首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An extensive study of the behavior of three chiral stationary phases (CSP) used in liquid chromatography (LC) is presented for the stereoselective determination of methadone. The following chromatographic columns were selected: a cellulose, Chiralcel OJ; a modified cyclodextrin, Cyclobond I 2000 RSP, and a protein, Chiral‐AGP. Retention factors, enantioselectivity, efficiency, and resolution were tested by modifying the composition of the mobile phase as well as the temperature. The mechanism for the chiral recognition of methadone on each support was discussed. Optimal chromatographic parameters were obtained for the three supports tested, and methadone enantiomers were separated in less than 20 minutes. The cellulose‐based column gave the best resolution, but this CSP was not adapted to clinical analyses of methadone. Under optimized conditions, the cyclodextrin‐ and protein‐based columns allowed an excellent separation of methadone enantiomers, but no interference with the primary metabolite was found only with Chiral‐AGP. Chirality 11:319–325, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

2.
Park JY  Jin KB  Hyun MH 《Chirality》2012,24(5):427-431
3-Amino-5-phenyl (or 5-methyl)-1,4-benzodiazepin-2-ones, which are chiral precursors of anti-respiratory syncytial virus active agents, were resolved on three different chiral stationary phases (CSPs) based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid or (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6. Among the three CSPs, the CSP that is based on (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 and containing residual silanol group-protecting n-octyl groups on the silica surface was found to be most effective with the use of 80% ethanol in water containing perchloric acid (10 mM) and ammonium acetate (1.0 mM) as a mobile phase. The separation factors (α) and resolutions (R(S) ) were in the range of 1.90-3.21 and 2.79-5.96, respectively. From the relationship between the analyte structure and the chromatographic resolution behavior, the chiral recognition mechanism on the CSP based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid was proposed to be different from that on the CSP based on (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6. In addition, the chromatographic resolution behavior of the most effective CSP was investigated as a function of the composition of aqueous mobile phase containing organic and acidic modifier and ammonium acetate.  相似文献   

3.
Hyun MH  Cho YJ  Song Y  Choi HJ  Kang BS 《Chirality》2007,19(1):74-81
A new doubly tethered chiral stationary phase (CSP 5) based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid was developed by attaching the second tethering group to silica gel through a carbon atom of the first tethering group of the corresponding singly tethered CSP (CSP 2) containing an N-CH3 tertiary amide linkage, which was previously developed in our laboratory, in order to enhance the CSP stability without the loss of chiral recognition efficiency. The new CSP was quite effective in the resolution of various racemic alpha-amino acids, amines, and amino alcohols, and the chiral recognition efficiency of the new CSP was even greater than that of the corresponding singly tethered CSP especially in terms of the resolution factors (RS). The stability of the new CSP was greater than that of the corresponding singly tethered CSP. The chromatographic resolution behaviors of the new CSP were generally consistent with those of the corresponding singly tethered CSP.  相似文献   

