首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An apolar helical decapeptide with different end groups, Boc- or Ac-, crystallizes in a completely parallel fashion for the Boc-analog and in an antiparallel fashion for the Ac-analog. In both crystals, the packing motif consists of rows of parallel molecules. In the Boc-crystals, adjacent rows assemble with the helix axes pointed in the same direction. In the Ac-crystals, adjacent rows assemble with the helix axes pointed in opposite directions. The conformations of the molecules in both crystals are quite similar, predominantly alpha-helical, except for the tryptophanyl side chain where chi 1 congruent to 60 degrees in the Boc- analog and congruent to 180 degrees in the Ac-analog. As a result, there is one lateral hydrogen bond between helices, N(1 epsilon)...O(7), in the Ac-analog. The structures do not provide a ready rationalization of packing preference in terms of side-chain interactions and do not support a major role for helix dipole interactions in determining helix orientation in crystals. The crystal parameters are as follow. Boc-analog: C60H97N11O13.C3H7OH, space group Pl with a = 10.250(3) A, b = 12.451(4) A, c = 15.077(6) A, alpha = 96.55(3) degrees, beta = 92.31(3) degrees, gamma = 106.37(3) degrees, Z = 1, R = 5.5% for 5581 data ([F] greater than 3.0 sigma(F)), resolution 0.89 A. Ac-analog: C57H91N11O12, space group P2(1) with a = 9.965(1) A, b = 19.707(3) A, c = 16.648(3) A, beta = 94.08(1), Z = 2, R = 7.2% for 2530 data ([F] greater than 3.0 sigma(F)), resolution 1.00 A.  相似文献   

2.
The isomeric decapeptides Boc-Aib-Ala-Leu-Ala-Aib-Aib-Leu-Ala-Leu-Aib-OMe (II) and Boc-Aib-Ala-Aib-Ala-Leu-Ala-Leu-Aib-Leu-Aib-OMe (III), are predominantly alpha-helical with little effect on the conformation with interchange of Aib/Ala residues or Aib/Leu residues. The packing motif of helices in crystal II is antiparallel, whereas the helices pack in a skewed fashion in crystal III, with a 40 degrees angle between neighboring helix axes. Crystal III contains a water molecule in a hydrophobic hole that forms hydrogen bonds with two carbonyl oxygens that also participate in 5----1 type hydrogen bonds. Values for helical torsional angles phi and psi assume a much wider range than anticipated. Crystal II: C49H88N10O13, space group P2(1), with a = 16.625 (2) A, b = 9.811 (5) A, c = 18.412 (3) A, beta = 99.79 (1) degrees, Z = 2, R = 5.7% for 4338 data with magnitude of F0' greater than 3 sigma(F). Crystal III: C49H88N10O13 x 1/2H2O, space group P2(1) with a = 11.072 (2) A, b = 34.663 (5) A, c = 16.446 (3) A, beta = 107.85 (1) degrees, Z = 4, R = 8.3% for 6087 data with [F0[ greater than 3 sigma(F).  相似文献   

3.
The crystal structures of two helical peptides Boc-Val-Ala-Leu-Aib-Val-ala-Leu-OMe (VALU-7) and Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-Aib-OMe (VALU-8) have been determined to a resolution of 1.0 and 0.9 A, respectively. Both the seven and eight residue peptides crystallize with two conformers per asymmetric unit. The VALU-8 conformers are completely helical and differ only at the C-terminus by a sign reversal of the phi, psi angles of the last residue. One of the VALU-7 conformers occurs as a normal alpha-helix, whereas in the other, the N(7)--O(3) alpha-type hydrogen bond is ruptured by the entry of a water molecule (W) into the helix, which in turn makes hydrogen bonds N(7)...W = 2.97 A and W...O(3) = 2.77 A. The other side of the water molecule is surrounded by a hydrophobic pocket. These two conformers give a static representation of a step in a possible helix unwinding or folding process. In the VALU-8 crystal the helices aggregate in a parallel mode, whereas the aggregation is anti-parallel in the VALU-7 crystal. The crystal parameters are VALU-7, P2(1), a = 10.203 (3) A, b = 19.744 (6) A, c = 22.561 (6) A, beta = 96.76 degrees, Z = 4, C38H69N7O10.0.5H2O, R = 6.65% for 3674 reflections observed greater than 3 sigma (F); and VALU-8, P2(1), a = 10.593 (4) A, b = 27.57 (6) A, c = 17.745 (5) A, beta = 95.76 (3) degrees, Z = 4, C42H76N8O11.0.25 CH3OH, R = 6.63% for 4701 reflections observed greater than 3 sigma (F).  相似文献   

