首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To obtain recombinant restriction endonuclease (R) and methylase (M) of the EcoRII restriction–modification system, bacterial strains overproducing their functional hexahistidine derivatives were constructed. Active full-length R·EcoRII was produced only in cells that also expressed M·EcoRII from a multicopy plasmid. Recombinant R·EcoRII bound with hybrid DNA·RNA duplexes.  相似文献   

2.
A rapid procedure is described for the separation of CMP-sialic acid:lactosylceramide sialyltransferase reaction components using Sep Pak C18 cartridges. The quantitative separation of the more polar nucleotide sugar, CMP-sialic acid, and its free acid from the less polar GM3-ganglioside is simple and rapid relative to previously described methods. Recovery of GM3 is optimized by the addition of phosphatidylcholine to the reaction mixture prior to the chromatographic step. Using rat liver Golgi membranes as a source of CMP-sialic acid: lactosylceramide sialyltransferase activity (GM3 synthase; ST-1), the transfer of [14C] sialic acid from CMP-[14C] sialic acid to lactosylceramide can be quantified by this assay. The procedure is reliable and may be applicable to the isolation of ganglioside products in otherin vitro glycosyltransferase assays.Abbreviations GM3 GM3-ganglioside - II3NeuAc-LacCer NeuAc2-3Gal1-4Glc1-1Cer - GD1a GD1a-ganglioside, IV3NeuAc, II3NeuAc-GgOse4Cer, NeuAc2-3Gal1-3GalNac1-4(NeuAc2-3)Gal1-4Glc1-1Cer - GD3 GD3-ganglioside, II3(NeuAc)2LacCer, NeuAc2-8NeuAc2-3Gal1-4Glc1-1Cer - GgOse4Cer asialo-GM1 Gal1-3GalNAc1-4Gal1-4Glc1-1Cer - FucGMI fucosyl-GMI-ganglioside, Fuc1-2Gal1-3GalNAc1-4Gal1-4 Glc1-1Cer - ST-1 GM3 synthase, CMP-sialic acid:lactosylceramide sialyltransferase - LacCer lactosylceramide, Gal1-4Glc1-1Cer - CMP-NeuAc cytidine 5-monophospho-N-acetylneuraminic acid - PC phosphatidylcholine - PMSF phenylmethylsulfonyl fluoride  相似文献   

3.
TheN-linked carbohydrate chains of the-subunit of highly purified urinary human chorionic gonadotropin have been re-investigated. The oligosaccharides were released enzymatically by peptide-N 4-(N-acetyl--glucosaminyl)asparagine amidase-F, and fractionated by a combination of FPLC and HPLC. As a result of the application of improved fractionation methods, apart from the earlier reported carbohydrate chains, also small amounts of trisialo tri- and tri-antennary oligosaccharides were found. The primary structures of the latter carbohydrate chains have been determined by 500-MHz1H-NMR spectroscopy to beAbbreviations hCG human chorionic gonadotropin - hCG- -subunit - hCG- -subunit - PNGase-F peptide-N 4-(N-acetyl--glucosaminyl)asparagine amidase-F (E.C. 3.5.1.52) - endo-F endo--N-acetylglucosaminidase-F (E.C. 3.2.1.96) - SDS sodium dodecyl sulphate - PAGE polyacrylamide gel electrophoresis - CBB coomassie brilliant blue R 250 - GlcNAc N-acetylglucosamine - NeuAc N-acetylneuraminic acid - Man mannose - Gal galactose - Fuc fucose  相似文献   

