共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
John A. Dunn Paul M. Savina 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1996,686(2):1313
An isocratic reversed-phase LC-MS method for measuring concentrations of 5-chloro-2′,3′-dideoxy-3′-fluorouridine (935U83; I) directly and its 5′-glucuronide metabolite (5-chloro-2′,3′-dideoxy-5′-O-β-
-glucopyranuronosyl-3′-fluorouridine) indirectly in human plasma was developed, validated, and applied to a Phase I clinical study. The pyrimidine nucleoside, I, was extracted from human plasma by using anionic solid-phase extraction. The concentration of the glucuronide conjugate was determined from the difference between the molar concentration of I in a sample hydrolyzed with β-glucuronidase and the nonhydrolyzed sample. Recovery of I from human plasma averaged 90%. The bias of the assay for I ranged from −5.5 to 7.1% during the validation and from −6.0 to 1.4% during application of the assay to the Phase I single-dose escalation study. The intra- and inter-day precision was less than 8% for I and its glucuronide conjugate. The lower and upper limits of quantitation for a 50-μl sample were 4 ng/ml and 3000 ng/ml, respectively. No significant endogenous interferences were noted in human plasma obtained from drug-free volunteers nor from predose samples of HIV-infected patients. 相似文献
8.
9.
10.
11.
12.
Yulia A. Meshcheriakova Pooja Saxena George P. Lomonossoff 《Plant biotechnology journal》2014,12(6):718-727
A transient expression system based on a deleted version of Cowpea mosaic virus (CPMV) RNA‐2, termed CPMV‐HT, in which the sequence to be expressed is positioned between a modified 5′ UTR and the 3′ UTR has been successfully used for the plant‐based expression of a wide range of proteins, including heteromultimeric complexes. While previous work has demonstrated that alterations to the sequence of the 5′ UTR can dramatically influence expression levels, the role of the 3′ UTR in enhancing expression has not been determined. In this work, we have examined the effect of different mutations in the 3′UTR of CPMV RNA‐2 on expression levels using the reporter protein GFP encoded by the expression vector, pEAQexpress‐HT‐GFP. The results showed that the presence of a 3′ UTR in the CPMV‐HT system is important for achieving maximal expression levels. Removal of the entire 3′ UTR reduced expression to approximately 30% of that obtained in its presence. It was found that the Y‐shaped secondary structure formed by nucleotides 125–165 of the 3′ UTR plays a key role in its function; mutations that disrupt this Y‐shaped structure have an effect equivalent to the deletion of the entire 3′ UTR. Our results suggest that the Y‐shaped secondary structure acts by enhancing mRNA accumulation rather than by having a direct effect on RNA translation. The work described in this paper shows that the 5′ and 3′ UTRs in CPMV‐HT act orthogonally and that mutations introduced into them allow fine modulation of protein expression levels. 相似文献
13.
It is known that mitochondrial DNA (mtDNA) replication is independent of the cell cycle. Even in post-mitotic cells in which nuclear DNA replication has ceased, mtDNA is believed to still be replicating. Here, we investigated the turnover rate of mtDNA in primary rat hepatocytes, which are quiescent cells. Southwestern blot analysis using 5-bromo-2'-deoxyuridine (BrdU) was employed to estimate the activity of full-length mtDNA replication and to determine efficient doses of replication inhibitors. Southern blot analysis showed that a two-day treatment with 20mM 2',3'-dideoxycytidine and 0.2mug/ml ethidium bromide caused a 37% reduction in the amount of mtDNA, indicating that the hepatocytes had a considerably high rate of turnover of mtDNA. Further, pulse-chase analysis using Southwestern analysis showed that the amount of newly synthesized mtDNA labeled with BrdU declined to 60% of the basal level within two days. Because the rate of reduction of the new mtDNA was very similar to the overall turnover rate described above, it appears that degrading mtDNA molecules were randomly chosen. Thus, we demonstrated that there is highly active and random turnover of mtDNA in hepatocytes. 相似文献
14.