4.
In our attempts to design crystalline alpha-helical peptides, we synthesized and crystallized GAI (C11H21N3O4) in two crystal forms, GAI1 and GAI2. Form 1 (GAI1) Gly-L-Ala-L-Ile (C11H21N3O4.3H2O) crystals are monoclinic, space group P2(1) with a = 8.171(2), b = 6.072(4), c = 16.443(4) A, beta = 101.24(2) degrees, V = 800 A3, Dc = 1.300 g cm-3 and Z = 2, R = 0.081 for 482 reflections. Form 2 (GAI2) Gly-L-Ala-L-Ile (C11H21N3O4.1/2H2O) is triclinic, space group P1 with a = 5.830(1), b = 8.832(2), c = 15.008(2) A, alpha = 102.88(1), beta = 101.16(2), gamma = 70.72(2) degrees, V = 705 A3, Z = 2, Dc = 1.264 g cm-3, R = 0.04 for 2582 reflections. GAI1 is isomorphous with GAV and forms a helix, whereas GAI2 does not. In GAI1, the tripeptide molecule is held in a near helical conformation by a water molecule that bridges the NH3+ and COO- groups, and acts as the fourth residue needed to complete the turn by forming two hydrogen bonds. Two other water molecules form intermolecular hydrogen bonds in stabilizing the helical structure so that the end result is a column of molecules that looks like an incipient alpha-helix. GAI2 imitates a cyclic peptide and traps a water molecule. The conformation angles chi 11 and chi 12 for the side chain are (-63.7 degrees, 171.1 degrees) for the helical GAI1, and (-65.1 degrees, 58.6 degrees) and (-65.0 degrees, 58.9 degrees) for the two independent nonhelical molecules in GAI2; in GAI1, both the C gamma atoms point away from the helix, whereas in GAI2 the C gamma atom with the g+ conformation points inward to the helix and causes sterical interaction with atoms in the adjacent peptide plane. From these results, it is clear that the helix-forming tendencies of amino acids correlate with the restrictions of side-chain rotamer conformations. Both the peptide units in GAI1 are trans and show significant deviation from planarity [omega 1 = -168(1) degrees; omega 2 = -171(1) degrees] whereas both the peptide units in both the molecules A and B in GAI2 do not show significant deviation from planarity [omega 1 = 179.3(3) degrees; omega 2 = -179.3(3) degrees for molecule A and omega 1 = 179.5(3) degrees; omega 2 = -179.4(3) degrees for molecule B], indicating that the peptide planes in these incipient alpha-helical peptides are considerably bent.  相似文献   

5.
In the crystal, the backbone of Boc-(Aib-Val-Ala-Leu)2-Aib-OMe adopts a helical form with four alpha-type hydrogen bonds in the middle, flanked by 3(10)-type hydrogen bonds at either end. The helical molecules stack in columns with head-to-tail hydrogen bonds, either directly between NH and CO, or bridged by solvent molecules. The packing of the helices is parallel, even in space group P2(1). Cell parameters are a = 9.837(2) A, b = 15.565(3) A, c = 20.087(5) A, beta = 96.42(2) degrees, dcalc = 1.091 g/cm3 for C46H83N9O12.1.5H2O.0.67CH3OH. There appears to be some hydration of the backbone in this apolar helix.  相似文献   

6.
The packing of peptide helices in crystals of the leucine-rich decapeptide Boc-Aib-Leu-Aib-Aib-Leu-Leu-Leu-Aib-Leu-Aib-OMe provides an example of ladder-like leucylleucyl interactions between neighboring molecules. The peptide molecule forms a helix with five 5----1 hydrogen bonds and two 4----1 hydrogen bonds near the C terminus. Three head-to-tail NH ... O = C hydrogen bonds between helices form continuous columns of helices in the crystal. The helicial columns associate in an antiparallel fashion, except for the association of Leu ... Leu side chains, which occurs along the diagonal of the cell where the peptide helices are parallel. The peptide, with formula C56H102N10O13, crystallizes in space group P2(1)2(1)2(1) with Z = 4 and cell parameters a = 16.774(3) A, b = 20.032(3) A and c = 20.117(3) A; overall agreement factor R = 10.7% for 2014 data with magnitude of F(obs) greater than 3 sigma (F); resolution 1.0 A.  相似文献   

