共查询到20条相似文献,搜索用时 15 毫秒
1.
Lindqvist M Melcher A Hjemdahl P 《American journal of physiology. Heart and circulatory physiology》2004,287(5):H2309-H2315
Cardiovascular and sympathoadrenal responses to a reproducible mental stress test were investigated in eight healthy young men before and during intravenous infusion of the nitric oxide (NO) synthesis inhibitor N-monomethyl-L-arginine (L-NMMA). Before L-NMMA, stress responses included significant increases in heart rate, mean arterial pressure, and cardiac output (CO) and decreases in systemic and forearm vascular resistance. Arterial plasma norepinephrine (NE) increased. At rest after 30 min of infusion of L-NMMA (0.3 mg.kg(-1).min(-1) iv), mean arterial pressure increased from 98 +/- 4 to 108 +/- 3 mmHg (P <0.001) because of an increase in systemic vascular resistance from 12.9 +/- 0.5 to 18.5 +/- 0.9 units (P <0.001). CO decreased from 7.7 +/- 0.4 to 5.9 +/- 0.3 l/min (P <0.01). Arterial plasma NE decreased from 2.08 +/- 0.16 to 1.47 +/- 0.14 nmol/l. Repeated mental stress during continued infusion of L-NMMA (0.15 mg.kg(-1).min(-1)) induced qualitatively similar cardiovascular responses, but there was a marked attenuation of the increase in mean arterial blood pressure, resulting in similar "steady-state" blood pressures during mental stress without and with NO blockade. Increases in heart rate and CO were attenuated, but stress-induced decreases in systemic and forearm vascular resistance were essentially unchanged. Arterial plasma NE increased less than during the first stress test. Thus the increased arterial tone at rest during L-NMMA infusion is compensated for by attenuated increases in blood pressure during mental stress, mainly through a markedly attenuated CO response and suppressed sympathetic nerve activity. 相似文献
2.
Richard M McAllister Sean C Newcomer Eric R Pope James R Turk M Harold Laughlin 《Journal of applied physiology》2008,104(1):186-197
Nitric oxide (NO) is potentially involved in several responses to acute exercise. We tested the hypotheses that inhibition of NO formation reduces maximal O(2) delivery to muscle, but does not affect O(2) utilization by muscle, therefore lowering maximal O(2) consumption. To test these hypotheses, swine (approximately 30 kg) drank either tap water (Con, n = 25) or water with N(G)-nitro-l-arginine methyl ester (8.0 +/- 0.4 mg x kg(-1) x day(-1) for >or=4 wk; LN, n = 24). Treatment efficacy was reflected by higher mean arterial pressure and lower plasma NO metabolite concentration in LN than Con (both P < 0.05). Swine completed two graded treadmill running tests to maximum. In the first test, O(2) consumption was determined at rest through maximal exercise intensity. O(2) consumption did not differ between groups at rest or at most exercise intensities, including maximum (Con, 40.8 +/- 1.8 ml x min(-1) x kg(-1); LN, 40.4 +/- 2.9; not significant). In the second test, tissue-specific blood flows were determined using the radiolabeled-microsphere technique. At rest, blood flows were lower (P < 0.05) in LN compared with Con for a number of tissues, including kidney, adrenal, lung, and several skeletal muscles. During both submaximal and maximal exercise, however, blood flows were similar between Con and LN for all 16 muscles examined; only blood flows to kidney (Con, 99 +/- 16 ml x min(-1) x 100 g; LN, 55 +/- 15; P < 0.05) and pancreas (Con, 25 +/- 7; LN, 6 +/- 2; P < 0.05) were lower in LN at maximum. Endothelium-dependent, but not -independent, relaxation of renal arterial segments was reduced (P < 0.05) in vitro. These data indicate that exercise-induced increases in muscle blood flows are maintained with chronic inhibition of NO formation and that maximal O(2) consumption is therefore preserved. Redundant vasodilatory pathways and/or upregulation of these pathways may underlie these findings. 相似文献
3.
