首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gao J  Wang X  Chang Y  Zhang J  Song Q  Yu H  Li X 《Analytical biochemistry》2006,350(2):165-170
Water channel proteins, known as aquaporins, are transmembrane proteins that mediate osmotic water permeability. In a previous study, we found that acetazolamide could inhibit osmotic water transportation across Xenopus oocytes by blocking the function of aquaporin-1 (AQP1). The purpose of the current study was to confirm the effect of acetazolamide on water osmotic permeability using the human embryonic kidney 293 (HEK293) cells transfected with pEGFP/AQP1 and to investigate the interaction between acetazolamide and AQP1. The fluorescence intensity of HEK293 cells transfected with pEGFP/AQP1, which corresponds to the cell volume when the cells swell in a hyposmotic solution, was recorded under confocal laser fluorescence microscopy. The osmotic water permeability was assessed by the change in the ratio of cell fluorescence to certain cell area. Acetazolamide, at concentrations of 1 and 10muM, inhibited the osmotic water permeability in HEK293 cells transfected with pEGFP/AQP1. The direct binding between acetazolamide and AQP1 was detected by surface plasmon resonance. AQP1 was prepared from rat red blood cells and immobilized on a CM5 chip. The binding assay showed that acetazolamide could directly interact with AQP1. This study demonstrated that acetazolamide inhibited osmotic water permeability through interaction with AQP1.  相似文献   

2.
Aquaporin (AQP) water channel AQP3 has been proposed to be the major glycerol and non-AQP1 water transporter in erythrocytes. AQP1 and AQP3 are also expressed in the kidney where their deletion in mice produces distinct forms of nephrogenic diabetes insipidus. Here AQP1/AQP3 double knockout mice were generated and analyzed to investigate the functional role of AQP3 in erythrocytes and kidneys. 53 double knockout mice were born out of 756 pups from breeding double heterozygous mice. The double knockout mice had reduced survival and impaired growth compared with the single knockout mice. Erythrocyte water permeability was 7-fold reduced by AQP1 deletion but not further reduced in AQP1/AQP3 null mice. AQP3 deletion did not affect erythrocyte glycerol permeability or its inhibition by phloretin. Daily urine output in AQP1/AQP3 double knockout mice (15 ml) was 9-fold greater than in wild-type mice, and urine osmolality (194 mosm) was 8.4-fold reduced. The mice remained polyuric after DDAVP administration or water deprivation. The renal medulla in most AQP1/AQP3 null mice by age 4 weeks was atrophic and fluid-filled due to the severe polyuria and hydronephrosis. Our data provide direct evidence that AQP3 is not functionally important in erythrocyte water or glycerol permeability. The renal function studies indicate independent roles of AQP1 and AQP3 in countercurrent exchange and collecting duct osmotic equilibration, respectively.  相似文献   

3.
Vasopressin-regulated water reabsorption through the water channel aquaporin-2 (AQP2) in renal collecting ducts maintains body water homeostasis. Vasopressin activates PKA, which phosphorylates AQP2, and this phosphorylation event is required to increase the water permeability and water reabsorption of the collecting duct cells. It has been established that the phosphorylation of AQP2 induces its apical membrane insertion, rendering the cell water-permeable. However, whether this phosphorylation regulates the water permeability of this channel still remains unclear. To clarify the role of AQP2 phosphorylation in water permeability, we expressed recombinant human AQP2 in Escherichia coli, purified it, and reconstituted it into proteoliposomes. AQP2 proteins not reconstituted into liposomes were removed by fractionating on density step gradients. AQP2-reconstituted liposomes were then extruded through polycarbonate filters to obtain unilamellar vesicles. PKA phosphorylation significantly increased the osmotic water permeability of AQP2-reconstituted liposomes. We then examined the roles of AQP2 phosphorylation at Ser-256 and Ser-261 in the regulation of water permeability using phosphorylation mutants reconstituted into proteoliposomes. The water permeability of the non-phosphorylation-mimicking mutant S256A-AQP2 and non-phosphorylated WT-AQP2 was similar, and that of the phosphorylation-mimicking mutant S256D-AQP2 and phosphorylated WT-AQP2 was similar. The water permeability of S261A-AQP2 and S261D-AQP2 was similar to that of non-phosphorylated WT-AQP2. This study shows that PKA phosphorylation of AQP2 at Ser-256 enhances its water permeability.  相似文献   