7.
The incorporation of alpha-aminoisobutyryl (Aib) residues into peptide sequences facilitates helical folding. Aib-containing sequences have been chosen for the design of rigid helical segments in a modular approach to the construction of a synthetic protein mimic. The helical conformation of the synthetic peptide Boc-Aib-(Val-Ala-Leu-Aib)3-OMe in crystals is established by X-ray diffraction. The 13-residue apolar peptide adopts a helical form in the crystal with seven alpha-type hydrogen bonds in the middle and 3(10)-type hydrogen bonds at either end. The helices stack in columns, zigzag rather than linear, by means of direct NH...OC head to tail hydrogen bonds. Leucyl side chains are extended on one side of the helix and valyl side chains on the other side. Water molecules form hydrogen bonds with several backbone carbonyl oxygens that also participate in alpha-helix hydrogen bonds. There is no apparent distortion of the helix caused by hydration. The space group is P2(1)2(1)2(1), with a = 9.964 (3) A, b = 20.117 (3) A, c = 39.311 (6) A, Z = 4, and dx = 1.127 g/cm3 for C64H106N13O16.1.33H2O. The final agreement factor R was 0.089 for 3667 data observed greater than 3 sigma(F) with a resolution of 0.9 A.  相似文献   

8.
A structural transition from a 3(10)-helix to an alpha-helix has been characterized at high resolution for an octapeptide segment located in 3 different sequences. Three synthetic peptides, decapeptide (A) Boc-Aib-Trp-(Leu-Aib-Ala)2-Phe-Aib-OMe, nonapeptide (B) Boc-Trp-(Leu-Aib-Ala)2-Phe-Aib-OMe, and octapeptide (C) Boc-(Leu-Aib-Ala)2-Phe-Aib-OMe, are completely helical in their respective crystals. At 0.9 A resolution, R factors for A, B, and C are 8.3%, 5.4%, and 7.3%, respectively. The octapeptide and nonapeptide form ideal 3(10)-helices with average torsional angles phi(N-C alpha) and psi(C alpha-C') of -57 degrees, -26 degrees C and -60 degrees, -27 degrees for B. The 10-residue peptide (A) begins as a 3(10)-helix and abruptly changes to an alpha-helix at carbonyl O(3), which is the acceptor for both a 4-->1 hydrogen bond with N(6)H and a 5-->1 hydrogen with N(7)H, even though the last 8 residues have the same sequence in all 3 peptides. The average phi, psi angles in the decapeptide are -58 degrees, -28 degrees for residues 1-3 and -63 degrees, -41 degrees for residues 4-10. The packing of helices in the crystals does not provide any obvious reason for the transition in helix type. Fourier transform infrared studies in the solid state also provide evidence for a 3(10)- to alpha-helix transition with the amide I band appearing at 1,656-1,657 cm-1 in the 9- and 10-residue peptides, whereas in shorter sequences the band is observed at 1,667 cm-1.  相似文献   

9.
The crystal and molecular structure of the nonapeptide antibiotic leucinostatin A, containing some uncommon amino acids and three Aib residues, has been determined by x-ray diffraction analysis. The molecule crystallizes in the orthorhombic space group P2(1)2(1)2(1), a = 10.924, b = 17.810, c = 40.50 A, C62H111N11O13, HCl.H2O, Z = 4. The peptide backbone folds in a regular right-handed alpha-helix conformation, with six intramolecular i----(i + 4) hydrogen bonds, forming C13 rings. The nonapeptide chain includes at the C end an unusual beta-Ala residue, which also adopts the helical structure of the other eight residues. In the crystal the helices are linked head to tail by electrostatic and hydrogen-bond interactions, forming continuous helical rods. The crystal packing is formed by adjacent parallel and antiparallel helical rods. Between adjacent parallel helical columns there are only van der Waals contacts, while between adjacent antiparallel helical columns hydrogen-bond interactions are formed.  相似文献   