4.
Little information is available concerning the efficacy of chelates applied to biosolids (sewage-sludge)-treated soil for heavy-metal removal. The purpose of the experiment was to determine the availability to sunflower (Helianthus annuus L.) and hybrid poplar (Populus deltoides Marsh. × P. nigra L.) seedlings, of non-essential (Cd, Ni, Pb) and essential heavy metals (Cu, Fe, Mn, Zn) in field soil injected with biosolids since 1976 and treated with ethylenediamine-tetraacetic acid (EDTA) in 2001. Sunflower was grown at two densities, 20000 and 60000 plants/ha, and poplar at 10000 plants/ha. The tetrasodium salt of EDTA was applied at rates of 0, 0.5, 1, and 2 g EDTA salt per kg surface (25-cm depth) soil. The EDTA did not affect uptake by poplar of the three non-essential (Cd, Ni, Pb) and four essential (Cu, Fe, Mn, Zn) heavy metals. For sunflower, the 1.0 g/kg rate of chelate addition resulted in maximal removal of the three non-essential heavy metals (Cd, Ni, Pb). Uptake of the essential heavy metals by sunflower was little affected by the EDTA. At the 20000 plants/ha density, leaves of sunflower grown with 1.0 g EDTA Na42H2O per kg soil accumulated more Cd, Ni, and Pb than leaves of sunflower grown without the EDTA salt. At this density, concentrations of Cd in leaves of sunflower without EDTA and with 1.0 g/kg EDTA salt were 2.2 and 6.5 g/g, respectively; for Ni, they were 6.7 and 19.2 g/g, respectively; and for Pb, they were 15.6 and 46.9 g/g, respectively. At the 60000 plants/ha density, stems of sunflower grown with 1.0 g EDTA Na42H2O per kg soil accumulated more Cd, Ni, and Pb than stems of sunflower grown without the EDTA salt. At this density, concentrations of Cd in stems of sunflower without EDTA and with 1.0 g/kg EDTA salt were 0.6 and 4.6 g/g, respectively; for Ni, they were 1.7 and 17.6 g/g, respectively; and for Pb, they were 5.2 and 42.8 g/g, respectively. Removal of the non-essential heavy metals by sunflower was greater at the higher plant density (60000 plants/ha) compared to the lower one (20000 plants/ha).  相似文献   

5.
A method for plant regeneration of Iris via somatic embryogenesis is described. Root and leaf pieces from in vitro-grown plants of several genotypes of rhizomatous Iris sp. were cultured in vitro. Callus induction occurred only on root cultures incubated under low light intensity (35 mol m-2 s-1) on two induction media containing 2,4-D (4.5 or 22.5 M), NAA (5.4 M) and kinetin (0.5 M). Somatic embryos developed after transfer of callus onto four regeneration media containing 9 or 22 M BA, or 5 M kinetin and 2 M TIBA or 9 M BA and 4 M TIBA. Plantlets could be obtained from these somatic embryos. Genotypic differences were found both in callus induction and somatic embryo formation, with I. pseudacorus responding better than I. versicolor or I. setosa. Cytological analysis performed on root tips of 80 regenerated plants revealed that two of the I. pseudacorus regenerants were tetraploid.Abbreviations 2,4-D dichlorophenoxy acetic acid - NAA naphthaleneacetic acid - BA 6-benzyladenine - TIBA 2,3,5-triiodobenzoic acid - IBA indolebutyric acid  相似文献   

6.
The SNF1/AMPK/SnRK1 heterotrimeric kinase complex is involved in the adaptation of cellular metabolism in response to diverse stresses in yeast, mammals and plants. Following a model proposed in yeast, the kinase targets are likely to bind the complex via the non-catalytic -subunits. These proteins currently identified in yeast, mammals and plants present a common structure with two conserved interacting domains named Kinase Interacting Sequence (KIS) and Association with SNF1 Complex (ASC), and a highly variable N-terminal domain. In this paper we describe the characterisation of AKIN3, a novel protein related to AKIN subunits of Arabidopsis thaliana, containing a truncated KIS domain and no N-terminal extension. Interestingly the missing region of the KIS domain corresponds to the glycogen-binding domain (-GBD) identified in the mammalian AMPK1. In spite of its unusual features, AKIN3 complements the yeast sip1sip2gal83 mutant. Moreover, interactions between AKIN3 and other AKIN complex subunits from A. thaliana were detected by two-hybrid experiments and in vitro binding assays. Taken together these data demonstrate that AKIN3 is a -type subunit. A search for -type subunits revealed the existence of 3-type proteins in other plant species. Furthermore, we suggest that the AKIN3-type subunits could be plant specific since no related sequences have been found in any of the other completely sequenced genomes. These data suggest the existence of novel SnRK1 complexes including AKIN3-type subunits, involved in several functions among which some could be plant specific.  相似文献   

