首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
West Nile virus (WNV) capsid (C) protein is one of the three viral structural proteins and it encapsidates the viral RNA to form the nucleocapsid. It is known to be a multifunctional protein involved in assembly and apoptosis. WNV C protein was previously found to be phosphorylated in infected cells and bioinformatic analysis revealed 5 putative phosphorylation sites at serine 26, 36, 83, 99 and threonine 100. Phosphorylation was abolished through mutagenesis of these putative phosphorylation sites to investigate how phosphorylation could affect the processes of nucleocapsid assembly like RNA binding, oligomerization and cellular localization. It was found that phosphorylation attenuated its RNA binding activity. Although oligomerization was not inhibited by mutagenesis of the putative phosphorylation sites, the rate of dimerization and oligomerization was affected. Hypophosphorylation of C protein reduced its nuclear localization efficiency and hence enhanced cytoplasmic localization. This study also revealed that although WNV C is phosphorylated in infected cells, the relative level of phosphorylation is reduced over the course of an infection to promote RNA binding and nucleocapsid formation in the cytoplasm. This is the first report to describe how dynamic phosphorylation of WNV C protein modulates the processes involved in nucleocapsid assembly.  相似文献   

2.
3.
Nuclei of cells infected with Moloney murine leukemia virus (MoMuLV) were examined for the presence of gag proteins. This analysis was performed in conjunction with other studies suggesting a possible role for gag proteins in regulating nuclear events relating to processing and/or transport of viral genomic RNA. We detected Pr65gag and a p30-related protein in a nuclear fraction of infected cells. We also found evidence that a highly conserved amino acid sequence, which is shared by p30 and U1 small nuclear ribonucleoprotein 70-kDa protein, is a component of the nuclear targeting sequence for Pr65gag. Immunoelectron microscopy studies with a monoclonal anti-p12 antibody established that approximately 18% of gag-containing proteins of MoMuLV are located in the nucleus. Such gag-containing proteins from a mutant MoMuLV that lacks N-terminal myristic acid had greater affinity for the nucleus, suggesting that fatty acid acylation of Pr65gag plays a role in overcoming the proposed nuclear transport signal. The possible roles that nuclear gag proteins may play in retroviral replication are discussed.  相似文献   

4.
Transgenic mice that express the hepatitis B virus core protein were used to examine factors that influence the intracellular localization of nucleocapsid particles in the primary hepatocyte in vivo. In this model, viral nucleocapsid particles are strictly localized to the nucleus of the hepatocyte except when the nuclear membrane dissolves during cell division, at which time they enter the cytoplasm. The cytoplasmic nucleocapsid particles do not reenter the nucleus, however, when the nuclear membrane re-forms after cell division. The data support the notion that nucleocapsid particles can form de novo within the nucleus, and they suggest that performed nucleocapsid particles cannot be transported across the intact nuclear membrane in either direction. The results imply that nucleocapsid disassembly is probably required for entry of the hepadnaviral genome into the nucleus, and they question the role of the intranuclear viral nucleocapsid particle during the viral life cycle.  相似文献   

5.
Nuclear transport of viral nucleic acids is crucial to the life cycle of many viruses. Borna disease virus (BDV) belongs to the order Mononegavirales and replicates its RNA genome in the nucleus. Previous studies have suggested that BDV nucleoprotein (N) and phosphoprotein (P) have important functions in the nuclear import of the viral ribonucleoprotein (RNP) complexes via their nuclear targeting activity. Here, we showed that BDV N has cytoplasmic localization activity, which is mediated by a nuclear export signal (NES) within the sequence. Our analysis using deletion and substitution mutants of N revealed that NES of BDV N consists of a canonical leucine-rich motif and that the nuclear export activity of the protein is mediated through the chromosome region maintenance protein-dependent pathway. Interspecies heterokaryon assay indicated that BDV N shuttles between the nucleus and cytoplasm as a nucleocytoplasmic shuttling protein. Furthermore, interestingly, the NES region overlaps a binding site to the BDV P protein, and nuclear export of a 38-kDa form of BDV N is prevented by coexpression of P. These results suggested that BDV N has two contrary activities, nuclear localization and export activity, and plays a critical role in the nucleocytoplasmic transport of BDV RNP by interaction with other viral proteins.  相似文献   