David Wang Jeng Wei Kang Hsu Jin-Chi Jau Mei-Wen Lieu Tai-Jong Chao Hsing I. Chen 《Journal of biomedical science》1999,6(1):28-35
Endotoxin shock is characterized by systemic hypotension, hyporeactiveness to vasoconstrictors and acute lung edema. A nitric oxide synthase (NOS) inhibitor, NG-monomethyl-L-arginine (L-NMMA) has been shown to be effective in reversing acute lung injury. In the present study, we evaluated the effects of NOS blockade by different mechanisms on the endotoxin-induced changes. In anesthetized rats, lipopolysaccharide (LPS,Klebsiella pneumoniae) was administered intravenously in a dose of 10 mg/kg. LPS caused sustained systemic hypotension accompanied by an eightfold increase of exhaled NO during an observation period of 4 h. After the experiment, the lung weight was obtained and lung tissues were taken for the determination of mRNA expressions of inducible NOS (iNOS), interleukin-1 (IL-1) and tumor necrosis factor--(TNF-). Histological examination of the lungs was also performed. In the control group injected with saline solution, mRNA expressions of iNOS, IL-1 and TNF- were absent. Four hours after LPS, the mRNA expressions of iNOS and IL-1 were still significantly enhanced, but TNF- was not discernibly expressed. LPS also caused a twofold increase in lung weight. Pathological examination revealed endothelial damage and interstitial edema. Various NOS inhibitors were given 1 h after LPS administration. These agents included N-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg), a constitutive NOS and iNOS inhibitor; S,S-1,4-phenylene-bis-(1,2-ethanedinyl) bis-isothiourea dihydrobromide (1,4-PBIT, 10 mg/kg), a relatively specific iNOS inhibitor, and dexamethasone (3 mg/kg), an inhibitor of iNOS expression. These NOS inhibitors all effectively reversed the systemic hypotension, reduced the exhaled NO concentration and prevented acute lung injury. The LPS-induced mRNA expressions of iNOS and IL-1 were also significantly depressed by these NOS inhibitors. Our results suggest that NO production through the iNOS pathway is responsible for endotoxin-induced lung injury. Certain cytokines such as IL-1 are possibly involved. These changes are minimized by NOS inhibitors through different mechanisms. 相似文献
4.
A. K. Martusevich S. P. Peretyagin A. G. Soloveva A. A. Martusevich A. D. Plekhanova 《Biophysics》2016,61(1):139-143
The goal of this work was to study the influence of nitric oxide inhalation on parameters of blood proand antioxidant systems in rats under both an intact condition and experimental thermal injury. We studied 40 Wistar rats that were divided into four equal groups. The intact group was subjected to no manipulation exñept a single blood sampling, main group I was subjected to inhalation of a air mixture containing 20 ppm of nitric oxide for 10 days, the control group was subjected to thermal injury and conventional treatment, and main group II was subjected to thermal injury and daily inhalation of nitric oxide (20 ppm) for 10 days. We studied the intensity of lipid peroxidation in the blood plasma, the total antioxidant activity, the peroxide resistance of erythrocytes, the level of malondialdehyde in the blood plasma and erythrocytes, and the activity of superoxide dismutase. It was shown that daily inhalations of a mixture containing a low concentration of nitric oxide (20 ppm) modified blood oxidative metabolism in healthy and burned rats. We hypothesized that the activation of lipid peroxidation in erythrocytes accompanied by a pronounced increase in the catalytic activity of superoxide dismutase is a unified response of healthy and burned rats to exogenous nitric oxide exposure. We also observed a moderate prooxidant effect in the blood plasma of healthy animals comparable to that in the erythrocytes of these rats. In the case of thermal injury, oxidative stress tended to be corrected after the end of the course of inhalation. 相似文献
5.
Costantino Iadecola M.D. Xiaohong Xu Fangyi Zhang Jingru Hu Esam E. El-Fakahany 《Neurochemical research》1994,19(4):501-505
We studied the dose-response characteristics and the temporal profile of inhibition of brain nitric oxide (NO) synthase (NOS) elicited by i.v. administration of the NOS inhibitor nitro-l-arginine methyl ester (L-NAME). L-NAME was administered i.v. in awake rats equipped with a venous cannula. L-NAME was injected in cumulative doses of 5, 10, 20 and 40 mg/kg and rats were sacrificed 30 min after the last dose. NOS catalytic activity was assayed in forebrain cytosol as the conversion of [3H]l-arginine into [3H]l-citrulline. L-NAME attenuated brain NOS activity in a dose-dependent manner but enzyme activity could not be inhibited by more than 50%. After a single 20 mg/kg injection of L-NAME the inhibition of brain NOS activity was time dependent and reached a stable level at 2 hrs (52% of vehicle). Inhibition after a single injection was still present at 96 hrs, albeit to a lower magnitude. We conclude that intravenous administration of L-NAME in rats at concentrations commonly used in physiological experiments leads to a dose and time-dependent but partial inhibition of brain NOS catalytic activity. The finding that the inhibition persists for several days after a single administration is consistent with the hypothesis that nitro-L-arginine, the active principle of L-NAME, binds to NOS irreversibly. 相似文献
6.