7.
UDP-GlcNAc: Man1-6R (1-2)-N-acetylglucosaminyltransferase II (GlcNAc-T II; EC 2.4.1.143) is a key enzyme in the synthesis of complexN-glycans. We have tested a series of synthetic analogues of the substrate Man1-6(GlcNAc1-2Man1-3)Man-O-octyl as substrates and inhibitors for rat liver GlcNAc-T II. The enzyme attachesN-acetylglucosamine in 1-2 linkage to the 2-OH of the Man1-6 residue. The 2-deoxy analogue is a competitive inhibitor (K i=0.13mm). The 2-O-methyl compound does not bind to the enzyme presumably due to steric hindrance. The 3-, 4- and 6-OH groups are not essential for binding or catalysis since the 3-, 4- and 6-deoxy and -O-methyl derivatives are all good substrates. Increasing the size of the substituent at the 3-position to pentyl and substituted pentyl groups causes competitive inhibition (K i=1.0–2.5mm). We have taken advantage of this effect to synthesize two potentially irreversible GlcNAc-T II inhibitors containing a photolabile 3-O-(4,4-azo)pentyl group and a 3-O-(5-iodoacetamido)pentyl group respectively. The data indicate that none of the hydroxyls of the Man1-6 residue are essential for binding although the 2- and 3-OH face the catalytic site of the enzyme. The 4-OH group of the Man-O-octyl residue is not essential for binding or catalysis since the 4-deoxy derivative is a good substrate; the 4-O-methyl derivative does not bind. This contrasts with GlcNAc-T I which cannot bind to the 4-deoxy-Man- substrate analogue. The data are compatible with our previous observations that a bisectingN-acetylglucosamine at the 4-OH position prevents both GlcNAc-T I and GlcNAc-T II catalysis. However, in the case of GlcNAc-T II, the bisectingN-acetylglucosamine prevents binding due to steric hindrance rather than to removal of an essential OH group. The 3-OH of the Man1-3 is an essential group for GlcNAc-T II since the 3-deoxy derivative does not bind to the enzyme. The trisaccharide GlcNAc1-2Man1-3Man-O-octyl is a good inhibitor (K i=0.9mm). The above data together with previous studies indicate that binding of the GlcNAc1-2Man1-3Man- arm of the branched substrate to the enzyme is essential for catalysis. Abbreviations: GlcNAc-T I, UDP-GlcNAc:Man1-3R (1-2)-N-acetylglucosaminyltransferase I (EC 2.4.1.101); GlcNAc-T II, UDP-GlcNAc:Man1-6R (1-2)-N-acetylglucosaminyltransferase II (EC 2.4.1.143); MES, 2-(N-morpholino)ethane sulfonic acid monohydrate.  相似文献   

8.
Résumé L'ultrastructure des lamelles branchiales et spécialement celle des chloride cells du poisson rouge (Carassius aureus) a été étudiée. Nous avons constaté que du matériel amorphe floconneux, faiblement adiélectronique était attaché aux endroits des creux apicaux. Afin de préciser la nature de ce matériel, nous avons étudié ces structures au microscope électronique avec les techniques suivantes: acide periodique méthènamine d'argent, colorations au fer colloïdal et au bleu d'alcian. Après la réaction à l'acide periodique méthènamine d'argent, de fines précipitations aux endroits des creux apicaux, correspondant au matériel floconneux visible après la fixation au glutaraldéhyde tétroxyde d'osmium, étaient visibles. La coloration au bleu d'alcian révélait des particules fortement colorées formant un film plus ou moins continu à la surface libre des lamelles, sauf aux endroits oò les chloride cells sont en contact avec la surface. Là et notamment dans les 2reux apicaux, du matériel légèrement granuleux, de faible densité, faisait une couche assez épaisse attachée à la membrane cellulaire. Tenant compte des résultats d'autres auteurs et de nos propres observations, nous considérons que la plus grande partie du matériel se trouvant à la surface des chloride cells, et particulièrement dans les creux apicaux, est de type glycoprotéique.
The ultrastructure of the chloride cells in the gill epithelium of the goldfish
Summary The ultrastructure of the secondary lamellae of the gills and especially that of the chloride cells of Carassius aureus was studied. We found an amorphous, flakey, slightly adielectronic material in the areas of the apical pits. In order to determine the nature of this material, we studied these structures electronmicroscopically applying the periodic acid silver methenamine, colloidal iron and alcian blue methods. The periodic acid silver methenamine reaction, resulted in finely dispersed precipitations which were deposited in the areas of the apical pits and which correspond to the flakey material seen in the ordinary electron micrographs. The alcian blue method reveales strongly stained particles which form a more or less continuous film on the free surface of the lamellae, interrupted only at the level of the chloride cells. In these areas, notably within the apical pits, a rather thick layer of finely granular low-density material is attached to the plasma membrane. In taking into account other studies performed on this subject, as well as our own observations, we consider the material found on the surface of the chloride cells and particularly within their apical pits to be predominantly of glycoproteinous nature.


