共查询到20条相似文献,搜索用时 0 毫秒
1.
The commitment of regions of the embryo to form particular tissues or organs is a central concept in development, but the mechanisms controlling this process remain elusive. The well‐studied model of lens induction is ideal for dissecting key phases of the commitment process. We find in Xenopus tropicalis, at the time of specification of the lens, i.e., when presumptive lens ectoderm (PLE) can be isolated, cultured, and will differentiate into a lens that the PLE is not yet irreversibly committed, or determined, to form a lens. When transplanted into the posterior of a host embryo lens development is prevented at this stage, while ~ 3 h later, using the same assay, determination is complete. Interestingly, we find that specified lens ectoderm, when cultured, acquires the ability to become determined without further tissue interactions. Furthermore, we show that specified PLE has a different gene expression pattern than determined PLE, and that determined PLE can maintain expression of essential regulatory genes (e.g., foxe3, mafB) in an ectopic environment, while specified PLE cannot. These observations set the stage for a detailed mechanistic study of the genes and signals controlling tissue commitment. genesis 50:728–740, 2012. © 2012 Wiley Periodicals, Inc. 相似文献
2.
3.
Zaghloul NA Yan B Moody SA 《Biology of the cell / under the auspices of the European Cell Biology Organization》2005,97(5):321-337
The specification of embryonic cells to produce the retina begins at early embryonic stages as a multi-step process that gradually restricts fate potentials. First, a subset of embryonic cells becomes competent to form retina by their lack of expression of endo-mesoderm-specifying genes. From these cells, a more restricted subset is biased to form retina by virtue of their close proximity to sources of bone morphogenetic protein antagonists during neural induction. During gastrulation, the definitive RSCs (retinal stem cells) are specified as the eye field by interactions with underlying mesoderm and the expression of a network of retina-specifying genes. As the eye field is transformed into the optic vesicle and optic cup, a heterogeneous population of RPCs (retinal progenitor cells) forms to give rise to the different domains of the retina: the optic stalk, retinal pigmented epithelium and neural retina. Further diversity of RPCs appears to occur under the influences of cell-cell interactions, cytokines and combinations of regulatory genes, leading to the differentiation of a multitude of different retinal cell types. This review examines what is known about each sequential step in retinal specification during normal vertebrate development, and how that knowledge will be important to understand how RSCs might be manipulated for regenerative therapies to treat retinal diseases. 相似文献
4.
Activin is a potent mesoderm inducing factor present in embryos of Xenopus laevis. Recent evidence has implicated activin in the inhibition of neural development in addition to the well-established induction of mesoderm in ectodermal explants. These diverse effects are critically dependent on the concentration of activin yet little is known about the mechanisms regulating the level of activin in the embryo. We report that the 3′ untranslated region (3′ UTR) of activin βB mRNA inhibits the translation of activin in embryos. Microinjection of activin mRNA from which the 3′ UTR has been deleted is 8–10-fold more potent in inducing mesoderm than mRNA containing the 3′ UTR. Truncation of the 3′ UTR also leads to a marked enhancement of activin protein levels in embryos but has no effect when the truncated mRNA is translated in vitro. The 3′ UTR also confers translational inhibition on a heterologous mRNA. These data show that a maternal factor(s) present in X. laevis regulates the translation of injected activin βB mRNA. This factor(s) could be responsible for regulating the levels of endogenous activin βB protein during mesoderm induction and the specification of ectodermal derivatives such as neural and epidermal tissues. © 1995 Wiley-Liss, Inc. 相似文献
5.
The lentectomized eye of larval Xenopus laevis can regenerate a lens by a process of lens-transdifferentiation of the cornea and pericorneal epidermis. These tissues can form the lens only when they become in direct communication with the environment of the vitreous chamber (neural retina) indicating that the eye cup plays a fundamental role in this process.
