4, CDX2, and NANOG. Our results indicate that the yield of diploid parthenogenotes and the segregation of the stemness marker OCT4 in the developing blastocyst are influenced by the parthenogenetic protocol adopted. Particularly, even if all methods tested allowed the production of blastocysts in vitro, the correct segregation of OCT4 occurred only in blastocysts developed from oocytes concomitantly treated for 4 h with Sr2+ and cytochalasin D. Our results indicate that the protocol employed to develop parthenogenetic blastocysts in vitro affects the quality of cells in the inner cell mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号