6.
The herpes simplex virus mutants KOS1.1 ts756 and HFEM tsLB2 express temperature-sensitive ICP4 proteins that are not localized properly to the cell nucleus at the nonpermissive temperature. In these infected cells at the nonpermissive temperature, nuclear localization of at least two other viral proteins, ICP0 and ICP8, is impaired. Replacement of the mutated sequences in the ICP4 gene of tsLB2 restored proper nuclear localization of all of the proteins. The ICP0 and ICP8 proteins expressed in cells transfected with their individual genes were localized to the cell nucleus. Therefore, in infected cells, the mutant ICP4 gene product appears to be the primary defect which leads to the block in nuclear localization of the other proteins. One viral protein, ICP27, was not inhibited for nuclear localization in these cells. These data indicate that there are at least two pathways for nuclear localization of HSV proteins, one of which is inhibited by the mutant ICP4 protein. The mutant ICP4 protein may define a probe for one of the pathways of nuclear localization of proteins.  相似文献   

7.
Yoo D  Wootton SK  Li G  Song C  Rowland RR 《Journal of virology》2003,77(22):12173-12183
Porcine reproductive and respiratory syndrome virus (PRRSV) replicates in the cytoplasm of infected cells, but its nucleocapsid (N) protein localizes specifically to the nucleus and nucleolus. The mechanism of nuclear translocation and whether N associates with particular nucleolar components are unknown. In the present study, we show by confocal microscopy that the PRRSV N protein colocalizes with the small nucleolar RNA (snoRNA)-associated protein fibrillarin. Direct and specific interaction of N with fibrillarin was demonstrated in vivo by the mammalian two-hybrid assay in cells cotransfected with the N and fibrillarin genes and in vitro by the glutathione S-transferase pull-down assay using the expressed fibrillarin protein. Using a series of deletion mutants, the interactive domain of N with fibrillarin was mapped to a region of amino acids 30 to 37. For fibrillarin, the first 80 amino acids, which contain the glycine-arginine-rich region (the GAR domain), was determined to be the domain interactive with N. The N protein was able to bind to the full-length genomic RNA of PRRSV, and the RNA binding domain was identified as the region overlapping with the nuclear localization signal situated at positions 41 to 47. These results suggest that the N protein nuclear transport may be controlled by the binding of RNA to N. The PRRSV N protein was also able to bind to both 28S and 18S ribosomal RNAs. The protein-protein interaction between N and fibrillarin was RNA dependent but independent of N protein phosphorylation. Taken together, our studies demonstrate a specific interaction of the PRRSV nucleocapsid protein with the host cell protein fibrillarin in the nucleolus, and they imply a potential linkage of viral strategies for the modulation of host cell functions, possibly through rRNA precursor processing and ribosome biogenesis.  相似文献   

8.
The coronavirus mouse hepatitis virus (MHV) translates its replicase gene (gene 1) into two co-amino-terminal polyproteins, polyprotein 1a and polyprotein 1ab. The gene 1 polyproteins are processed by viral proteinases to yield at least 15 mature products, including a putative RNA helicase from polyprotein 1ab that is presumed to be involved in viral RNA synthesis. Antibodies directed against polypeptides encoded by open reading frame 1b were used to characterize the expression and processing of the MHV helicase and to define the relationship of helicase to the viral nucleocapsid protein (N) and to sites of viral RNA synthesis in MHV-infected cells. The antihelicase antibodies detected a 67-kDa protein in MHV-infected cells that was translated and processed throughout the virus life cycle. Processing of the 67-kDa helicase from polyprotein 1ab was abolished by E64d, a known inhibitor of the MHV 3C-like proteinase. When infected cells were probed for helicase by immunofluorescence laser confocal microscopy, the protein was detected in patterns that varied from punctate perinuclear complexes to large structures that occupied much of the cell cytoplasm. Dual-labeling studies of infected cells for helicase and bromo-UTP-labeled RNA demonstrated that the vast majority of helicase-containing complexes were active in viral RNA synthesis. Dual-labeling studies for helicase and the MHV N protein showed that the two proteins almost completely colocalized, indicating that N was associated with the helicase-containing complexes. This study demonstrates that the putative RNA helicase is closely associated with MHV RNA synthesis and suggests that complexes containing helicase, N, and new viral RNA are the viral replication complexes.  相似文献   