10.
Crystals of calcium cholate chloride heptahydrate, CaC24H39O7Cl . 7H2O, are monoclinic, space group P2(1), with a = 11.918(2), b = 8.636(1), c = 15.302(3) A, beta = 97.93(3) degrees, V = 1559.9(8) A3, and Z = 2. A trial structure was obtained by Patterson and Fourier techniques and was refined by full-matrix least-squares calculations using absorption corrected CuK-alpha diffractometer data. The final R index is 0.047. The crystal structure contains bilayer-type arrangements, with hydrophobic portions of cholate rings sandwiched between layers of polar groups that are interacting with calcium ions and water molecules. The calcium ion is coordinated to five water molecules and to the two carboxylate oxygen atoms of the cholate residue. Two additional water molecules are involved only in crystal packing through the formation of hydrogen bonds. Cholate-cholate hydrophobic interactions involve contacts between the hydrocarbon portions of the carboxylate sidechains and the A and B rings. This results in a staggered packing pattern that is nearly identical to that found in crystals of sodium cholate and rubidium deoxycholate. Similar bilayer aggregation patterns may also be involved in the formation of bile salt micelles in aqueous media. The characteristic bilayer packing arrangement can accommodate a variety of cation-binding patterns, as evidenced by the finding that calcium, sodium, and rubidium ions interact with the polar faces of the bilayers in different ways. The carboxylate sidechain displays two different conformations in the crystal structure of calcium cholate chloride heptahydrate. Variation in sidechain conformation may be of importance in the adjustment required to accommodate different cation coordination schemes.  相似文献   

11.
At 295 K, crystals of form I of cholesteryl cis-9-hexadecenoate (palmitoleate) and cholesteryl trans-9-hexadecenoate (palmitelaidate) are difficult to distinguish by X-ray diffraction. Both form monoclinic thin plates, space group P21 with two molecules (C43H74O2) A and B in the asymmetric unit. Unit cell dimensions for cholesteryl palmitelaidate (I) are a = 12.827(4), b = 9.075(4), c = 35.67(1) A, beta = 93.42(3) degrees, very similar to those of the palmitoleate crystals. Other crystals (form II) of the palmitelaidate ester are described. The crystal structure of form I of cholesteryl palmitelaidate has been determined from 3657 reflections (sin theta/lambda less than 0.46 A-1) measured at 295 K using CuK alpha X-radiation and refined to give Rw(F) = 0.095. The molecular packing arrangement is isostructural to that of the previously determined crystal structure of cholesteryl palmitoleate. In both crystals, the fatty acid chains of the A molecules are kinked at the double bond but are nearly straight. The chains of B molecules have more complicated dislocations and are bent. It is remarkable that, neglecting their detailed conformations, corresponding fatty acid chains in the two crystal structures have similar overall shapes, although palmitoleate chains have cis-ethylenic groups and palmitelaidate chains have trans groups.  相似文献   

12.
The synthetic peptide Gly-L-Ala-L-Phe (C14H19N3O4.2H2O; GAF) crystallizes in the monoclinic space group P2I1), with a = 5.879(1), b = 7.966(1), c = 17.754(2) A, beta = 95.14(2) degrees, Dx = 1.321 g cm-3, and Z = 2. The crystal structure was solved by direct methods using the program SHELXS-86 and refined to an R value of 0.031 for 1425 reflections (greater than 3 sigma). The tripeptide exists as a zwitterion in the crystal and assumes a near alpha-helical backbone conformation with the following torsion angles: psi 1 = -147.8 degrees; phi 2, psi 2 = -71.2 degrees, 33.4 degrees; phi 3, psi 3 = -78.3 degrees, -43.3 degrees. In this structure, one water molecule bridges the COO- and NH3+ terminii to complete a turn of an alpha-helix and another water molecule participates in head-to-tail intermolecular hydrogen bonding, so that the end result is a column of molecules that looks like an alpha-helix. Thus, the two water molecules of crystallization play a major role in stabilizing the near alpha-helical conformation of each tripeptide molecule and in elongating the helix throughout the crystal. An analysis of all protein sequences around regions containing a GAF fragment by Chou-Fasman's secondary structure prediction method showed that those regions are likely to assume an alpha-helical conformation with twice the probability they are likely to adopt a beta-sheet conformation. It is conceivable that a GAF fragment may be a good part of the nucleation site for forming alpha-helical fragments in a polypeptide, with the aqueous medium playing a crucial role in maintaining such transient species.  相似文献   