4.
Cellulose triphenylcarbamate derivatives have been used as stationary phases for resolution of the enantiomers of the β-blockers propranolol and bupranolol by TLC. The derivatives examined were: cellulose trisphenylacarbamate (1), cellulose tris(2,3-dichlorophenyl carbamate) (2), cellulose tris(2,4-dichlorophenyl carbamate) (3), cellulose tris(2,6-dichlorophenyl carbamate) (4), cellulose tris (2,3-dimethylphenyl carbamate) (5), cellulose tris(3,4-dichlorophenyl carbamate) (6), cellulose tris(3,5-dichlorophenyl carbamate) (7), and cellulose tris(3,5-dimethylphenyl carbamate) (8). A variety of mobile phases were used to achieve useful separations and the effects of solvent polarity are also discussed. The best resolution of rac-propranolol was obtained on CSP 8 (RfR = 0.26, RfS = 0.06, α = 4.33) in mobile phase hexane:propan-2-ol (80:20 v/v). The best resolution of rac-bupranolol was obtained on CSP 5 (RfR = 0.29, RfS = 0.09, α = 3.22) in mobile phase hexane:propan-2-ol (80:20 v/v). These results demonstrated the potential of cellulose triphenylcarbamates as chiral stationary phases in TLC and indicate that this is potentially a useful method for the direct, simple, and rapid (within 30 min) resolution of racemates in the analytical control of enantiomeric purity. Physical aspects such as problems in cracking of the CSP, adhesion to plate, and interference of spot detection due to triphenylcarbamate chromphores are also discussed, along with the method employed to overcome them. Chirality 9:139–144, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Chen S  Ward T 《Chirality》2004,16(5):318-330
A variety of compounds containing amines (i.e., amino acids, amino alcohols, etc.) were chemically derivatized with a variety of electrophilic tagging reagents to elucidate the chiral recognition sites on a teicoplanin-bonded chiral stationary phase (CSP) and on R-naphthylethylcarbamate-beta-cyclodextrin (RN-beta-CD)-bonded CSP. Solutes were separated under optimum chromatographic conditions on teicoplanin and RN-beta-CD CSPs for comparison using an acetonitrile-based mobile phase. It was noted that the size of the analyte or tagging reagent exerted a greater influence on compounds separated on teicoplanin than on RN-beta-CD when using the polar organic mode. This suggests that chiral recognition on teicoplanin CSP is more sensitive to size and indicates that the hydrophobic pocket of teicoplanin plays a significant role in chiral recognition in this mode. However, the type of functional groups had a greater impact than the size of analyte on separations obtained from RN-beta-CD phase in the polar-organic mode. Specifically, the pi-pi interaction was enhanced by derivatizing the aromatic ring of the tagging reagent with electron-withdrawing groups and thus altered the resolution substantially. For both phases, chiral recognition is most pronounced when the stereogenic center of the analyte is near the tagging moiety and surrounded by functional groups (e.g., carboxylic, etc.) which are favorable for hydrogen bonding.  相似文献   

6.
Jin JY  Lee W 《Chirality》2007,19(2):120-123
The liquid chromatographic separation of the enantiomers of several N-hydrazide derivatives of 2-aryloxypropionic acids was performed on a crown ether type chiral stationary phase derived from (18-crown-6)-2,3,11,12-tetracarboxylic acid. The behavior of chromatographic parameters by the change of mobile phases and additives for the resolution of these analytes was investigated. The enantiomers of all analytes were base-line resolved with a mobile phase of 100% methanol containing 20 mM H2SO4. These results are the first reported for enantiomer resolution of chiral acids of 2-aryloxypropionic acids as their N-hydrazide derivatives.  相似文献   

7.
The resolution of seven enantiomeric pairs of chiral derivatives of xanthones (CDXs) on (S,S)‐Whelk‐O1 and l ‐phenylglycine chiral stationary phases (CSPs) was systematically investigated using multimodal elution conditions (normal‐phase, polar‐organic, and reversed‐phase). The (S,S)‐Whelk‐O1 CSP, under polar‐organic conditions, demonstrated a very good power of resolution for the CDXs possessing an aromatic moiety linked to the stereogenic center with separation factor and resolution factor ranging from 1.91 to 7.55 and from 6.71 to 24.16, respectively. The chiral recognition mechanisms were also investigated for (S,S)‐Whelk‐O1 CSP by molecular docking technique. Data regarding the CSP–CDX molecular conformations and interactions were retrieved. These results were in accordance with the experimental chromatographic parameters regarding enantioselectivity and enantiomer elution order. The results of the present study fulfilled the initial objectives of enantioselective studies of CDXs and elucidation of intermolecular CSP–CDX interactions. Chirality 25:89–100, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Hsien TJ  Chen S 《Amino acids》2007,33(1):97-104
Summary. A fluorescent electrophilic reagent, 9-fluorenone-4-carbonyl chloride (FCC), is chosen to functionalize amino acids in alkaline medium before their HPLC resolution. FCC reacts with both primary and secondary amino acids to produce stable and highly fluorescent derivatives suitable for sensitive and efficient chromatographic determination and resolution on a teicoplanin chiral stationary phase (CSP) using the methanol-based solvent mixture as the mobile phase. The detection limit is in the picomole range and approximately 0.01% of the d-enantiomer in an excess of the l-enantiomer is detectable. However, the resolution is not reproducible under the elution of either the water- or the acetonitrile-based mobile phase. The increase in solubility of analyte in the mobile phase seems to be responsible. Upon comparison under the optimal chromatographic conditions, the resolution is better than that for the 9-fluorenylmethyl chloroformate (FMOC) or 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatives reported previously.  相似文献   