Dédié à Monsieur le Professeur Dr Ernst Horstmann, Hambourg, à l'occasion de son soixantième anniversaire.  相似文献   

9.
Euphorbia characias is a Mediterranean spurge with a diplochorous dispersal system: after a ballistic dispersal that scatters the seeds, some ant species find and retrieve the seeds to their nest (myrmecochorous dispersal). The seed dispersal curve generated by ants in an abandoned field was described and partitioned according to ant size and to the distance to nest entrance from where seeds fell after ballistic dispersal. Both variables (ant size, distance to nest) affected dispersal distance. The seed dispersal curve showed a peak at short distance (median=1m) and a tail extending to 9.4m. The peak and the tail are explained differently. Short distances are usually generated by small ants (Pheidole pallidula and Tapinoma nigerrimum; 0.56±0.41m [n=48]) both from the nearest or farther nest entrances. The tail of the curve is generated disproportionately by big ants (Aphaenogaster senilis and Messor barbarus; 2.09±1.71m [n=61]) from farther nests. Seeds have a much greater probability (P=0.734) of being transported to nests which are not the nearest. This effect is largely due to transportation by big ants.  相似文献   

10.
Anthocyanins isolated and characterized from the wild carrot suspension cultures used here were 3-O--D-glucopyranosyl-(16)-[-D-xylopyranosyl-(12)-]-D<-galactopyranosylcyanidin (1), 3-O-[-D- xylopyranosyl-(12)--D-galactopyranosyl]cyanidin (2), 3-O-(6-O-sinapoyl)--D-glucopyranosyl-(16)-[-D- xylopyranosyl-(12)-]-D-galactopyranos ylcyanidin (3), 3-O-(6-O-feruoyl)--D-glucopyranosyl-(16)-[- D-xylopyranosyl-(12)-]-D-galactopyranosylcyanidin (4), 3-O-(6-O-coumaroyl)--D-glucopyranosyl-(16)- [-D-xylopyranosyl-(12)-]-D-galactopyrano sylcyanidin (5), 3-O-[6-O-(3,4,5-trimethoxycinnamoyl)]-- D-glucopyranosyl-(16)-[-D-xylopyranosyl-(12)-]-D-galactopyranosylcyanidin (6), 3-O-[6-O-(3,4-dime- thoxycinnamoyl)]--D-glucopyranosyl-(16)-[-D-xylopyranosyl-(12)-]-D-galactopyranosylcyanidin (7), 3-O-[(6-O-sinapoyl)--D-glucopyranosyl-(16)--D-galactopyranosyl]cyanidin (8), and 3-O-(-D-galactopyranosyl)cyanidin (9). Except when cinnamic acids were provided in the culture medium, the major anthocyanin present in the two clones examined was 2. When the naturally occurring and some non-naturally occurring cinnamic acids were provided individually in the medium, 1 and 2 were minor components and the anthocyanin acylated with the supplied cinnamic acid, namely 3, 4, 5, 6, or 7 was the major anthocyanin present in the tissue. When caffeic acid was provided the major anthocyanin in the tissue was 4, thereby suggesting that the caffeic acid was methylated before its use in anthocyanin biosynthesis. Other cinnamic acids supplied had limited effects on the anthocyanins accumulated and appeared not to result in the accumulation of new anthocyanins by the tissue. Thus the tissue can use some but not all analogues of sinapic acid to acylate anthocyanins. Additional anthocyanins were detected in extracts of the wild carrot tissue cultures using mass spectrometry (both MS/MS and HPLC/MS). The additional compounds detected have also been found in cultures of black carrot, an Afghan cultivar of Daucus carota ssp. sativa and the flowers of wild carrot giving no evidence for qualitative differences in the anthocyanins synthesized by subspecies, cell cultures from subspecies, or clones from cell cultures. There are major differences in the amounts of individual anthocyanins found in cultures from different subspecies and in different clones from cell cultures. Here anthocyanins without acyl groups were usually found in the tissues and their accumulation is discussed. On the basis of the structures of the isolated anthocyanins, a likely pathway from cyanidin to the accumulated anthocyanins is proposed and discussed.Abbreviations Sin sinapoyl - Fer feruoyl - 4-Coum. 4-coumaroyl - 3,4-MeO2Cin 3,4-dimethoxyeinnamoyl - 3,4,5-MeO3Cin 3,4,5-trimethoxycinnamoyl - Cya cyanidin  相似文献   