Rodríguez-Gómez I Wangensteen R Moreno JM Chamorro V Osuna A Vargas F 《American journal of physiology. Endocrinology and metabolism》2005,288(6):E1252-E1257
We hypothesized that nitric oxide generated by inducible nitric oxide synthase (iNOS) may contribute to the homeostatic role of this agent in hyperthyroidism and may, therefore, participate in long-term control of blood pressure (BP). The effects of chronic iNOS inhibition by oral aminoguanidine (AG) administration on BP and morphological and renal variables in hyperthyroid rats were analyzed. The following four groups (n = 8 each) of male Wistar rats were used: control group and groups treated with AG (50 mg.kg(-1).day(-1), via drinking water), thyroxine (T4, 50 microg.rat(-1).day(-1)), or AG + T4. All treatments were maintained for 3 wk. Tail systolic BP and heart rate (HR) were recorded weekly. Finally, we measured BP (mmHg) and HR in conscious rats and morphological, plasma, and renal variables. T(4) administration produced a small BP (125 +/- 2, P < 0.05) increase vs. control (115 +/- 2) rats. AG administration to normal rats did not modify BP (109 +/- 3) or any other hemodynamic variable. However, coadministration of T4 and AG produced a marked increase in BP (140 +/- 3, P < 0.01 vs. T4). Pulse pressure and HR were increased in both T4- and T4 + AG -treated groups without differences between them. Plasma NOx (micromol/l) were increased in the T4 group (10.02 +/- 0.15, P < 0.05 vs. controls 6.1 +/- 0.10), and AG reduced this variable in T4-treated rats (6.81 +/- 0.14, P < 0.05 vs. T4) but not in normal rats (5.78 +/- 0.20). Renal and ventricular hypertrophy and proteinuria of hyperthyroid rats were unaffected by AG treatment. In conclusion, the results of the present paper indicate that iNOS activity may counterbalance the prohypertensive effects of T4. 相似文献
7.
The role of nitric oxide (NO) in the regulation of blood pressure and hypothalamic-pituitary-adrenal function of adult rats treated with monosodium glutamate (MSG) during the neonatal period was investigated. Blood pressure and the heart rate were registered by a computerized system of direct blood pressure measurement through an indwelling cannula in the femoral artery. The inhibition of the activity of NO synthase by acute injection of Nomega-nitro-L-argininemethylester (L-NAME, 30 mg/kg, i.v.) to control rats produced a rise of blood pressure and a fall of heart rate. Both responses were reduced in MSG-treated rats. Repeated administration of L-NAME (50 mg/kg, i.p, two times daily for 4 days) increased BP in both groups of animals. Corticosterone concentrations in the plasma were significantly increased in response to repeated L-NAME administration in MSG-treated rats, while ACTH levels were similar in both groups of animals. These data suggest that some of the cardiovascular and endocrine changes in rats treated with MSG may be due to the abnormal function of the NO system. 相似文献
8.
9.
An acute bout of aerobic exercise results in a reduced blood pressure that lasts several hours. Animal studies suggest this response is mediated by increased production of nitric oxide. We tested the extent to which systemic nitric oxide synthase inhibition [N(G)-monomethyl-L-arginine (L-NMMA)] can reverse the drop in blood pressure that occurs after exercise in humans. Eight healthy subjects underwent parallel experiments on 2 separate days. The order of the experiments was randomized between sham (60 min of seated upright rest) and exercise (60 min of upright cycling at 60% peak aerobic capacity). After both sham and exercise, subjects received, in sequence, systemic alpha-adrenergic blockade (phentolamine) and L-NMMA. Phentolamine was given first to isolate the contribution of nitric oxide to postexercise hypotension by preventing reflex changes in sympathetic tone that result from systemic nitric oxide synthase inhibition and to control for alterations in resting sympathetic activity after exercise. During each condition, systemic and regional hemodynamics were measured. Throughout the study, arterial pressure and vascular resistances remained lower postexercise vs. postsham despite nitric oxide synthase inhibition (e.g., mean arterial pressure after L-NMMA was 108.0+/-2.4 mmHg postsham vs. 102.1+/-3.3 mmHg postexercise; P<0.05). Thus it does not appear that postexercise hypotension is dependent on increased production of nitric oxide in humans. 相似文献
10.