In this work the role of the eye cup in the maintainance of the lens-forming capacity of the cornea and pericorneal epidermis was studied by allowing these tissues to cover the enucleated orbit for different periods, and then implanting them into the vitreous chamber of the contralateral eye. Under these experimental conditions the maintainance of the lens-forming capacity of the cornea and pericorneal epidermis showed no significant correlation with the time from enucleation to implantation. 相似文献
In this work the role of the eye cup in the maintainance of the lens-forming capacity of the cornea and pericorneal epidermis was studied by allowing these tissues to cover the enucleated orbit for different periods, and then implanting them into the vitreous chamber of the contralateral eye. Under these experimental conditions the maintainance of the lens-forming capacity of the cornea and pericorneal epidermis showed no significant correlation with the time from enucleation to implantation. 相似文献
6.
Flickinger RA 《Development, growth & differentiation》2006,48(8):473-476
The induction of mesoderm and/or endoderm from prospective ectoderm and dorsalization of the marginal zone mesoderm may be linked to inhibition of cell cycling and DNA synthesis in early amphibian embryos. In turn, this may lead to reduction of somatic H1 histone accumulation. A greater number of cell cycles and rounds of DNA synthesis characterizes the induction of neural tissue. This is correlated with an increase of somatic H1 histone accumulation. The number of rounds of DNA replication may regulate the level of H1 histone accumulation and this may have a role in germ layer determination. 相似文献
7.
Concetta M. A. Nicotra Maria C. Gueli Grazia De Luca Antonino Bono Anna M. Pintaudi Alessandra Paganini 《Molecular and cellular biochemistry》1994,132(1):45-55
Changes in the steady state level of retinols, retinaldehydes and retinyl esters in the trans and 11-cis forms and trans retinoic acid were measured in whole chicken eye during development from day 6in ovo to day 3 post-hatch. These retinoids, quantified by different HPLC systems, were detected in this time sequence: trans-retinol and trans-retinyl esters in the first weekin ovo, 11-cis-retinol in the second week. The highest level of 11-cis-retinaldehyde and 11-cis-retinyl esters was reached at the end of developmentin ovo; however, their levels increased further after hatching. The retinoic acid level decreased at the end of the first week, rising again at the end of the second week.The enzyme activities involved in the metabolism of these retinoids-acyl-CoA: retinol acyltransferase, trans-retinol dehydrogenase, 11-cis-retinol dehydrogenase, trans-retinyl ester hydrolase and trans: 11-cis-retinol isomerase were also estimated and they were detectable already in the first week of developmentin ovo.At day 6 of the biosynthesis of retinoic acid by the retinaldehyde dehydrogenase activity from retina cytosol was also shown. 相似文献
8.
Jonathan Slack 《Molecular reproduction and development》1994,39(1):118-125
To assess the potential role of a molecule in development we need to know three things: 1) what are the biological activities of the molecule, 2) what is its expression pattern, and 3) what are the consequences of removing it from the embryo? In the case of the FGF family in Xenopus embryos we have quite a lot of information about all three questions. Most members of the family can induce mesoderm from isolated animal caps, thus mimicking the natural “ventral vegetal” inducing signal operative in the blastula. This activity can be exerted on isolated, disaggregated cells and does not involve a change in division rate. When overexpressed from injected mRNA, the activity of FGFs depends largely on whether or not they possess a signal sequence, showing the importance of secretion in the inductive process. In addition to the mesoderm-inducing activity, there are effects of overexpression on whole embryos which lead to a suppression of anterior structures. Three types of FGF have so far been cloned from Xenopus: direct homologs of each of the mammalian types FGF-2 and FGF-3, and eFGF (“embryonic FGF”), which is equidistant in sequence from mammalian FGF-4 and FGF-6. Attempts to find homologs of mammalian FGF-5 and FGF-7 in Xenopus have proved unsuccessful. All three types of Xenopus FGF are expressed in early development. FGF-2 and eFGF are present in the oocyte and fertilized egg, and are thus both available at the time of mesoderm induction. FGF-3 and eFGF are both expressed from the embryonic genome during gastrulation and concentrated in the forming mesoderm. FGF-2 is expressed from the embryonic genome