13.
Sun Y  Soloway RD  Han YZ  Yang GD  Wang XZ  Liu ZJ  Yang ZL  Xu YZ  Wu JG 《Steroids》2002,67(5):385-392
The crystal structure of cesium cholate, C(24)H(36)(OH)(3) COOCs has been determined with three-dimensional X-ray diffractometer data. It crystallized in the monoclinic space group P2(1) with unit-cell dimensions a = 11.543(5) A, b = 8.614(3) A, and c = 12.662(5) A, beta(deg) = 107.95(2), V = 1197.7 A(3) and Z = 2. The atomic parameters were refined to a final r = 0.0269 and R(omega) = 0.0280 for 2342 observed reflections. Each Cs(+) is coordinated to 7 oxygen atoms from 5 different cholate anions with Cs-O distances ranging from 2.957(4) A to 3.678(5) A. In this crystal, 5 cholates are coordinated with 1 Cs(+), and 5 Cs(+) are coordinated with 1 cholate anion. Carboxyl and all the 3 ring hydroxyl groups of cholate anion participate in binding to Cs(+) simultaneously, and there is no water molecule coordinated with the Cs(+). The pattern of successive rows arranged with polar (p) and non-polar (n) faces in apposition leads to the formation of a sandwich sheet structure with polar and non-polar channels. The Cs ions lie within the polar interior of the sandwich. The H-bond network is reorganized in forming cesium cholate from cholic acid. All the oxygen atoms in cholate anion are involved in H-bonding reciprocally or with water molecules to form an extensive 3-dimensional network of H-bonds. Compared with cholic acid and other similar type of steroids, the coordination structure and H-bonding of Cs cholate crystal are distinct.  相似文献   

14.
The crystal structure of the tripeptide t-Boc-L-Pro-D-Ala-D-Ala-NHCH3, monohydrate, (C17H30N4O5.H2O, molecular weight = 404.44) has been determined by single crystal X-ray diffraction. The crystals are monoclinic, space group P2(1), a = 9.2585(4), b = 9.3541(5), c = 12.4529(4)A, beta = 96.449(3) degrees, Z = 2. The peptide units are in the trans and the tBoc-Pro bond in the cis orientation. The first and third peptide units show significant deviations from planarity (delta omega = 5.2 degrees and delta omega = 3.7 degrees, respectively). The backbone torsion angles are: phi 1 = -60 degrees, psi 1 = 143.3 degrees, omega 1 = -174.8 degrees, phi 2 = 148.4 degrees, psi 2 = -143.1 degrees, omega 2 = -179.7 degrees, phi 3 = 151.4 degrees, psi 3 = -151.9 degrees, omega 3 = -176.3 degrees. The pyrrolidine ring of the proline residue adopts the C2-C gamma conformation. The molecular packing gives rise to an antiparallel beta-sheet structure formed of dimeric repeating units of the peptide. The surface of the dimeric beta-sheet is hydrophobic. Water molecules are found systematically at the edges of the sheets interacting with the urethane oxygen and terminal amino groups. Surface catalysis of an L-Ala to D-Ala epimerization process by water molecules adsorbed on to an incipient beta-sheet is suggested as a mechanism whereby crystals of the title peptide were obtained from a solution of tBoc-Pro-D-Ala-Ala-NHCH3.  相似文献   

15.
Crystals of human cyanomethemoglobin C (beta 6A3 glu leads to Lys) crystallized in the orthorhombic space group P212121, A = 158(1), B = 65.5(4), C = 54.9(5) A with Z =4. Single crystal electron micrographs show filaments parallel to the b direction. The molecules are unusually densely packed compared to other hemoglobin crystals, and this may be related to the ease of intraerythrocytic crystallization.  相似文献   