N.M. Ocarino J.N. Boeloni A.M. Goes J.F. Silva U. Marubayashi R. Serakides 《Nitric oxide》2008,19(4):320-325
Physical activity has potent and complex effects on bones. We hypothesized that physical activity has a positive effect upon osteopenic rat bones because it stimulates osteogenic differentiation of bone marrow mesenchymal stem cells (MSCs). We also postulated that local nitric oxide concentrations mediate the effects of physical activity on bones. The objective of this study was to investigate the osteogenic differentiation in vitro of MSCs from osteopenic female rats subjected to physical activity with and without nitric oxide synthase inhibition. We used MSCs from the femurs of Wistar female rats divided into six groups: Group 1, sham-operated (control); Group 2, sedentary osteopenic; Group 3, active osteopenic; Group 4, sham-operated with L-NAME; Group 5, sedentary osteopenic with L-NAME; and Group 6, active osteopenic with L-NAME. The cells were cultured at 37 °C and 5% CO2. Cells were phenotypically characterized with anti-CD45, anti-CD90, anti-CD73, and anti-CD54 using a FACScan cytometer. MSCs were cultured in osteogenic medium for 7, 14 and 21 days. Alkaline phosphatase activity, the capacity of dimethylthiazol conversion in formazan crystals, collagen synthesis and the number of mineralized nodules were analyzed. The means of all of the variables were compared using the SNK test. MSCs did not express CD45 in 96.94% of the cells, but there was expression of CD73, CD54 and CD90 in 93.99%, 95.10% and 86.77% of the cells, respectively. MSCs from osteopenic rats showed less osteogenic differentiation. Surprisingly, physical activity increased the osteogenic differentiation of MSCs in osteopenic rats. Inhibition of nitric oxide synthase in vivo had a negative effect upon the osteogenic potential of MSCs from normal rats and from osteopenic rats subjected to physical activity. Our results suggest that nitric oxide stimulates MSCs osteogenic differentiation and that nitric oxide mediates the beneficial effects of physical activity upon MSCs osteogenic differentiation. 相似文献
11.
JANA PITERKOVÁ MAREK PETIVALSKÝ LENKA LUHOVÁ BARBORA MIESLEROVÁ MICHAELA SEDLÁOVÁ ALE LEBEDA 《Molecular Plant Pathology》2009,10(4):501-513
Various genetic and physiological aspects of resistance of Lycopersicon spp. to Oidium neolycopersici have been reported, but limited information is available on the molecular background of the plant–pathogen interaction. This article reports the changes in nitric oxide (NO) production in three Lycopersicon spp. genotypes which show different levels of resistance to tomato powdery mildew. NO production was determined in plant leaf extracts of L. esculentum cv. Amateur (susceptible), L. chmielewskii (moderately resistant) and L. hirsutum f. glabratum (highly resistant) by the oxyhaemoglobin method during 216 h post-inoculation. A specific, two-phase increase in NO production was observed in the extracts of infected leaves of moderately and highly resistant genotypes. Moreover, transmission of a systemic response throughout the plant was observed as an increase in NO production within tissues of uninoculated leaves. The results suggest that arginine-dependent enzyme activity was probably the main source of NO in tomato tissues, which was inhibited by competitive reversible and irreversible inhibitors of animal NO synthase, but not by a plant nitrate reductase inhibitor. In resistant tomato genotypes, increased NO production was localized in infected tissues by confocal laser scanning microscopy using the fluorescent probe 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. NO production observed in the extracts from pathogen conidia, together with elevated NO production localized in developing pathogen hyphae, demonstrates a complex role of NO in plant–pathogen interactions. Our results are discussed with regard to a possible role of increased NO production in pathogens during pathogenesis, as well as local and systemic plant defence mechanisms. 相似文献
12.