9.
Twelve chiral compounds were enantiomerically resolved on bovine serum albumin chiral stationary phase (BSA‐CSP) by high‐performance liquid chromatography (HPLC) in reversed‐phase modes. Chromatographic conditions such as mobile phase pH, the percentage of organic modifier, and concentration of analyte were optimized for separation of enantiomers. For N‐(2, 4‐dinitrophenyl)‐serine (DNP‐ser), the retention factors (k) greatly increase from 0.81 to 6.23 as the pH decreasing from 7.21 to 5.14, and the resolution factor (Rs) exhibited a similar increasing trend (from 0 to 1.34). More interestingly, the retention factors for N‐(2, 4‐dinitrophenyl)‐proline (DNP‐pro) decrease along with increasing 1‐propanol in mobile phase (3%, 5%, 7% and 9% by volume), whereas the resolution factor shows an upward trend (from 0.96 to 2.04). Moreover, chiral recognition mechanisms for chiral analytes were further investigated through thermodynamic methods. Chirality 25:487–492, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
This paper describes the enantiorecognition of (±)nicotine and (±)nornicotine by high-performance liquid chromatography using two derivatized cellulose chiral stationary phases (CSPs) operated in the normal phase mode. It was found that different substituents linked to the cellulose backbone significantly influence the chiral selectivity of the derivatized CSP. The results showed that, in general, the tris(4-methylbenzoyl) cellulose CSP (Chiralcel OJ) surpasses tris(3,5-dimethylphenyl carbamoyl) cellulose CSP (Chiralcel OD). On the former column, the resolution (±)nicotine and (±)nornicotine enantiomers depended largely on mobile phase compositions. For the separation of the nicotine enantiomers, the addition of trifluoroacetic acid to a 95:5 hexane/alcohol mobile phase greatly improved the enantioresolution, probably due to enhanced hydrogen bonding interactions between the protonated analytes and the CSP. For (±)nornicotine separation, a reduction in the concentration of alcohol in the mobile phase was more effective than the addition of trifluoroacetic acid. Possible solute-mobile phase-stationary phase interactions are discussed to explain how different additives in the mobile phase and different substituents on the cellulose glucose units of the CSPs affect the separation of both pairs of enantiomers. Chirality 10:364–369, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    11.
    Wang P  Liu D  Jiang S  Xu Y  Gu X  Zhou Z 《Chirality》2008,20(1):40-46
    Amylose-tris(3,5-dimethylphenylcarbamate) (ADMPC) was synthesized and coated on gamma-aminopropylsilica to prepare a chiral stationary phase (CSP). The chiral resolutions of seven pesticide enantiomers including fenoxaprop-ethyl, quizalofop-ethyl, lactofen, metalaxyl, benalaxyl, hexythiazox and fluroxypyr-meptyl on the CSP by high-performance liquid chromatography were performed. Mobile phase was n-hexane and isopropanol with a flow rate of 1.0 ml/min. The influences of isopropanol content in the mobile phase and temperature on the resolutions were investigated. Under the optimized conditions the enantiomers could obtain complete resolutions except that metalaxyl got partial resolution. Decreasing the content of isopropanol increased the retention and the resolutions. Temperature was an important chromatographic parameter for optimization, and the results showed that low temperature was not always good to the resolutions. The enantiomers were identified by a circular dichroism (CD) detector which could provide the CD signals [(+) or (-)] and the CD spectra in the range of 220-420 nm by online scanning.  相似文献   

    12.
    As an important intermediate of prostaglandins and entecavir, optically pure Corey lactone diol (CLD) has great value in the pharmaceutical industry. In this work, the enantioseparation of (±)‐CLD was evaluated using high‐performance liquid (HPLC) and supercritical fluid chromatography (SFC). In HPLC, the separations of CLD enantiomers on polysaccharide‐based chiral stationary phases with both normal phase and polar organic phase were screened. And the conditions for the enantioseparation were optimized in HPLC and SFC, including the selection of mobile phase, temperature, back‐pressure, and other conditions. More important, it was found that the chiral resolutions were greatly enhanced by the increase of the coating amount of ADMPC (amylose tris‐(3,5‐dimethylphenylcarbamate)) under both HPLC and SFC conditions, which can lead to the increase of the productivity and the decrease of the solvent consumption. The preparations of optically pure CLD were evaluated on a semi‐preparative (2 × 25 cm) column packed with 30% ADMPC‐coated CSP under HPLC and SFC conditions. Preparative performances in terms of kkd are 1.536 kg racemate/kg CSP/day and 1.248 kg racemate/kg CSP/day in HPLC and SFC, respectively.  相似文献   