4.
Nickel is a common cause of pneumoconiosis. Here, we show that nickel inactivates aquaporin (AQP)-3, the water channel expressed apically in epithelial cells of human terminal airways. Human AQP3 was transiently transfected into human lung cells, and water permeability was measured in transfected and neighboring untransfected cells. Incubation with NiCl2 rapidly, dose-dependently, and reversibly decreased water permeability in AQP3-expressing cells. Acidification of the extracellular medium also caused rapid, dose-dependent, and reversible inhibition of AQP3. Sensitivity of AQP3 to nickel was lower at alkaline pH than at neutral and acidic pH. Cells transfected with human AQP4 and AQP5, which are also expressed in airway epithelia, were insensitive to nickel and extracellular acidification. Zinc and cadmium, other common causes of pneumoconiosis, had no effect on the water permeability of AQP3. Three extracellular residues, Trp128, Ser152, and His241, were responsible for the blocking effect of nickel on human AQP3. Ser152 was identified as a common site for nickel and pH sensitivity. His53, Tyr124, and His154 were also involved in regulation of AQP3 by extracellular pH. In addition, the aromatic side chain of His154 was shown to be important for the water permeability of AQP3. Our results imply that nickel and extracellular pH may modulate lung water clearance and that defective water clearance may be an early component of nickel-induced lung disease.  相似文献   

5.
Background information. Mercurials inhibit AQPs (aquaporins), and site‐directed mutagenesis has identified Cys189 as a site of the mercurial inhibition of AQP1. On the other hand, AQP4 has been considered to be a mercury‐insensitive water channel because it does not have the reactive cysteine residue corresponding to Cys189 of AQP1. Indeed, the osmotic water permeability (Pf) of AQP4 expressed in various types of cells, including Xenopus oocytes, is not inhibited by HgCl2. To examine the direct effects of mercurials on AQP4 in a proteoliposome reconstitution system, His‐tagged rAPR4 (rat AQP4) M23 was expressed in Saccharomyces cerevisiae, purified with an Ni2+‐nitrilotriacetate affinity column, and reconstituted into liposomes with the dilution method. Results. The water permeability of AQP4 proteoliposomes with or without HgCl2 was measured with a stopped‐flow apparatus. Surprisingly, the Pf of AQP4 proteoliposomes was significantly decreased by 5 μM HgCl2 within 30 s, and this effect was completely reversed by 2‐mercaptoethanol. The dose‐ and time‐dependent inhibitory effects of Hg2+ suggest that the sensitivity to mercury of AQP4 is different from that of AQP1. Site‐directed mutagenesis of six cysteine residues of AQP4 demonstrated that Cys178, which is located at loop D facing the intracellular side, is a target responding to Hg2+. We confirmed that AQP4 is reconstituted into liposome in a bidirectional orientation. Conclusions. Our results suggest that mercury inhibits the Pf of AQP4 by mechanisms different from those for AQP1 and that AQP4 may be gated by modification of a cysteine residue in cytoplasmic loop D.  相似文献   

6.
One of the major characteristics of human skin photoaging induced by ultraviolet (UV) radiation is the dehydration of the skin. Water movement across plasma membrane occurs via diffusion through lipid bilayer and via aquaporins (AQPs). We find that UV induces aquaporin-3 (AQP3) down-regulation in human skin keratinocytes. MEK/ERK inhibitors PD98059 and U0126 inhibit UV-induced down-regulation of AQP3. Antioxidant N-acetyl-L-cysteine or NAC blocks UV-induced MEK/ERK activation and down-regulation of AQP3. All-trans retinoic acid or atRA, while alone inducing AQP3 expression, attenuates UV-induced down-regulation of AQP3 and water permeability. Using special inhibitors, we find that activation of EGFR and inhibition on ERK activation are involved in atRA's protective effects against UV-induced AQP3 down-regulation. Using specific AQP3's water transport inhibitors and siRNA knockdown, we observe that AQP3 is involved in cell migration and in vitro wound healing. UV-induced AQP3 down-regulation results in reduced water permeability, decreased cell migration, and delayed wound healing, which are attenuated by atRA pretreatment. We conclude that atRA protects against UV-induced down-regulation AQP3 and decrease in water permeability, reduction in cell migration and delayed in vitro wound healing via trans-activation of EGFR and inhibition on ROS-mediated MEK/ERK pathway. This novel finding provides evidence to support possible involvement of AQP3 in UV induced skin dehydration.  相似文献   