Effect of inhibition of nitric oxide synthesis on the diaphragmatic microvascular response to hypoxia 总被引:1,自引:0,他引:1
Ward, Michael E. Effect of inhibition of nitric oxidesynthesis on the diaphragmatic microvascular response to hypoxia. J. Appl. Physiol. 81(4):1633-1641, 1996.The purpose of this study was to determine theeffect of inhibition of nitric oxide (NO) release on the diaphragmaticmicrovascular responses to hypoxia. In -chloralose-anesthetizedmongrel dogs, the microcirculation of the vascularly isolated ex vivoleft hemidiaphragm was studied by intravital microscopy. The diaphragmwas pump perfused with blood diverted from the femoral artery through aseries of membrane oxygenators. The responses to supramaximalconcentrations of sodium nitroprusside, moderate hypoxia (phrenicvenous PO2 27 Torr), andsevere hypoxia (phrenic venous PO2 15 Torr) were recorded before and after an infusion ofNG-nitro-L-arginine(L-NNA; 6 × 104 M) into the phreniccirculation for 20 min. Under control conditions, diaphragmatic bloodflow was 12.4 ± 1.1 ml · min1 · 100 g1. Diaphragmatic bloodflows recorded during moderate and severe hypoxia were 15.6 ± 1.2 and 24.3 ± 1.5 ml · min1 · 100 g1, respectively(P < 0.05 for both compared withcontrol values). Treatment withL-NNA reduced diaphragmaticblood flow to 9.6 ± 0.8 ml · min1 · 100 g1 under control conditions(P < 0.05) and caused arteriolarvasoconstriction to a degree that was dependent on vessel size (i.e.,larger vessels constricted more than smaller vessels).L-NNA eliminated the increase inblood flow during moderate hypoxia and inhibited arteriolar dilation byan amount that was related to vessel size (i.e., dilation of largervessels was inhibited more than that of smaller vessels). Inhibition ofNO synthesis had no effect on the increase in diaphragmatic blood flow(23.6 ± 1.9 ml · min1 · 100 g1;P > 0.05 compared with that duringsevere hypoxia before treatment withL-NNA) or arteriolar diametersduring severe hypoxia. NO release plays a role in the diaphragmaticvascular response to hypoxia, but this role is limited to dilation oflarger arterioles during hypoxia of moderate severity. 相似文献
13.
Dr. Leila M. Meirelles Pereira Carlos A. Mandarim-de-Lacerda 《Journal of biomedical science》1998,5(5):363-369
This study quantitatively examined myocardial changes during the hypertensive process. Four groups (n=10 for each group) of adultRattus norvegicus (Wistar strain) were studied. Animals were sacrificed at 40 and 80 days of experimentation (control and experimental groups in each age). Although animals in the experimental groups received L-NAME (50 mg/kg/day) for 40 days, one group of animals was without L-NAME for the remaining 40 days. In addition, stereology was performed to determine the volume and numerical densities of myocytes (Vv and Nv, respectively), the mean volume and the total number of myocytes (Vol and N, respectively). According to those results, the blood pressure increased following L-NAME administration and remained high even at 40 days after administering L-NAME. The cardiac weight significantly increased in L-NAME animals and also in control of older animals. Moreover, Vv and the Vol increased in older animals. Notably, inhibition of the NO synthase increased Vol while decreasing Nv and N. These indices remained unchanged even after 40 days of the L-NAME intake interruption. Nv and N also decreased in older animals. Furthermore, hypertrophy and loss of myocytes were not entirely reversible after cessation of the chronic inhibition of the NO synthase in an extended follow-up. 相似文献
14.
Effect of nitric oxide synthase inhibition on cardiorespiratory responses in the conscious rat 总被引:3,自引:0,他引:3
Gozal David; Torres Jose E.; Gozal Yair M.; Littwin Sanford M. 《Journal of applied physiology》1996,81(5):2068-2077
Gozal, David, José E. Torres, Yair M. Gozal, andSanford M. Littwin. Effect of nitric oxide synthase inhibition on cardiorespiratory responses in the conscious rat. J. Appl. Physiol. 81(5): 2068-2077, 1996.Nitricoxide synthase (NOS) blockade was used to test the cardioventilatoryresponses to hypercapnia and hypoxia in freely behaving animals.Chronically instrumented adult Sprague-Dawley rats were studied beforeand after intravenous administration of either 100 mg/kg ofNG-nitro-L-arginine methylester (L-NAME), a nonspecificNOS blocker, or 10 mg/kg ofS-methyl-L-thiocitrulline(SMTC), a selective neural NOS inhibitor.L-NAME injection inducedsustained blood pressure (BP) elevation with transient tachycardia andincreased minute ventilation (E), whichreturned to baseline within minutes. SMTC elicited similar, althoughtransient, BP increases; however, heart rate andE decreased.L-NAME and SMTC did not modifyoverall steady-state hypercapnic responses. In controlconditions, hypoxia induced early Eincreases with further E enhancementsat 30 min. L-NAME increased theearly E response to 10%O2 but induced lateE reductions in hypoxia. SMTC did notchange early E responses but inducedmarked reductions in the later Ehypoxic responses. In control animals, hypoxia induced a significantheart rate increase. This increase was absent during the early response after SMTC and was followed in bothL-NAME- and SMTC-treated animals by significant heart rate reductions to values below room air. Similarly, the sustained BP response to hypoxia in control animals wasabsent after administration of NOS inhibitors. These findings suggestthat NOS activity exerts excitatory influences on respiration andcardiac chronotropy and sustained vasomotor tone during hypoxia. Wespeculate that NOS-mediated mechanisms may play an important role inhypoxia-induced ventilatory roll-off during wakefulness. 相似文献
15.