11.
A Gal1-4GlcNAc (2-6)-sialyltransferase from human liver was purified 34 340-fold with 18% yield by dye chromatography on Cibacron Blue F3GA and cation exchange FPLC. The enzyme preparation was free of other sialyltransferases. It did not contain CMP-NeuAc hydrolase, protease, or sialidase activity, and was stable at –20°C for at least eight months. The donor substrate specificity was examined with CMP-NeuAc analogues modified at C-5 or C-9 of theN-acetylneuraminic acid moiety. Affinity of the human enzyme for parent CMP-NeuAc and each CMP-NeuAc analogue was substantially higher than the corresponding Gal1-4GlcNAc (2-6)-sialyltransferase from rat liver.Abbreviations FPLC fast protein liquid chromatography - NeuAc 5-N-acetyl-d-neuraminic acid - 9-amino-NeuAc 5-acetamido-9-amino-3,5,9-trideoxy-d-glycero-2-nonulosonic acid - 9-acetamido-NeuAc 5,9-diacetamido-3,5,9-trideoxy-d-glycero--d-2-nonulosonic acid - 9-benzamido-NeuAc 5-acetamido-9-benzamido-3,5,9-trideoxy-d-glycero--d-galacto-2-nonulosonic acid - 9-fluoresceinyl-NeuAc 9-fluoresceinylthioureido-NeuAc - 5-formyl-Neu 5-formyl--d-neuraminic acid - 5-aminoacetyl-Neu 5-aminoacetyl--d-neuraminic acid - CMP-NeuAc cytidine-5-monophospho-N-acetylneuraminic acid - GM1 Gal1-3GalNAc1-4(NeuAc2-3)Gal1-4Glc-ceramide - ST sialyltransferase - DTE 1,4-dithioerythritol Enzyme: Gal1-4GlcNAc (2-6)-sialyltransferase, EC 2.4.99.1.  相似文献   

12.
Structures of the Asn linked oligosaccharides of quail egg-yolk immunoglobulin (IgY) were determined in this study. Asn linked oligosaccharides were cleaved from IgY by hydrazinolysis and labelled withp-aminobenzoic acid ethyl ester (ABEE) afterN-acetylation. The ABEE labelled oligosaccharides were then fractionated by a combination of Concanavalin A-agarose column chromatography and anion exchange, normal phase and reversed phase HPLC before their structures were determined by sequential exoglycosidase digestion, methylation analysis, HPLC, and 500 MHz1H-NMR spectroscopy. Quail IgY contained only neutral oligosaccharides of the following categories: the glucosylated oligomannose type (0.6%, Glc1-3Glc1-3Man9GlcNAc2; 35.6%, Glc1-3Man7–9GlcNAc2). oligomannose type (15.0%, with the structure Man5–9GlcNAc2) and biantennary complex type with core structures of-Man1-3(-Man1-6)Man1-4GlcNAc1-4GlcNAc (9.9%),-Man1-3(GlcNAc1-4)(-Man1-6)Man1-4GlcNAc1-4GlcNAc (25.1%) and-Man1-3(GlcNAc1-4)(-Man1-6)Man1-4GlcNAc1-4(Fuc1-6)GlcNAc (11.4%). Although never found in mammalian proteins, glucosylated oligosaccharides (Glc1Man7–9GlcNAc2) have been located previously in hen IgY.Abbreviations IgG, IgM, IgA, IgY immunoglobulin G, M, A and Y, respectively - ABEE p-aminobenzoic acid ethyl ester  相似文献   

13.
    