7.
It has beenproposed that aquaporin-4 (AQP4), a water channel expressed at theplasmalemma of skeletal muscle cells, is important in normal musclephysiology and in the pathophysiology of Duchenne's musculardystrophy. To test this hypothesis, muscle water permeability andfunction were compared in wild-type and AQP4 knockout mice. Immunofluorescence and freeze-fracture electron microscopy showed AQP4protein expression in plasmalemma of fast-twitch skeletal muscle fibersof wild-type mice. Osmotic water permeability was measured inmicrodissected muscle fibers from the extensor digitorum longus (EDL) and fractionated membrane vesicles from EDLhomogenates. With the use of spatial-filtering microscopy to measureosmotically induced volume changes in EDL fibers, half times(t1/2) for osmotic equilibration (7.5-8.5 s)were not affected by AQP4 deletion. Stopped-flow light-scatteringmeasurements of osmotically induced volume changes in plasmalemmavesicles also showed no significant differences in water permeability.Similar water permeability, yet ~90% decreased AQP4 proteinexpression was found in EDL from mdx mice that lack dystrophin.Skeletal muscle function was measured by force generation in isolatedEDL, treadmill performance time, and in vivo muscle swelling inresponse to water intoxication. No differences were found in EDL forcegeneration after electrical stimulation [42 ± 2 (wild-type) vs. 41 ± 2 (knockout) g/s], treadmill performance time (22 vs. 26 min; 29 m/min, 13° incline), or muscle swelling (2.8 vs. 2.9% increasedwater content at 90 min after intraperitoneal water infusion). Togetherthese results provide evidence against a significant role of AQP4 inskeletal muscle physiology in mice.

  相似文献   

8.
BACKGROUND INFORMATION: Mercurials inhibit AQPs (aquaporins), and site-directed mutagenesis has identified Cys(189) as a site of the mercurial inhibition of AQP1. On the other hand, AQP4 has been considered to be a mercury-insensitive water channel because it does not have the reactive cysteine residue corresponding to Cys(189) of AQP1. Indeed, the osmotic water permeability (P(f)) of AQP4 expressed in various types of cells, including Xenopus oocytes, is not inhibited by HgCl2. To examine the direct effects of mercurials on AQP4 in a proteoliposome reconstitution system, His-tagged rAQP4 [corrected] (rat AQP4) M23 was expressed in Saccharomyces cerevisiae, purified with an Ni2+-nitrilotriacetate affinity column, and reconstituted into liposomes with the dilution method. RESULTS: The water permeability of AQP4 proteoliposomes with or without HgCl2 was measured with a stopped-flow apparatus. Surprisingly, the P(f) of AQP4 proteoliposomes was significantly decreased by 5 microM HgCl2 within 30 s, and this effect was completely reversed by 2-mercaptoethanol. The dose- and time-dependent inhibitory effects of Hg2+ suggest that the sensitivity to mercury of AQP4 is different from that of AQP1. Site-directed mutagenesis of six cysteine residues of AQP4 demonstrated that Cys(178), which is located at loop D facing the intracellular side, is a target responding to Hg2+. We confirmed that AQP4 is reconstituted into liposome in a bidirectional orientation. CONCLUSIONS: Our results suggest that mercury inhibits the P(f) of AQP4 by mechanisms different from those for AQP1 and that AQP4 may be gated by modification of a cysteine residue in cytoplasmic loop D.  相似文献   