T. Nicole Clark Catherine A. White Chung K. Chu Michael G. Bartlett 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2001,755(1-2)
3′-Azido-2′,3′-dideoxyuridine (AZDU, Azddu, CS-87) is a nucleoside analog of 3′-azido-3′-deoxythymidine (zidovudine, AZT) that has been shown to inhibit human immunodeficiency virus (HIV-1). AZDU is a potential candidate for treatment of pregnant mothers to prevent prenatal transmission of HIV/AIDS to their unborn children. A rapid and efficient high-performance liquid chromatography (HPLC) method for the determination of AZDU concentrations in rat maternal plasma, amniotic fluid, placental and fetal tissue samples has been developed and validated. Tissue samples were homogenized in distilled water, protein precipitated and extracted using a C-18 solid-phase extraction (SPE) method prior to analysis. Plasma and amniotic fluid samples were protein precipitated with 2 M perchloric acid prior to analysis. Baseline resolution was achieved using a 4.5% acetonitrile in 40 mM sodium acetate (pH 7) buffer mobile phase for amniotic fluid, placenta and fetus samples and with a 5.5% acetonitrile in buffer solution for plasma at flow-rates of 2.0 ml/min. The HPLC system consists of a Hypersil ODS column (150×4.6 mm) with a Nova-Pak C-18 guard column with detection at 263 nm. The method yields retention times of 6.2 and 12.2 min for AZDU and AZT in plasma and 8.3 and 17.6 min for AZDU and AZT in amniotic fluid, fetal and placental tissues. Limits of detection ranged from 0.01 to 0.075 μg/ml. Recoveries ranged from 81 to 96% for AZDU and from 82 to 96% for AZT in the different matrices. Intra-day (n=6) and inter-day (n=9) precision (% RSD) and accuracy (% Error) ranged from 1.48 to 6.25% and from 0.50 to 10.07%, respectively. 相似文献
15.
Objective: Apart from having an effect on energy balance, leptin is also involved in cardiovascular regulation and in the pathogenesis of obesity‐associated hypertension. We investigated the effect of leptin on nitric oxide (NO) production. Research Methods and Procedures: Wistar rats were placed in metabolic cages, and urine was collected in 2‐hour periods. After the control period, leptin (1 mg/kg intraperitoneal) was administered, and urine collection was continued for up to 6 hours. Blood was obtained 0.5, 1, 2, 4, and 6 hours after hormone injection. Results: Leptin increased plasma concentrations of NO metabolites (nitrates + nitrites, NOx) by 32.5%, 58.0%, and 29.7% at 1, 2, and 4 hours, respectively. Urinary NOx excretion increased by 28.8% in the first and by 20.1% in the second 2‐hour period after injection. The plasma concentration of the NO second messenger, cyclic guanosine 3′,5′‐monophosphate (cGMP), increased by 83% and 50.6% at 2 and 4 hours after leptin administration, respectively. Urinary excretion of cyclic GMP increased by 36.1% in the first and by 43.1% in the second 2‐hour period. Leptin had no effect on the plasma concentration of atrial natriuretic peptide (ANP). The effect of leptin on plasma and urinary NOx was abolished by the NO synthase inhibitor, NG‐nitro‐l ‐arginine methyl ester (l ‐NAME) (30 mg/kg intraperitoneal) administered 15 minutes before leptin injection. l ‐NAME alone caused a 32.2% increase in systolic blood pressure, but this increase was not observed in rats receiving l ‐NAME and leptin. Discussion: The results indicate that leptin stimulates systemic NO production; leptin prevents blood pressure elevation induced by acute NO blockade, suggesting that leptin also triggers additional hypotensive mechanisms; and ANP is not involved in renal and vascular effects of leptin. 相似文献
16.
17.