during neurulation in the brain, and a little later in the branchial arch mesenchyme and in the forming myotomes. These expression patterns suggest that there are several functions for the FGFs. The most successful strategy for inhibition of the FGF system has been the use of a dominant negative receptor construct introduced by Kirschner and colleagues. Overexpression of this construct can abolish the FGF responsiveness of animal caps. In whole embryos, the absence of FGF signaling causes a reduction, although not a total ablation, of mesoderm formation. There is also a severe effect on axis formation in which formation of the posterior parts is reduced consequent on an inhibition of invagination and elongation of the dorsal mesoderm. Thus, the present evidence suggests that the FGF system contributes to, although is not solely responsible for, mesoderm induction in vivo. It is also necessary for normal gastrulation movements, particularly in the dorsal mesoderm, and is likely to have several later functions, particularly in development of the central nervous system and the myotomes. © 1994 Wiley-Liss, Inc. 相似文献
9.
Vertical versus planar induction in amphibian early development 总被引:2,自引:1,他引:2
In the Urodeles, the archenteron roof invaginates as a single continuous sheet of cells, vertically inducing the neural anlage in the overlying ectoderm during invagination. The induction comprises first the activation process, leading, to forebrain differentiation tendencies, and then the superimposed transformation process, which changes presumptive forebrain development into that of hindbrain and spinal cord acting with a caudally increasing intensity. The activating action, being maximal anteriorly, decreases caudally to nearly zero. In the double-layered Xenopus embryo, the internal mesodermal marginal zone shows much more independent and earlier regional segregation and involution than the external marginal zone in the Urodeles; its prechordal mesoderm already initiating vertical neural induction in overlying ectoderm at stages 10 to 10+ before any visible archenteron invagination. In Xenopus incomplete exogastrulae the prechordal mesoderm involutes normally prior to evagination of the endoderm and mesodem. Artificially produced Xenopus total exogastrulae, made at stage 9 before mesoderm involution, behave just like axolotl total exogastrulae, showing no neural differentiation. The notion of planar neural induction in Xenopus can only be applied in exogastrulae and Keller explants for the transforming action, which is maximal in the caudal archenteron roof. In normal Xenopus development, the formation of the entire nervous system is essentially due to vertical induction by the successively involuting prechordal and notochordal mesoderm. The different behavior of Xenopus embryos in comparison with Urodele embryos can essentially be explained by the double-layered character of the animal moiety of the Xenopus embryo. 相似文献
10.
11.
12.
We used Xenopus embryo cells with a cell cycle of 20-30 min to detect inhibitory effects on cell proliferation. Inhibition of proliferation was observed when isolated embryonic cells were incubated for 16 h in a simple salt solution containing the well-known anticancer drugs 5-fluorouracil and adriamycin. In addition, three diterpene compounds isolated from the anticancer herbal medicine kansui: kansuinin B, 20-OD-ingenol Z, and 20-OD-ingenol E specifically inhibited the proliferation of isolated embryonic cells. The inhibitory compounds selected using the embryonic cells also inhibited proliferation of certain mammalian cell types. 相似文献
13.
McClive PJ Hurley TM Sarraj MA van den Bergen JA Sinclair AH 《Genesis (New York, N.Y. : 2000)》2003,37(2):84-90
The sex of most mammals is determined by the action of SRY. Its presence initiates testis formation resulting in male differentiation, its absence results in ovary formation and female differentiation. We have used suppression subtraction hybridisation between 12.0-12.5 days postcoitum (dpc) mouse testes and ovaries to identify genes that potentially lie within the Sry pathway. Normalised urogenital ridge libraries comprising 8,352 clones were differentially screened with subtracted probes. A total of 272 candidate cDNAs were tested for qualitative differential expression and localisation by whole mount in situ hybridisation; germ cell-dependent or -independent expression was further resolved using busulfan. Fifty-four genes were identified that showed higher expression in the testis than the ovary. One novel gene may be a candidate for interactions with WT1, based on its localisation to Sertoli cells and map position (16q24.3). 相似文献
14.