9.
It has been shown that aquaporin-3, a water channel, is expressed in mouse embryos. This type of aquaporin transports not only water but also neutral solutes, including cell-permeating cryoprotectants. Therefore, the expression of this channel may have significant influence on the survival of cryopreserved embryos. However, permeability coefficients of aquaporin-3 to cryoprotectants have not been determined except for glycerol. In addition, permeability coefficients under concentration gradients are important for developing and improving cryopreservation protocols. In this study, we examined the permeability of aquaporin-3 to various cryoprotectants using Xenopus oocytes. The permeability of aquaporin-3 to cryoprotectants was measured by the volume change of aquaporin-3 cRNA-injected oocytes in modified Barth's solution containing either 10% glycerol, 8% ethylene glycol, 10% propylene glycol, 1.5 M acetamide, or 9.5% DMSO (1.51-1.83 Osm/kg) at 25 degrees C. Permeability coefficients of aquaporin-3 for ethylene glycol and propylene glycol were 33.50 and 31.45 x 10(-3) cm/min, respectively, which were as high as the value for glycerol (36.13 x 10(-3) cm/min). These values were much higher than those for water-injected control oocytes (0.04-0.11 x 10(-3) cm/min). On the other hand, the coefficients for acetamide and DMSO were not well determined because the volume data were poorly fitted by the two parameter model, possibly because of membrane damage. To avoid this, the permeability for these cryoprotectants was measured under a low concentration gradient by suspending oocytes in aqueous solutions containing low concentrations of acetamide or DMSO dissolved in water (0.20 Osm/kg). The coefficient for acetamide (24.60 x 10(-3) cm/min) was as high as the coefficients for glycerol, ethylene glycol, and propylene glycol, and was significantly higher than the value for control (6.50 x 10(-3) cm/min). The value for DMSO (6.33 x 10(-3) cm/min) was relatively low, although higher than the value for control (0.79 x 10(-3) cm/min). This is the first reported observation of DMSO transport by aquaporin-3.  相似文献   

10.
11.
The permeability of the plasma membrane plays a crucial role in the successful cryopreservation of oocytes and embryos. Several efforts have been made to facilitate the movement of water and cryoprotectants across the plasma membrane of fish oocytes/embryos because of their large size. Aquaporin-3 is a water/solute channel that can also transport various cryoprotectants. In this study, we tried to improve the permeability of immature medaka (Oryzias latipes) oocytes to water and cryoprotectants by artificially expressing aquaporin-3. The oocytes were injected with aquaporin-3 cRNA and cultured for 6-7 h. Then, hydraulic conductivity (L(P)) and cryoprotectant permeability (P(S)) were determined from volume changes in a hypertonic sucrose solution and various cryoprotectant solutions, respectively, at 25 degrees C. The L(P) value of the cRNA-injected oocytes was 0.22+/-0.04 microm/min/atm, nearly twice larger than that of intact or water-injected oocytes (0.14+/-0.02 and 0.14+/-0.03 microm/min/atm, respectively). P(S) values of intact oocytes for ethylene glycol, propylene glycol, and DMSO were 1.36+/-0.34, 1.97+/-0.20, and 1.17+/-0.52 x 10(-3) cm/min, respectively. The permeability to glycerol could not be calculated because oocytes remained shrunken in the glycerol solution. On the other hand, cRNA-injected oocytes had significantly higher P(S) values (glycerol, 2.20+/-1.29; ethylene glycol, 2.98+/-0.36; propylene glycol, 3.93+/-1.70; DMSO, 3.11+/-0.74 x 10(-3) cm/min) than intact oocytes. When cRNA-injected oocytes were cultured for 12-14 h, 51% matured to the metaphase II stage, and 43% of the matured oocytes were fertilized and hatched following in vitro fertilization and 14 days of culture. Thus, the permeability of medaka oocytes to water and cryoprotectants was improved by the artificial expression of aquaporin-3, and the oocytes retained the ability to develop to term.  相似文献   