Adolph J. Ferro Arther A. Vandenbark Kevin Marchitto 《Biochimica et Biophysica Acta (BBA)/General Subjects》1979,588(3):294-301
To determine if increased 5′-methylthioadenosine phosphorylase activity in activated lymphocytes may be responsible for the decreased inhibitory effect noted when 5′-methylthioadenosine is added after stimulation, the activity of this enzyme was monitored during lymphocyte transformation. A direct correlation existed between the transformation process and 5′-methylthioadenosine phosphorylase activity; the longer the stimulation process progressed, the greater the enzyme activity. The 7-deaza analog of 5′-methylthioadenosine, 5′-methylthiotubercidin, was utilized to explore further the role that the phosphorylase may play in the reversal process. 5′-Methylthioadenosine acted as a potent inhibitor, but not a substrate, of the 5′-methylthioadenosine phosphorylase, and was an even more potent inhibitor of lymphocyte transformation than 5′-methylthioadenosine. However, in direct contrast to the 5′-methylthioadenosine effect, inhibition by 5′-methylthiotubercidin could not be completely reversed. These data suggest the 5′-methylthioadenosine phosphorylase plays an important role in reversing 5′-methylthioadenosine-mediated inhibition and that the potent, nonreversible inhibitory effects of 5′-methylthiotubercidin are due to its resistance to 5′-methylthioadenosine phosphorylase degradation. 相似文献
18.
GIOVANNI GIUDICE 《Cell biology international》1996,20(1):29-32
Some general molecular mechanisms underlying development are described. Namely: those involved in the differentiation of the R7 receptor inDrosophilaembryonic retina; those involved in the determination of embryonic axes and in polar cell differentiation, inDrosophila; those involved in the determination of the AB and P cell lineage and in vulva differentiation inCaenorhabditisembryos. 相似文献
19.
Anna I. Erickson Reta D. Sarsam Andrew J. Fisher 《Acta Crystallographica. Section F, Structural Biology Communications》2014,70(6):750-753
CysQ is part of the sulfur‐activation pathway that dephosphorylates 3′‐phosphoadenosine 5′‐monophosphate (PAP) to regenerate adenosine 5′‐monophosphate (AMP) and free phosphate. PAP is the product of sulfate‐transfer reactions from sulfotransferases that use the universal sulfate donor 3′‐phosphoadenosine 5′‐phosphosulfate (PAPS). In some organisms PAP is also the product of PAPS reductases that reduce sulfate from PAPS to sulfite. CysQ from Mycobacterium tuberculosis, which plays an important role in the biosynthesis of sulfated glycoconjugates, was successfully purified and crystallized in 24% PEG 1500, 20% glycerol. X‐ray diffraction data were collected to 1.7 Å resolution using a synchrotron‐radiation source. Crystals grew in the orthorhombic space group P212121, with unit‐cell parameters a = 40.3, b = 57.9, c = 101.7 Å and with one monomer per asymmetric unit. 相似文献
20.
Petr Pachl Milan Fbry Ivan Rosenberg Ondej imk Pavlína ez
ov Jií Brynda 《Acta Crystallographica. Section D, Structural Biology》2014,70(2):461-470
The human 5′(3′)‐deoxyribonucleotidases catalyze the dephosphorylation of deoxyribonucleoside monophosphates to the corresponding deoxyribonucleosides and thus help to maintain the balance between pools of nucleosides and nucleotides. Here, the structures of human cytosolic deoxyribonucleotidase (cdN) at atomic resolution (1.08 Å) and mitochondrial deoxyribonucleotidase (mdN) at near‐atomic resolution (1.4 Å) are reported. The attainment of an atomic resolution structure allowed interatomic distances to be used to assess the probable protonation state of the phosphate anion and the side chains in the enzyme active site. A detailed comparison of the cdN and mdN active sites allowed the design of a cdN‐specific inhibitor. 相似文献