中枢和外周给一氧化氮合酶抑制剂对AVP降温作用的影响 总被引:1,自引:0,他引:1
目的 :探讨一氧化氮 (NO)在精氨酸加压素 (AVP)降温中的作用。方法 :用数字体温计测量大鼠的结肠温度 ,每次间隔 30min ,观察了中枢和外周给一氧化氮合酶抑制剂L 硝基精氨酸甲酯 (L NAME)对AVP引起降温作用的影响。结果 :①分别静脉注射AVP(4μg·kg- 1 )和L NAME(30mg·kg- 1 )后均可引起明显的降温效应 ,而静脉注射AVP后立即给L NAME对AVP的降温效应无明显影响。②侧脑室注射L NAME(1mg·kg- 1 )可引起体温明显升高 ,但当联合给AVP和L NAME时 ,侧脑室注射L NAME可明显阻断静脉注射AVP引起的降温效应。结论 :中枢内源性NO在AVP引起的降温过程中起重要的作用。另外 ,侧脑室注射一氧化氮合酶抑制剂L NAME有明显的升温效应 ,提示中枢性NO对正常体温的下调有紧张性调节作用 相似文献
16.
Nitric oxide (NO) and prostaglandins have been proposed as vasodilator substances involved in peripheral vasodilatation characteristic of the liver cirrhosis. A link between NO and prostanoids has been suggested. The present study investigated the effect of simultaneous blockade of both, NO synthase (NOS) and cyclooxigenase (COX) in sham-operated (SO), or rats with bile-duct ligation (BDL) in the development of liver fibrosis. Animals were distributed in two groups SO (n=15) or BDL (n=15). Treatments (5 days) started three weeks after surgical procedure. Both, SO and BDL animals were treated with indomethacin (INDO) (5 mg/kg/day) alone, with NG-nitro-L-arginine-methyl-ester (NAME) (4 mg/kg/day) alone or with INDO and NAME combination at the same doses. At the end of follow-up body weight, packed cell volume, mean arterial blood pressure (MAP) and heart rate were measured. Liver tissue was processed for histological studies. In this study, BDL animals showed a decreased MAP. Treatment with L-NAME in BDL rats increased MAP. The chronic COX inhibition alone did not play an important role in the haemodynamic changes. The BDL produced a loss of hepatic structure, with ductular metaplasia that occupied the greater part of the hepatic parenchyma. Also, an important degree of fibrosis was observed. Both NO and PG synthesis inhibitors, alone or in combination, induced enhancing collagen fiber deposition in the hepatic parenchyma. These findings support the notion that the interaction between the NOS and COX pathways should be relevant in hepatic cirrhosis in which both NOS and COX are induced. 相似文献
17.
Kamerman PR Laburn HP Mitchell D 《Canadian journal of physiology and pharmacology》2003,81(8):834-838
N-nitro-arginine methyl ester (L-NAME), an unspecific nitric oxide synthase inhibitor, was administered to individually caged Sprague-Dawley rats exposed to cold (18 degrees C) and thermoneutral (30 degrees C) environmental temperatures during the active phase of the animals' circadian cycle. Unrestrained rats were administered intraperitoneal injections of 100 mg x kg-1 L-NAME or 1 mL x kg-1 saline. Telemetry was used to measure abdominal temperature. On a separate occasion, metabolic rate and evaporative water loss were measured using indirect calorimetery, before and after the injection of 100 mg x kg-1 L-NAME, in rats exposed to the two environments. Injection of L-NAME had no significant effect on body temperature, metabolic rate, or evaporative water loss in rats exposed to the 30 degrees C environment. In the 18 degrees C environment, L-NAME injection caused a prolonged fall in body temperature ( F(1,12) = 17.43, P = 0.001) and a significant decrease in metabolic rate (Student's t test, P = 0.001) and evaporative water loss (one-sample t test, P = 0.04). Therefore, the effects that systemic injection of L-NAME has on body temperature are dependent on environmental temperature, with nitric oxide synthase inhibition seemingly preventing the metabolic component of cold defence. 相似文献
18.