12.
For its fundamental relevance, transport of water and glycerol across the erythrocyte membrane has long been investigated before and after the discovery of aquaporins (AQPs), the membrane proteins responsible for water and glycerol transport. AQP1 is abundantly expressed in the human erythrocyte for maintaining its hydrohomeostasis where AQP3 is also expressed (at a level ~30-folds lower than AQP1) facilitating glycerol transport. This research is focused on two of the remaining questions: How permeable is AQP3 to water? What is the glycerol-AQP3 affinity under near-physiological conditions? Through atomistic modelling and large-scale simulations, we found that AQP3 is two to three times more permeable to water than AQP1 and that the glycerol-AQP3 affinity is approximately 500/M. Using these computed values along with the data from the latest literature on AQP1 and on erythrocyte proteomics, we estimated the water and glycerol transport rates across the membrane of an entire erythrocyte. We used these rates to predict the time courses of erythrocyte swelling-shrinking in response to inward and outward osmotic gradients. Experimentally, we monitored the time course of human erythrocytes when subject to an osmotic or glycerol gradient with light scattering in a stopped-flow spectrometer. We observed close agreement between the experimentally measured and the computationally predicted time courses of erythrocytes, which corroborated our computational conclusions on the AQP3 water-permeability and the glycerol-AQP3 affinity.  相似文献   

13.
Water permeability and characterization of aquaporin-11   总被引:1,自引:0,他引:1  
The water permeability of aquaporin-11 (AQP11), which has a cysteine substituted for an alanine at a highly conserved asparagine-proline-alanine (NPA) motif in the water channel family, is controversial. Our previous study, however, showed that AQP11 is water permeable in proteoliposomes in which AQP11 molecules were reconstituted after purification with Fos-choline 10, which is the most suitable detergent available for stable solubilization of AQP11. In our previous study, we were unable to exclude the effect of the detergent on the water conductance. Therefore, in the present study, we measured the water permeability of AQP11 without detergent using vesicles that directly formed from Sf9 cell membranes expressing AQP11 molecules. The water permeability of AQP11 was 8-fold lower than that of AQP1 and 3-fold higher than that of mock-infected cell membrane, and was reversibly inhibited by mercury ions. Considering the slow but constant water permeable functions of AQP11, we performed homology modeling to search for a common structural feature. When comparing our model with those of other AQP structures, we found that Tyr83 facing the channel pore might be a key amino acid residue that decreases the water permeation of AQP11. Our findings indicate that AQP11 could be involved in slow but constant water movement across the membrane.  相似文献   

14.
It is generally accepted that gases such asCO2 cross cell membranes bydissolving in the membrane lipid. No role for channels or pores in gastransport has ever been demonstrated. Here we ask whether expression ofthe water channel aquaporin-1 (AQP1) enhances theCO2 permeability ofXenopus oocytes. We expressed AQP1 inXenopus oocytes by injecting AQP1cRNA, and we assessed CO2permeability by using microelectrodes to monitor the changes inintracellular pH (pHi) producedby adding 1.5% CO2/10 mM to (or removing it from) theextracellular solution. Oocytes normally have an undetectably low levelof carbonic anhydrase (CA), which eliminates theCO2 hydration reaction as arate-limiting step. We found that expressing AQP1 (vs. injectingwater) had no measurable effect on the rate ofCO2-inducedpHi changes in such low-CAoocytes: adding CO2 causedpHi to fall at a mean initial rateof 11.3 × 104 pHunits/s in control oocytes and 13.3 × 104 pH units/s in oocytesexpressing AQP1. When we injected oocytes with water, and a few dayslater with CA, the CO2-inducedpHi changes in these water/CAoocytes were more than fourfold faster than in water-injected oocytes(acidification rate, 53 × 104 pH units/s).Ethoxzolamide (ETX; 10 µM), a membrane-permeant CA inhibitor, greatlyslowed the pHi changes (16.5 × 104 pHunits/s). When we injected oocytes with AQP1 cRNA and then CA, theCO2-inducedpHi changes in these AQP1/CAoocytes were ~40% faster than in the water/CA oocytes (75 × 104 pH units/s), and ETXreduced the rates substantially (14.7 × 104 pH units/s). Thus, inthe presence of CA, AQP1 expression significantly increases theCO2 permeability of oocytemembranes. Possible explanations include1) AQP1 expression alters the lipidcomposition of the cell membrane, 2)AQP1 expression causes overexpression of a native gas channel,and/or 3) AQP1 acts as achannel through which CO2 canpermeate. Even if AQP1 should mediate aCO2 flux, it would remain to bedetermined whether this CO2movement is quantitatively important.