    13.
    A direct, isocratic, and simple chromatographic method is described for the resolution of racemic albuterol using the α1-acid glycoprotein chiral stationary phase (AGP-CSP) under reverse phase conditions. The effect of various organic modifiers, temperature, and phosphate buffer ionic strength on the separation factor (α) and stereochemical resolution factor (Rs) has been studied. The enantiomeric separation of albuterol was also achieved using a urea-type CSP of (S)-indoline-2-carboxylic acid and (R)-1-(α-naphthyl)ethylamine, known as Chirex 3022, running in the normal phase mode. The effect of different organic acids added to the mobile phase was examined and the chiral recognition mechanism(s) is discussed. Solid phase extraction with C18 Sep-Pak cartridges was applied as a clean-up step to determine the enantiomeric ratio between (?)-R and (+)-S-albuterol in pharmaceutical formulations and in human plasma. © 1995 Wiley-Liss, Inc.  相似文献   

    14.
    A variety of acidic mobile phase additives were investigated as to their effects on retention, selectivity, efficiency, and overall chiral resolution for a number of chiral N‐substituted phenylalanine analogs under subcritical conditions. These mobile phase additives showed significant effects for all of the chromatographic parameters evaluated in this study. All of the phenylalanine analogs showed decreasing retention as the pKa of the additive decreased. Plots of selectivity, efficiency, and chiral resolution showed pronounced improvement using acidic additives with pKa values near −1. These results demonstrated that the choice of acidic mobile phase additives had a significant effect on the resulting chromatography for these chiral analytes under subcritical conditions. Chirality 11:91–97, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

    15.
    Hyun MH  Lee GS  Han SC  Cho YJ  Baik IK 《Chirality》2002,14(6):503-508
    A chiral stationary phase (CSP 1) derived from N-(3,5-dinitrobenzoyl)leucine N-phenyl N-alkylamide was used for the liquid chromatographic resolution of anilide derivatives of N-acyl-alpha-amino acids and the chromatographic resolution results were compared with those from four other commercial CSPs. The chromatographic resolution results showed that CSP 1 was most effective among five CSPs used in this study. The chiral recognition mechanism exerted by CSP 1 for the resolution of anilide derivatives of N-acyl-alpha-amino acids is proposed to involve a face-to-face pi-pi interaction and two hydrogen bonding interactions between the CSP and the analytes from the chromatographic resolution behaviors of slightly modified anilide derivatives of N-acyl-alpha-amino acids. The chiral recognition mechanism proposed is quite similar to that advanced previously for the resolution of N-(3,5-methoxybenzoyl)-alpha-amino acids on CSP 1, even though the interaction sites of the two types of analytes were totally different from each other. The apparent similarity of the two chiral recognition mechanisms was assumed to stem from the identical interaction modes of the two types of analytes with the CSP. In addition, the dependence of the enantioselectivity of anilide derivatives of N-acyl-alpha-amino acids on the length of the alkyl tail of the N-acyl group of analytes was rationalized to stem from the intercalation of the N-acyl group of the (R)-enantiomer of analytes between the tethers of the CSP.  相似文献   

    16.
    A new chiral stationary phase (CSP) based on macrocyclic amide receptor was prepared starting from (1R,2R)‐1,2‐diphenylethylenediamine. The new CSP was successfully applied to the resolution of various N‐(substituted benzoyl)‐α‐amino amides with reasonably good separation factors and resolutions (α = 1.75 ~ 2.97 and RS = 2.89 ~ 6.82 for 16 analytes). The new CSP was also applied to the resolution of 3‐substituted 1,4‐benzodiazepin‐2‐ones and some diuretic chiral drugs including bendroflumethiazide and methylchlothiazide and metolazone. The resolution results for 3‐substituted 1,4‐benzodiazepin‐2‐ones and some diuretic chiral drugs were also reasonably good. Chirality 28:253–258, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