UDP-GlcNAc:Man1-3R 1-2-N-acetylglucosaminyltransferase I (GlcNAc-T I; EC 2.4.1.101) catalyses the conversion of [Man1-6(Man1-3)Man1-6][Man1-3]Man-O-R to [Man1-6(Man1-3)Man1-6] [GlcNAc1-2Man1-3]Man-O-R (R=1-4GlcNAc1-4GlcNAc-Asn-X) and thereby controls the conversion of oligomannose to complex and hybrid asparagine-linked glycans (N-glycans). GlcNAc-T I also catalyses the conversion of Man1-6(Man1-3)Man-O-octyl to Man1-6(GlcNAc1-2Man1-3)Man-O-octyl. We have therefore tested a series of synthetic analogues of Man1-6(Man1-3)Man-O-octyl as substrates and inhibitors for rat liver GlcNAc-T I. The 2-deoxy and the 3-, 4- and 6-O-methyl derivatives are all good substrates confirming previous observations that the hydroxyl groups of the Man1-6 residue do not play major roles in the binding of substrate to enzyme. In contrast, all four hydroxyl groups on the Man1-3 residue are essential since the corresponding deoxy derivatives either do not bind (2- and 3-deoxy) or bind very poorly (4- and 6-deoxy) to the enzyme. The 2- and 3-O-methyl derivatives also do not bind to the enzyme. However, the 4-O-methyl derivative is a substrate (K m =2.6mm) and the 6-O-methyl compound is a competitive inhibitor (K i=0.76mm). We have therefore synthesized various 4- and 6-O-alkyl derivatives, some with reactive groups attached to anO-pentyl spacer, and tested these compounds as reversible and irreversible inhibitors of GlcNAc-T I. The 6-O-(5-iodoacetamido-pentyl) compound is a specific time dependent inhibitor of the enzyme. Four other 6-O-alkyl compounds showed competitive inhibition while the remaining compounds showed little or no binding indicating that the electronic properties of the attachedO-pentyl groups influence binding.Abbreviations GlcNAc-T I UDP-GlcNAc:Man1-3R 1-2-N-acetylglucosaminyltransferase I (EC 2.4.1.101) - GlcNAc-T II UDP-GlcNAc:Man1-6R 1-2-N-acetylglucosaminyltransferase II (EC 2.4.1.143) - MES 2-(N-morpholino)ethane sulfonic acid monohydrate  相似文献   

14.
Sodium salt of (20R)-3,4-dihydroxycholest-5-ene-21-yl sulfate and disodium salts of (20R)-4-hydroxycholest-5-ene-3,21-diyl disulfate, (20R)-24-methylcholest-5,24(28)-diene-3,21-diyl disulfate, (20R)-24-methyl-5-cholest-24(28)-ene-3,21-diyl disulfate, (20R)-cholest-5-ene-3,21-diyl disulfate, (20R)-5-cholestane-3,21-diyl disulfate, and (20R)-3-hydroxycholest-5-ene-2,21-diyl disulfate were isolated from the far eastern starfish Diplopteraster multipes and characterized. These compounds differ structurally from sulfated polyhydroxysteroids in other starfish species. At the same time, they are typical secondary metabolites of Ophiuroidea and have some structural features characteristic of the ophiuroid-isolated steroids, namely the 3-hydroxy (or 3-sulfoxy) and 21-sulfoxy groups. These data support the opinion of some taxonomists that starfishes and ophiuroids are phylogeneteically related classes and are closer to each other than to other classes of the Echinodermata phylum.  相似文献   

15.
Maria Bokern  Dieter Strack 《Planta》1988,174(1):101-105
Protein preparations from cell suspension cultures of Chenopodium rubrum L. and petals of Lampranthus sociorum (L.Bol.) N.E.Br. (Mes.C.L.Bol.) catalyzed the formation of acylated betacyanins, i.e. celosianin I and II (p-coumaroyl-and feruloylamaranthins) and lampranthin I and II (p-coumaroyl- and feruloylbetanins), from 1-O-(p-coumaroyl)-and 1-O-feruloyl--glucoses as acyldonors and the respective acceptor molecules amaranthin (betanidin 5-O-sophorobiuronic acid = betanidin 5-O--[12]-glucuronosyl--glucoside) and betanin (betanidin 5-O--glucoside). The enzymes involved could generally be classified as 1-O-hydroxycinnamoyl--glucose:betanidinglycoside O-hydroxycinnamoyltransferases (EC 2.3.1.-).Abbreviations HCA hydroxycinnamic acid - HCA hydroxycinnamoyl (=hydroxycinnamic acid-ester moiety) - HPLC high-performance liquid chromatography - TLC thin-layer chromatography  相似文献   