  相似文献   

15.
16.
Aquaporin-7 (AQP7) is a water/glycerol transporting protein expressed in adipocyte plasma membranes. We report here remarkable age-dependent hypertrophy in adipocytes in AQP7-deficient mice. Wild type and AQP7 null mice had similar growth at 0-16 weeks as assessed by body weight; however, by 16 weeks AQP7 null mice had 3.7-fold increased body fat mass. Adipocytes from AQP7 null mice of age 16 weeks were greatly enlarged (diameter 118 mum) compared with wild type mice (39 mum). Adipocytes from AQP7 null mice also accumulated excess glycerol (251 versus 86 nmol/mg of protein) and triglycerides (3.4 versus 1.7 mumol/mg of protein). In contrast, at age 4 weeks, adipocyte volume and body fat mass were comparable in wild type and AQP7 null mice. To investigate the mechanism(s) responsible for the progressive adipocyte hypertrophy, glycerol permeability and fat metabolism were studied in adipocytes isolated from the younger mice. Plasma membrane glycerol permeability measured by [(14)C]glycerol uptake was 3-fold reduced in AQP7-deficient adipocytes. However, adipocyte lipolysis, measured by free fatty acid release and hormone-sensitive lipase activity, and lipogenesis, measured by [(14)C]glucose incorporation into triglycerides, were not affected by AQP7 deletion. These data suggest that adipocyte hypertrophy in AQP7 deficiency results from defective glycerol exit and consequent accumulation of glycerol and triglycerides. Increasing AQP7 expression/function in adipocytes may reduce adipocyte volume and fat mass in obesity.  相似文献   

17.
Water channels AQP7 and AQP8 may be involved in transcellular water movement in the small intestine. We show that both AQP7 and AQP8 mRNA are expressed in rat small intestine. Immunoblot and immunohistochemistry experiments demonstrate that AQP7 and AQP8 proteins are present in the apical brush border membrane of intestinal epithelial cells. We investigated the effect of several metals and pH on the osmotic water permeability (Pf) of brush border membrane vesicles (BBMVs) and of AQP7 and AQP8 expressed in a cell line. Hg2+, Cu2+, and Zn2+ caused a significant decrease in the BBMV Pf, whereas Ni2+ and Li+ had no effect. AQP8-transfected cells showed a reduction in Pf in the presence of Hg2+ and Cu2+, whereas AQP7-transfected cells were insensitive to all tested metals. The Pf of both BBMVs and cells transfected with AQP7 and AQP8 was not affected by pH changes within the physiological range, and the Pf of BBMVs alone was not affected by phlorizin or amiloride. Our results indicate that AQP7 and AQP8 may play a role in water movement via the apical domain of small intestine epithelial cells. AQP8 may contribute to the water-imbalance-related clinical symptoms apparent after ingestion of high doses of Hg2+ and Cu2+.  相似文献   

18.
19.
20.
Nitric oxide (NO) is implicated in the pathogenesis of lung inflammation and edema. In this study, the effects of nitric oxide (NO)-donors on membrane water permeability and cell surface expression of aquaporin-5 (AQP5) in mouse lung epithelial cells were examined. NO-donors, GSNO and NOC-18 decreased cell surface expression of AQP5, concentration- and time-dependently, whereas they did not affect the amount of AQP5 in whole cell lysates. The membrane water permeability of cells was also decreased by treatment with NO-donors. The decrease in cell surface AQP5 by NO was abolished by simultaneous treatment with methyl-beta-cyclodextrin, but not with ODQ, an inhibitor of the cGMP-dependent pathway. In addition, immunocytochemistry with anti-AQP5 indicated that NO changed AQP5 localization from the plasma membrane to the intracellular fraction. These data indicate that NO stimulates AQP5 internalization from the plasma membrane through a cGMP-independent mechanism, and decreases membrane water permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号