Shengyi Gu Huaxiang Shen Yun Zhou Jiaying Ni Tao Zheng Zhengqian Mou Xiaolin Hua 《Journal of cellular physiology》2019,234(11):19799-19806
Pre-eclampsia (PE) is closely associated with perinatal morbidity and mortality and we want to investigate tetramethylpyrazine (TMP)'s effects on PE. Pregnant Sprague–Dawley rats were randomly divided into five groups: normal pregnant (PC), PE, PE+TMP 20 mg/kg, PE+TMP 40 mg/kg, and PE+TMP 60 mg/kg group. The PE rat model was established via L-NAME treatment. Systolic blood pressures (SBP) and urinary protein concentration were detected via the tail-cuff method and CBB kit, respectively. mRNA levels of key genes were analyzed via quantitative PCR and protein levels of key genes were measured by ELISA or western blot. TMP decreased SBP and urinary protein concentration of PE rats. TMP inhibited L-NAME-induced decrease in pups alive ratio, pups weight, and the ratio of pups/placenta weight and reversed L-NAME induced changes in placental histology, whereas it had little effect on placental weight. Urinary nephrin and podocin expressions were enhanced and serum placental growth factor level was decreased in PE rats, whereas TMP inhibited the above phenomena. TMP suppressed L-NAME-induced sFlt-1 upregulation in serums and kidneys of PE rats, whereas it downregulated IL-6 and MCP-1 expression in PE rats' serums, placentas and kidneys. TMP also suppressed the increase in placental sFlt-1 and vascular endothelial growth factor level caused by L-NAME. In addition, TMP inhibited CHOP and GRP78 expressions and decreased the ratio of p-elF2α/elF2α in PE rats. TMP attenuated the consequences of NO inhibition in pregnant rats. 相似文献
19.
Involvement of nitric oxide in the mechanism of adrenergic responses of systemic circulation 总被引:1,自引:0,他引:1
Increased pressor response to the infusion of α1-adrenoceptor agonist phenylephrine was observed in conditions of inhibited NO synthesis: the mean blood pressure increased from 33.7 to 41.1% and the total peripheral resistance increased from 6.8 to 22.0%. The effect of vasodilation induced by NO secretion in the vascular endothelium after the stimulation by α1-adrenoceptors on the degree of pressor changes and changes in the total peripheral resistance is proposed. 相似文献
20.
Minerva Martínez-Alfaro Gonzalo Ramírez-García Silvia Gutiérrez-Granados Yolanda Alcaraz-Contreras Marco-Alonso Gallegos-Corona G. Zaldivar Lelo de Larrea Alfonso Cárabez-Trejo 《Journal of trace elements in medicine and biology》2013,27(4):364-369
Exposure to lead induces oxidative stress and renal damage. Although most forms of oxidative stress are characterized by simultaneous elevation of nitrogen and oxidative species, lead-induced oxidative stress is unusual in that it is associated with a reduction in nitric oxide (NO) levels in the kidney. The role of NO in kidney injury is controversial; some studies suggest that it is associated with renal injury, whereas others show that it exerts protective effects. Concentration-dependent effects have also been proposed, linking low levels with vasodilatation and high levels with toxicity. The aim of this study was to evaluate the effects of melatonin co-exposure on the lead-induced reduction in renal NO levels. We found that sub-acute intraperitoneal administration of 10 mg/kg/day of lead for 15 days induced toxic levels of lead in the blood and caused renal toxicity (pathological and functional). Under our experimental conditions, lead induced an increase in lipid peroxidation and a decrease in NO. Melatonin co-treatment decreased lead-induced oxidative stress (peroxidation level) and toxic effects on kidneys without altering the lead-induced reduction in renal NO. These results suggest that, in our experimental model, the reduction in renal NO levels by lead exposure is not the only responsible factor for lead-induced kidney damage. 相似文献