Du Pasquier D Chesneau A Ymlahi-Ouazzani Q Boistel R Pollet N Ballagny C Sachs LM Demeneix B Mazabraud A 《Genesis (New York, N.Y. : 2000)》2007,45(1):1-10
Xenopus is a well proven model for a wide variety of developmental studies, including cell lineage. Cell lineage in Xenopus has largely been addressed by injection of tracer molecules or by micro-dissection elimination of blastomeres. Here we describe a genetic method for cell ablation based on the use of tBid, a direct activator of the mitochondrial apoptotic pathway. In mammalian cells, cross-talk between the main apoptotic pathways (the mitochondrial and the death domain protein pathways) involve the pro-death protein BID, the active form of which, tBID, results from protease truncation and translocation to mitochondria. In transgenic Xenopus, restricting tBID expression to the lens-forming cells enables the specific ablation of the lens without affecting the development of other eye structures. Thus, overexpression of tBid can be used in vivo as a tool to eliminate a defined cell population by apoptosis in a developing organism and to evaluate the degree of autonomy or the inductive effects of a specific tissue during embryonic development. 相似文献
15.
16.
Amniote kidney tissue is derived from the intermediate mesoderm (IM), a strip of mesoderm that lies between the somites and the lateral plate. While much has been learned concerning the later events which regulate the differentiation of IM into tubules and other types of kidney tissue, much less is known concerning the earlier events which regulate formation of the IM itself. In the current study, the chick pronephros was used as a model system to identify tissues that play a role in patterning the IM and the critical time periods during which such patterning events take place. Explant studies revealed that the prospective pronephric IM is already specified to express kidney genes by stage 6, shortly after its gastrulation through the primitive streak, and earlier than previously reported. Transplant and explant experiments revealed that the lateral plate contains an activity that can repress IM formation in tissues that are already specified to express IM genes. In contrast, Hensen's node can promote formation of IM in the lateral plate. Paraxial tissues (presomitic mesoderm plus neural plate and notochord) were found to influence the morphogenesis of the nephric duct, but did not induce IM tissue to an appreciable extent. Combining lateral plate and paraxial tissue in vivo or in vitro led to induction of IM genes in the paraxial mesoderm but not in the lateral plate mesoderm. Based on these results and those of others, we propose a two-step model for the patterning of the IM. While tissue is still in the primitive streak, the prospective IM is relatively uncommitted. By stage 6, shortly after cells leave the primitive streak, a field of cells is generate which is specified to give rise to IM (Step 1). Subsequently, competing signals from the lateral plate and axial tissues modulate the number of cells that commit to an IM fate (Step 2). 相似文献
17.
It has been reported that the micromeres of echinoid embryos have the potential to induce an archenteron in animal cap mesomeres recombined at the 16- or 32-cell stage. In the present study, experiments were performed to determine the exact period when the micromeres transmit their inductive signal to respecify the cell fate of mesomeres as endo-mesoderm. An animal cap was recombined with a quartet of micromeres, or micromere-descendants cultured in isolation, to form a recombinant embryo. The micromere-descendants were completely removed at various developmental stages, resulting in an embryo composed only of mesomere-descendants that had been under the inductive influence of micromeres for a limited period. The resulting embryos were cultured and examined for their potential to differentiate endoderm. The results indicated that the signal effective for inducing an archenteron in mesomere-descendants emanated from the micromere-descendants at the early blastula stage around hatching onward. Before this stage, the micromeres and micromere-descendants showed this potential slightly or not at all. The inductive signal emanated from the micromere-descendants almost on time even when the cells were cultured in isolation. The micromere-descendants completed transmission of the signal for inducing the archenteron in the animal cap within 2 h of recombination. The animal cap at between the 28-cell stage and 2 h after the 32-cell stage could react with the inductive signal from the micromere-descendants. Embryos composed of only animal cap mesomeres that had received the inductive signal from micromere-descendants for a limited period had the potential to develop into 8-armed plutei. Each pluteus formed an adult rudiment essentially on the left side of the larval body, and metamorphosed into a juvenile with pentaradiate symmetry. 相似文献
18.