    17.
    Several cyclic imidic compounds (barbiturates, piperidine-2,6-diones, and mephenytoin) are enantiomerically resolved via high-performance liquid chromatography (HPLC) on a macrocyclic antibiotic covalently bonded to a silica gel support. The Chirobiotic V chiral stationary phase (CSP) column contains the antibiotic vancomycin as the chiral selector. The results of the analysis show that the substituents at the chiral carbon position of the racemic drugs affect chiral resolution. In addition, ring size may also play a role when considering the formation of analyte-CSP inclusion complexes. Contrary to the piperidine-2,6-diones, the chromatographic parameters for the barbiturates are much the same under normal- or reversed-phase conditions. The details of these results are discussed. Chirality 10:358–361, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

    18.
    A novel chiral stationary phase (CSP) derived from tyrosine is evaluated with regard to the first generation commercially available (S)-ChyRoSine-A CSP, under normalphase or reversed-phase liquid chromatographic (NPLC or RPLC) and subcritical fluid chromatographic (SubFC) conditions. The complete scope of application of these CSPs is reviewed. The novel CSP, which bears a bulkier functional group, displays a higher enantiorecognition ability than previously described (S)-ChyRoSine-A toward about 15 families of racemates, whatever the mobile phase conditions. The direct enantiomeric separation of 1,2-amino-alcohols (β-blockers) is carried out on both CSPs. Facile separations are achieved within short analysis times using SubFC mode, whereas very poor separations are obtained using NPLC mode. These results disagree with previous theories (interchangeability between NPLC and SubFC modes).  相似文献   

    19.
    Hyun MH  Song Y  Cho YJ  Choi HJ 《Chirality》2008,20(3-4):325-329
    A doubly tethered chiral stationary phase (CSP) prepared by bonding (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid to doubly tethered primary aminoalkyl silica gel was used for the resolution of various beta-amino acids. All the beta-amino acids tested were resolved quite well, the separation (alpha) and the resolution factors (RS) being in the ranges 1.34-2.09 and 2.52-7.45, respectively, with a mobile phase of methanol-water (50:50, v/v) containing 10 mM acetic acid. The chiral recognition efficiency of the doubly-tethered CSP was found to be generally superior to that of the corresponding singly-tethered CSP in the resolution of beta-amino acids. The chiral recognition behaviors for the resolution of beta-amino acids on the doubly tethered CSP were examined by varying the type and content of organic and acidic modifiers in the aqueous mobile phase and the column temperature.  相似文献   

    20.
    Liquid chromatographic enantiomer separation of several N‐benzyloxycarbonyl (CBZ) and Ntert‐butoxycarbonyl (BOC) α‐amino acids and their corresponding ethyl esters was performed on covalently immobilized chiral stationary phases (CSPs) (Chiralpak IA and Chiralpak IB) and coated‐type CSPs (Chiralpak AD and Chiralcel OD) based on polysaccharide derivatives. The solvent versatility of the covalently immobilized CSPs in enantiomer separation of N‐CBZ and BOC‐α‐amino acids and their ester derivatives was shown and the chromatographic parameters of their enantioselectivities and resolution factors were greatly influenced by the nature of the mobile phase. In general, standard mobile phases using 2‐propanol and hexane on Chiralpak IA showed fairly good enantioselectivities for resolution of N‐CBZ and BOC‐α‐amino acids and their esters. However, 50% MTBE/hexane (v/v) for resolution of N‐CBZ‐α‐amino acids ethyl esters and 20% THF/hexane (v/v) for resolution of N‐BOC‐α‐amino acids ethyl esters afforded the greatest enantioselectivities on Chiralpak IA. Also, liquid chromatographic comparisons of the enantiomer resolution of these analytes were made on amylose tris(3,5‐dimethylphenylcarbamate)‐derived CSPs (Chiralpak IA and Chiralpak AD) and cellulose tris(3,5‐dimethylphenylcarbamate)‐derived CSPs (Chiralpak IB and Chiralcel OD). Chiralpak AD and/or Chiralcel OD showed the highest enantioselectivities for resolution of N‐CBZ‐α‐amino acids and esters, while Chiralpak AD or Chiralpak IA showed the highest resolution of N‐BOC‐α‐amino acids and esters. Chirality 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号