9.
A Ponten  C Sick  M Weeber  O Haller    G Kochs 《Journal of virology》1997,71(4):2591-2599
Human MxA protein is an interferon-induced 76-kDa GTPase that exhibits antiviral activity against several RNA viruses. Wild-type MxA accumulates in the cytoplasm of cells. TMxA, a modified form of wild-type MxA carrying a foreign nuclear localization signal, accumulates in the cell nucleus. Here we show that MxA protein is translocated into the nucleus together with TMxA when both proteins are expressed simultaneously in the same cell, demonstrating that MxA molecules form tight complexes in living cells. To define domains important for MxA-MxA interaction and antiviral function in vivo, we expressed mutant forms of MxA together with wild-type MxA or TMxA in appropriate cells and analyzed subcellular localization and interfering effects. An MxA deletion mutant, MxA(359-572), formed heterooligomers with TMxA and was translocated to the nucleus, indicating that the region between amino acid positions 359 and 572 contains an interaction domain which is critical for oligomerization of MxA proteins. Mutant T103A with threonine at position 103 replaced by alanine had lost both GTPase and antiviral activities. T103A exhibited a dominant-interfering effect on the antiviral activity of wild-type MxA rendering MxA-expressing cells susceptible to infection with influenza A virus, Thogoto virus, and vesicular stomatitis virus. To determine which sequences are critical for the dominant-negative effect of T103A, we expressed truncated forms of T103A together with wild-type protein. A C-terminal deletion mutant lacking the last 90 amino acids had lost interfering capacity, indicating that an intact C terminus was required. Surprisingly, a truncated version of MxA representing only the C-terminal half of the molecule exerted also a dominant-negative effect on wild-type function, demonstrating that sequences in the C-terminal moiety of MxA are necessary and sufficient for interference. However, all MxA mutants formed hetero-oligomers with TMxA and were translocated to the nucleus, indicating that physical interaction alone is not sufficient for disturbing wild-type function. We propose that dominant-negative mutants directly influence wild-type activity within hetero-oligomers or else compete with wild-type MxA for a cellular or viral target.  相似文献   

10.
Borna disease virus (BDV) is a non-segmented, negative-sense RNA virus and has the property of persistently infecting the cell nucleus. BDV encodes a 10-kDa non-structural protein, X, which is a negative regulator of viral polymerase activity but is essential for virus propagation. Recently, we have demonstrated that interaction of X with the viral polymerase cofactor, phosphoprotein (P), facilitates translocation of P from the nucleus to the cytoplasm. However, the mechanism by which the intracellular localization of X is controlled remains unclear. In this report, we demonstrate that BDV X interacts with the 71 kDa molecular chaperon protein, Hsc70. Immunoprecipitation assays revealed that Hsc70 associates with the same region of X as P and, interestingly, that expression of P interferes competitively with the interaction between X and Hsc70. A heat shock experiment revealed that BDV X translocates into the nucleus, dependent upon the nuclear accumulation of Hsc70. Furthermore, we show that knockdown of Hsc70 by short interfering RNA decreases the nuclear localization of both X and P and markedly reduces the expression of viral genomic RNA in persistently infected cells. These data indicate that Hsc70 may be involved in viral replication by regulating the intracellular distribution of X.  相似文献   

11.
12.
Proper assembly of nucleocapsids of the baculovirus Autographa californica nuclear polyhedrosis virus is prevented by cytochalasin D, a drug that interferes with actin microfilament function. To investigate the involvement of microfilaments in A. californica nuclear polyhedrosis virus replication, a fluorescence microscopy study was conducted that correlated changes in distribution of microfilaments with events in the life cycle of the virus. Tetramethylrhodamine isothiocyanate-labeled phalloidin was used to label microfilaments, and monoclonal antibody was used to label p39, the major viral capsid protein. Three microfilament arrangements were found in infected cells. During uptake of virus, thick cables were formed. These were insensitive to cycloheximide, indicating that this configuration was a rearrangement of preexisting cellular actin mediated by a component of the viral inoculum. At the time of cell rounding and before viral DNA replication, ventral aggregates of actin were observed. These were sensitive to cycloheximide but not to aphidicolin, indicating that an early viral gene mediated this actin rearrangement. Ventral aggregates did not result from the rounding process itself. Uninfected cells prerounded with colchicine did not form ventral aggregates. Cells prerounded with colchicine and then infected did form aggregates. At the time of exponential production of progency virus, microfilaments were found in the nucleus surrounding the virogenic stroma. In this area (where nucleocapsid assembly is known to take place) microfilaments colocalized with p39. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western immunoblot analysis identified p39 among proteins retained on an f-actin affinity column. We postulate that microfilaments in the nucleus provide a scaffold to position capsids for proper assembly and filling with DNA.  相似文献   