Kuroda et al. (2001) of our laboratory have previously revealed that exposure of early Xenopus embryos to 150 mm urethane results in complete suppression of formation of the asters and the cleavage furrow, as well as significant reduction of the size of the spindle in the blastomeres, allowing only 1 or 2 cycles of mitosis but not cytokinesis. In the course of closer examination of the effect of urethane on the cleavage of blastomeres of early Xenopus embryos, we unexpectedly discovered that exposure of early Xenopus embryos to 75 mm urethane did not prevent cell division at all, though asters were not detected in the blastomeres. Instead, they contained a spindle that appeared rather normal. They also formed the diastema, a thin yolk-free structure, which is considered to play an essential role in the induction of the cleavage furrow. Essentially the same results were obtained in the exposure of embryos to vinblastine, a well-known microtubule inhibitor: exposure of embryos to 20 micro g/mL vinblastine resulted in complete suppression of cleavage of the blastomeres, where formation of both the spindle and asters were perfectly suppressed. By contrast, exposure of embryos to 5 microg/mL vinblastine did not prevent cleavage in the blastomeres though asters were not detected, whereas the rather normal spindle was formed. Thus, there was a close correlation between the formation of the normal spindle, not asters, and that of the cell division furrow and the diastema in the blastomeres of early Xenopus embryos. We suggest that while the spindle plays an essential role, asters are likely to play only a dispensable role in the induction of the cleavage furrow in even very large cells like the blastomeres of early Xenopus embryos. 相似文献
19.
L. V. Soustov E. V. Chelnokov N. V. Sapogova N. M. Bityurin V. V. Nemov Yu. V. Sergeev M. A. Ostrovsky 《Biophysics》2008,53(4):273-282
Here we compile and analyze the data on photoaggregation of a model protein carboanhydrase and the main eye lens proteins α-, β-, γ-crystallins under the action of pulsed UV irradiation from a Xe-Cl laser (308 nm) with broad variation of pulse energy density and repetition rate. The aggregation efficacy proves to be a nonlinear function of these parameters and protein concentration. A theoretical model is proposed that qualitatively explains the experimental data. It is shown that N-arm-truncated βA3-crystallin is more prone to UV-induced aggregation than the full-sized protein; such defects caused by mutation or aging may aggravate the development of lenticular opacity. Analyzed is the effect of some low-molecular compounds on the aggregation of β-crystallin and its mixture with α-crystallin. A combination of short peptides prepared on this basis markedly impedes crystallin aggregation and retards the development of UV-induced cataract in rats. 相似文献
20.
Mark T. Brown 《Bioethics》2019,33(9):1035-1041
The somatic integration definition of life is familiar from the debate on the determination of death, with some bioethicists arguing that it supports brain death while others argue that some brain‐dead bodies exhibit sufficient somatic integration for biological life. I argue that on either interpretation, the somatic integration definition of life implies that neither the preimplantation embryo nor the postimplantation embryo meet the somatic integration threshold condition for organismal human life. The earliest point at which a somatic integration determination of life could be made would be the beginning of the fetal stage, 9 weeks postfertilization. Bioethical implications are considered, specifically with respect to the moral status of the postimplantation embryo in embryo research and abortion. 相似文献