16.
At 123 K, crystals of cholesteryl trans-9-trans-12-octadecadienoate (cholesteryl linolelaidate, C47H76O2) are monoclinic, space group P2(1) with cell dimensions a = 13.03(3), b = 8.76(2), c = 17.90(4) A, beta = 89.7(2) degrees, having two molecules per unit cell. The crystal structure has been determined from 2041 X-ray intensities with sin theta/lambda less than 0.48 A-1, of which 922 gave I greater than 2 sigma(I). The hydrogen atoms were found in a difference Fourier synthesis. Block diagonal least squares refinement assuming isotropic thermal parameters has converged with Rw = 0.13. The molecule is fully extended (length 43.3 A), except for a symmetric bowing in the linolelaidate chain segment which contains the two unconjugated trans ethylenic bonds. The torsion angles at the four C--C bonds adjacent to the C=C bonds are all in the preferred (+/-)-skew range. Chain packing is efficient, without having a regular subcell structure. There is a similarity with the overall conformation of the oleate chains in crystals of cholesteryl oleate. Although chemically disparate, the oleate and linolelaidate chains have similar crystal environments.  相似文献   

17.
Crystallization and preliminary crystallographic study of Bowman-Birk type protease inhibitors, A-I, A-II, and B-III from peanut seeds (Arachis hypogaea), and of the A-II + trypsin complex were carried out. A-II, with 70 amino acid residues, crystallizes in a trigonal system, P3(1)21 (or P3(2)21), a = 71.8, c = 65.9 A, Z = 12 or 18. The A-I crystal is isomorphous with that of A-II, indicating that the N-terminal residues are in a disordered state in both crystals. The B-III crystal is monoclinic, C2, a = 119.6, b = 69.6, c = 94.2 A, beta = 115.1 degrees, Z is about 40. The A-II + trypsin complex crystallizes in an orthorhombic system, P2(1)2(1)2(1), a = 55.5, b = 56.0, c = 182.1 A, Z = 4.  相似文献   

18.
An X-ray diffraction study was carried out on a single crystal of N-(N alpha-[(tert.-butyloxy)-carbonyl]-L-alanyl)-N,N'-dicyclohexylur ea belonging to the tetragonal space group P4(1)2(1)2, having cell dimensions a = b = 10.102(3) A, c = 46.067(7) A, V = 4701.2 A3, Z = 8. The crystal structure was solved by direct methods and refined to an R value of 0.056 for 1602 unique reflections with I greater than 2.5 sigma(I). Crystal structure analysis shows the presence of an intramolecular N-H ... O=C H-bond stabilizing the molecule in a folded form similar to that of a beta turn, forming a nine-membered ring. IR and 1H-NMR studies in CDCl3 solution confirm the stable folded conformation found in the crystalline state, as well as the existence of N-H ... O=C H-bonds in the title compound, as in peptides.  相似文献   

19.
T Ishida  Y In  M Doi  M Inoue  Y Hamada  T Shioiri 《Biopolymers》1992,32(2):131-143
In order to investigate the conformational variation of ascidiacyclamide, a cytotoxic cyclic peptide from marine tunicate Ascidian, single crystals were prepared from ethanol and aqueous ethanol solutions as its free form (crystal I) and H2O/0.5 C2H5OH solvate (crystal II), respectively, and were determined by the x-ray diffraction method. Crystal I showed a pseudo C2-symmetric saddle-shaped rectangular conformation. Similar conformations were also observed in crystal II, where there were two crystallographically independent C2-symmetric molecules (named Mol-A and -B) per asymmetric unit. Mol-A and -B included H2O and H2O/C2H5OH solvents within their ring structures, respectively. These water and ethanol molecules were located on the crystallographic dyad axes, and were stabilized by the van der Waals contacts (including hydrogen bonds) with the polar-ring N atoms and nonpolar D-Val side-chain atoms. The conformational characteristics of ascidiacyclamide and its fluctuation/variation were discussed based on the present and previously reported x-ray results.  相似文献   

20.
The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F, and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs (snRNAs). These proteins share a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. Crystal structures of two Sm protein complexes, D3B and D1D2, show that these proteins have a common fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta sheet, and the D1D2 and D3B dimers superpose closely in their core regions, including the dimer interfaces. The crystal structures suggest that the seven Sm proteins could form a closed ring and the snRNAs may be bound in the positively charged central hole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号