16.
Fowl plague virus, strain Dutch, was metabolically labeled withd-[2-3H]mannose, or withd-[6-3H]glucosamine, and the small subunit (HA2; 0.8 mg in total) of the viral hemagglutinin was isolated by preparative sodium dodecylsulfate-polyacrylamide gel electrophoresis. After proteolytic digestion, the radioactive oligosaccharides were sequentially liberated from the glycopeptides by treatment with different endo--N-acetylglucosaminidases and with peptide:N-glycosidase or, finally, by hydrazinolysis. In this manner, four groups of glycans could be obtained by consecutive gel filtrations and were subfractionated by HPLC. The structures of the individual oligosaccharides were analyzed by micromethylation, by acetolysis or by digestion with exoglycosidases. The major species amongst the high mannose glycans at Ans-406 of the viral glycopolypeptide were found to be Man1-2Man1-3(Man1-2Man1-6)Man1-6(Man1-2Man1-2Man1-3)Man1-4GlcNac1-4GlcNAc and Man1-3(Man1-2Man1-6)Man1-6(Man1-2Man1-2Man1-3)Man1-4GlcNAc1-4GlcNAc, while the complex glycans at Asn-478 are predominantly GlcNAc1-2Man1-3(GlcNAc1-2Man1-6)Man1-4GlcNAc1-4GlcNAc (lacking, in part, one of the outerN-acetylglucosamine residues) and GlcNAc1-2Man1-3(Gal1-4GlcNAc1-2Man1-6)Man1-4GlcNAc1-4GlcNAc.Abbreviation BSA bovine serum albumin - endo D (F,H) endo--N-acetyl-d-glucosaminidase D (F,H) - HA hemagglutinin (HA1, large subunit of HA - HA2 small subunit - FPV fowl plague virus - PNGase F peptide:N-glycosidase F - SDS sodium dodecylsulfate  相似文献   

17.
Immature and mature nonstratified seeds of white ash (Fraxinus americana L.) were dissected transversely and 2/3 of each seed was placed onto agar-solidified Murashige and Skoog medium. Adventitious buds, shoots, and somatic embryos formed on callus, cotyledons, and hypocotyls of the resulting seedlings. Shoot organogenesis was induced on explants cultured on medium with 10 M thidiazuron but not on explants on media with benzyladenine (BA) or isopentenyladenine. Not all seed sources were equally capable of shoot organogenesis and embryogenesis. Atypical of adventitious regeneration of other woody plants, mature seed explants of white ash were more organogenic with shoots that elongated better than explants from immature seeds. Somatic embryogenesis was observed in cultures where mature seeds were first cultured for 4 weeks on a medium containing 10 M adenine 2,4-dichlorophenoxyacetic acid in combination with 0.1 and 1.0 M thidiazuron, followed by transfer to a medium containing 0.05 M 6-benzyladenine and 0.5 M naphthaleneacetic acid. Adventitious shoots and epicotyls from both seedlings and germinated somatic embryos were rooted under intermittent mist and acclimatized to the greenhouse.Abbreviations BA 6-benzyladenine - 2,4-d 2,4-dichlorophenoxyacetic acid - IBA indolebutyric acid - 2iP isopentenyladenine - NAA naphthaleneacetic acid - TDZ thidiazuron-N-phenyl-N-1,2,3-thiadiazol-5-ylurea - WPM woody plant medium  相似文献   