13.
Wu W  Lin T  Pan L  Yu M  Li Z  Pang Y  Yang K 《Journal of virology》2006,80(23):11475-11485
38K (ac98) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a highly conserved baculovirus gene whose function is unknown. To determine the role of 38K in the baculovirus life cycle, a 38K knockout bacmid containing the AcMNPV genome was generated through homologous recombination in Escherichia coli. Furthermore, a 38K repair bacmid was constructed by transposing the 38K open reading frame with its native promoter region into the polyhedrin locus of the 38K knockout bacmid. After transfection of these viruses into Spodoptera frugiperda cells, the 38K knockout bacmid led to a defect in production of infectious budded virus, while the 38K repair bacmid rescued this defect, allowing budded-virus titers to reach wild-type levels. Slot blot analysis indicated that 38K deletion did not affect the levels of viral DNA replication. Subsequent immunoelectron-microscopic analysis revealed that masses of electron-lucent tubular structures containing the capsid protein VP39 were present in cells transfected with 38K knockout bacmids, suggesting that nucleocapsid assembly was interrupted. In contrast, the production of normal nucleocapsids was restored when the 38K knockout bacmid was rescued with a copy of 38K. Recombinant virus that expresses 38K fused to green fluorescent protein as a visual marker was constructed to monitor protein transport and localization within the nucleus during infection. Fluorescence was first detected along the cytoplasmic periphery of the nucleus and subsequently localized to the center of the nucleus. These results demonstrate that 38K plays a role in nucleocapsid assembly and is essential for viral replication in the AcMNPV life cycle.  相似文献   

14.
We studied the maturation of Uukuniemi virus and the localization of the viral surface glycoproteins and nucleocapsid protein in infected cells by electron microscopy, indirect immunofluorescence, and immunoelectron microscopy with specific antisera prepared in rabbits against the two glycoproteins G1 and G2 and the nucleocapsid protein N. Electron microscopy of thin sections from infected cells showed virus particles maturing at smooth-surfaced membranes close to the nucleus. Localization of the G1/G2 and N proteins by indirect immunofluorescence at different stages after infection showed the antigens to be present throughout the cell interior but concentrated in the juxtanuclear region. The G1/G2 antiserum also appeared to stain the nuclear and plasma membranes. Double staining with tetramethylrhodamine isothiocyanate-conjugated wheat germ agglutinin, which preferentially stains the Golgi complex, and fluorescein isothiocyanate-conjugated anti-rabbit immunoglobulin G, which stained the G1/G2 or N proteins, showed that the staining of the juxtanuclear region coincided. Similarly, double staining for thiamine pyrophosphatase, an enzyme activity specific for the Golgi complex, showed the fluorescence and the cytochemical stain to coincide in the juxtanuclear region. Immunoperoxidase electron microscopy of cells permeabilized with saponin revealed that the viral glycoproteins were present in the rough endoplasmic reticulum and the nuclear and Golgi membranes; the latter was heavily stained. With this method, the N protein was localized to the cytoplasm, especially around smooth-surfaced vesicles in the Golgi region. Taken together, the results indicate that Uukuniemi virus and its structural proteins accumulate in the Golgi complex, supporting the idea that this compartment rather than the plasma membrane is the site of virus maturation. This raises the interesting possibility that deficient transport of the glycoproteins to the plasma membrane and hence their accumulation in the Golgi complex determines the site of virus maturation.  相似文献   

15.
Sindbis virus is an enveloped positive-sense RNA virus in the alphavirus genus. The nucleocapsid core contains the genomic RNA surrounded by 240 copies of a single capsid protein. The capsid protein is multifunctional, and its roles include acting as a protease, controlling the specificity of RNA that is encapsidated into nucleocapsid cores, and interacting with viral glycoproteins to promote the budding of mature virus and the release of the genomic RNA into the newly infected cell. The region comprising amino acids 81 to 113 was previously implicated in two processes, the encapsidation of the viral genomic RNA and the stable accumulation of nucleocapsid cores in the cytoplasm of infected cells. In the present study, specific amino acids within this region responsible for the encapsidation of the genomic RNA have been identified. The region that is responsible for nucleocapsid core accumulation has considerable overlap with the region that controls encapsidation specificity.  相似文献   

16.
Replication of Sendai Virus: II. Steps in Virus Assembly   总被引:16,自引:15,他引:1       下载免费PDF全文
Chick embryo fibroblast cultures infected with Sendai virus were incubated with (3)H-uridine in the presence of actinomycin D beginning at 18 hr after infection. The 35 and 18S virus-specific ribonucleic acid (RNA) components were found in a ribonuclease-sensitive form in the cell and appeared to be associated with polyribosomes. Newly synthesized 57S viral RNA was rapidly coated with protein to form intracellular viral nucleocapsid, and no 57S RNA was found "free" (ribonucleasesensitive) in the 2,000 x g supernatant fraction of disrupted cells. The nucleocapsid from detergent-disrupted Sendai virus and that from disrupted cells were indistinguishable in ultrastructure and buoyant density, and neither was found to be infectious or have hemagglutinating activity. Kinetic studies of nucleocapsid and virus formation indicated a relative block in conversion of viral nucleocapsid to complete enveloped virus in these cells, resulting in accumulation of large amounts of nucleocapsid in the cell cytoplasm.  相似文献   

17.
Xu Y  Colletti KS  Pari GS 《Journal of virology》2002,76(17):8931-8938
The UL84 open reading frame encodes a protein that is required for origin-dependent DNA replication and interacts with the immediate-early protein IE2 in lytically infected cells. Transfection of UL84 expression constructs showed that UL84 localized to the nucleus of transfected cells in the absence of any other viral proteins and displayed a punctate speckled fluorescent staining pattern. Cotransfection of all the human cytomegalovirus replication proteins and oriLyt, along with pUL84-EGFP, showed that UL84 colocalized with UL44 (polymerase accessory protein) in replication compartments. Experiments using infected human fibroblasts demonstrated that UL84 also colocalized with UL44 and IE2 in viral replication compartments in infected cells. A nuclear localization signal was identified using plasmid constructs expressing truncation mutants of the UL84 protein in transient transfection assays. Transfection assays showed that UL84 failed to localize to the nucleus when 200 amino acids of the N terminus were deleted. Inspection of the UL84 amino acid sequence revealed a consensus putative nuclear localization signal between amino acids 160 and 171 (PEKKKEKQEKK) of the UL84 protein.  相似文献   

18.
Fowl plague virus comprised four major protein components and several minor ones, two strains of the virus giving similar results. One of the components was identified as the nucleocapsid protein. Synthesis of the virion proteins could readily be detected in infected cells 3 hr after infection. The two subcellular fractions associated with viral ribonucleic acid (RNA) polymerase activity (nuclei and ribosomal pellet) were associated with the protein of the nucleocapsid and a second virion protein of unidentified function. Measurement of viral RNA and protein synthesis in cells infected with preparations of ultraviolet irradiated virus showed that the capacity to synthesise the RNA and protein species of highest molecular weight was lost most quickly, suggesting that the pieces of viral RNA function independently.  相似文献   

19.
Previous results have indicated that the herpes simplex virus 1 UL31 and UL34 proteins interact and form a complex at the inner nuclear membranes of infected cells, where both play important roles in the envelopment of nucleocapsids at the inner nuclear membrane. In the work described here, mapping studies using glutathione S-transferase pull-down assays indicated that amino acids 137 to 181 of the UL34 protein are sufficient to mediate an interaction with the UL31 protein. A recombinant virus (v3480) lacking UL34 codons 138 to 181 was constructed. Similar to a UL34 null virus, v3480 failed to replicate on Vero cells and grew to a limited extent on rabbit skin cells. A UL34-expressing cell line restored v3480 growth and plaque formation. Similar to the localization of UL31 protein in cells infected with a UL34 null virus, the UL31 protein was present in the nuclei of Hep2 cells infected with v3480. Hep2 cells infected with v3480 contained the UL34 protein in the cytoplasm, the nucleus, and the nuclear membrane, and this was noted to be similar to the appearance of cells infected with a UL31 null virus. In transient expression assays, the interaction between UL34 amino acids 137 to 181 and the UL31 protein was sufficiently robust to target green fluorescent protein and emerin to intranuclear sites that contained the UL31 protein. These data indicate that amino acids 137 to 181 of the UL34 protein are (i) sufficient to mediate interactions with the UL31 protein in vitro and in vivo, (ii) necessary for the colocalization of UL31 and UL34 in infected cells, and (iii) essential for normal viral replication.  相似文献   

20.
A 78-kDa protein was produced in bacteria from a clone of the 1,629-nucleotide open reading frame located immediately downstream from the polyhedrin gene of Autographa californica nuclear polyhedrosis virus. The identity of this protein was confirmed by its reactivity with peptide antiserum and amino terminal peptide sequencing after purification from transformed bacteria. The polypeptide was used to produce polyclonal antisera in rabbits. Immunoblot analysis of insect cells infected with the baculovirus indicated that two related proteins with molecular masses of 78 and 83 kDa were synthesized late in infection. Biochemical fractionation studies indicated that both of these proteins were present in purified nucleocapsids from budded and occluded virus preparations. Immunoprecipitation of 32P-labeled proteins and treatment of purified nucleocapsids with alkaline phosphatase demonstrated that the 83-kDa protein was a phosphorylated derivative of the 78-kDa protein. Furthermore, immunoelectron microscopy revealed that the proteins were localized to regions of nucleocapsid assembly within the infected cell and appeared to be associated with the end structures of mature nucleocapsids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号