18.
Dong A  Ye M  Guo H  Zheng J  Guo D 《Biotechnology letters》2003,25(4):339-344
Of 49 microbial strains screened for their capabilities to transform ginsenoside Rb1, Rhizopus stolonifer and Curvularia lunata produced four key metabolites: 3-O-[-d-glucopyranosyl-(1,2)--d-glucopyranosyl]- 20-O-[-d-glucopyranosyl]-3,12, 20(S)-trihydroxydammar-24-ene (1), 3-O-[-d-glucopyranosyl-(1,2)--d- glucopyranosyl]-20-O-[-d-glucopyranosyl]-3,12, 20(S)-trihydroxydammar-24-ol (2), 3-O-[-d-gluco- pyranosyl-(1,2)--d-glucopyranosyl]-3, 12, 20(S)-trihydroxydammar-24-ene (3), and 3-O--d-glucopyranosyl-3, 12, 20(S)-trihydroxydammar-24-ene (4), identified by TOF-MS, 1H- and 13C-NMR spectral data. Metabolites 1, 3 and 4 were from the incubation with R. stolonifer, and 1 and 2 from the incubation with C. lunata. Compound 2 was identified as a new compound.  相似文献   

19.
For the structural analysis of the carbohydrate chains ofN-,O-glycoproteins a straightforward strategy was developed based on the cleavage of theN-linked chains with immobilized peptide-N 4-(N-acetyl--glucosaminyl) asparagine amidase-F (PN-Gase-F) fromFlavobacterium meningosepticum, followed by alkaline borohydride treatment of the remainingO-glycoprotein material. This methodology was applied to the isolation of the Asn- and Ser-linked carbohydrate chains of human chorionic gonadotrophin. The structures of the isolated oligosaccharides were verified by 500-MHz1H-NMR spectroscopy. The Asn-linked sugar chains were shown to be: NeuAc2-3Gal1-4GlcNAc1-2Man1-6[NeuAc2-3Gal1-4GlcNAc1-2Man1-3]Man 1-4GlcNAc1-4[Fuc1-6]0-1GlcNAc and Man1-6[NeuAc2-3Gal1-4GlcNAc1-2Man 1-3]Man1-4GlcNAc1-4GlcNAc. Also some minor constituents occurred. The structures of the Ser-linked oligosaccharides were established in the form of their oligosaccharide-alditols as: NeuAc2-3Gal1-3[NeuAc2-6]GalNAc, NeuAc2-3Gal 1-3GalNAc and NeuAc2-3Gal1-3[NeuAc2-3Gal1-4GlcNAc1-6]GalNAc.Abbreviations hCG human chorionic gonadotrophin - hCG- -subunit - hCG- -subunit - ElA enzyme immunoassay - PNGase-F peptide-N 4-(N-acetyl--glucosaminyl)asparagine amidase-F (EC 3.5.1.52) - SDS sodium dodecyl sulphate - GalNAc N-acetylgalactosamine - GlcNAc N-acetylglucosamine - NeuAc N-acetylneuraminic acid - Man mannose - Gal galactose - Fuc fucose  相似文献   

20.
The four amino acids of the aspartate family (l-lysine, l-methionine, l-threonine, and l-isoleucine) are produced in bacteria by a branched biosynthetic pathway. Regulation of synthesis of early common intermediates and of carbon flow through distal branches of the pathway requires operation of a number of subtle feedback controls, which are integrated so as to ensure balanced synthesis of the several end products. Earlier studies with nonsulfur purple photosynthetic bacteria were instrumental in revealing the existence of alternative regulatory schemes, and in this communication we report on the control pattern of a representative of this physiological group not previously investigated, Rhodopseudomonas palustris. The results obtained from study of the properties of four key regulatory enzymes of the aspartate family pathway (-aspartokinase, homoserine dehydrogenase, homoserine kinase, and threonine deaminase) and of the effects of exogenous amino acids (i. e., the end products) on growth of the bacterium indicate that the control schema in Rps. palustris differs substantially from the schemes described for other Rhodopseudomonas species, but resembles the regulatory pattern observed in Rhodospirillum rubrum.Abbreviations A absorbancy - AK -aspartokinase - ASA aspartate -semialdehyde - DTT dithiothreitol - HS l-homoserine - HSDH homoserine dehydrogenase - HSK homoserine kinase - I l-isoleucine - KU Klett-Summerson photometer units - L l-lysine - M l-isoleucine - KU Klett-Summerson photometer units - L l-lysine - M l-methionine - ME -mercaptoethanol - PABA p-aminobenzoic acid - T l-threonine - TD threonine deaminase - RCV synthetic growth medium (see text) - YP agar medium containing 0.3% yeast extract, 0.3% peptone, and 1.5% agar - Y2T synthetic growth medium (see text)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号