首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 844 毫秒
1.
The pullulanase gene (pul) of Klebsiella aerogenes was cloned into a pBR322 vector in Escherichia coli. Deletion analysis of the recombinant plasmid showed that the pul coding sequence, probably with the regulator gene, was located entirely within a 4.2-kilobase segment derived from the chromosomal DNA of K. aerogenes. E. coli cells carrying the recombinant plasmids produced about three- to sevenfold more pullulanase than did the wild-type strain of K. aerogenes W70. When the cloned cells of E. coli were grown with pullulan or maltose, most pullulanase was produced intracellularly, whereas K. aerogenes produced pullulanase extracellularly. Transfer of the plasmid containing the pul gene into K. aerogenes W70 resulted in about a 20- to 40-fold increase in total production of pullulanase, and the intracellular enzyme level was about 100- to 150-fold higher than that of the parent strain W70. The high level of pullulanase activity in K. aerogenes cells carrying the recombinant plasmid was maintained for at least 2 weeks.  相似文献   

2.
Abstract The gene coding for a thermostable pullulanase from a thermophile, Thermus sp. strain AMD-33, was cloned in Escherichia coli using pDR540 as a vector. A restriction map was determined for the plasmid pTPS131 which contained the fragment carrying the pullulanase gene. DNA-DNA hybridisation analysis showed that the DNA fragment contained the gene from Thermus sp. strain AMD-33. The strain of E. coli harbouring the plasmid pTPS131 produced most of the pullulanase protein cellularly, whereas Thermus sp. strain AMD-33 produced pullulanase extracellularly. Comparative studies of the enzyme from the thermophile and the plasmid-encoded enzyme in E. coli demonstrated that the optimum temperature and pH of the enzymes were closely similar.  相似文献   

3.
A 3.4-kb SphI fragment carrying the pullulanase gene of Thermus thermophilus HB8 was cloned. Based on the nucleotide sequence of it and the flanking region analyzed by direct sequencing of the inverse PCR product, an expression vector was constructed. The E. coli cells harboring the plasmid produced an about 80-kDa protein having pullulanase activity, the optimum temperature of which was 70 degrees C.  相似文献   

4.
A 3.4-kb SphI fragment carrying the pullulanase gene of Thermus thermophilus HB8 was cloned. Based on the nucleotide sequence of it and the flanking region analyzed by direct sequencing of the inverse PCR product, an expression vector was constructed. The E. coli cells harboring the plasmid produced an about 80-kDa protein having pullulanase activity, the optimum temperature of which was 70°C.  相似文献   

5.
Some strains of Klebsiella pneumonia secrete pullulanase, a debranching enzyme which produces linear molecules (maltodextrins, amylose) from amylopectin and glycogen. pulA, the structural gene for pullulanase, was introduced into Escherichia coli, either on a multiple-copy-number plasmid or as a single copy in the chromosome. When in E. coli, pulA was controlled by malT, the positive regulatory gene of the maltose regulon. Indeed, pulA expression was undetectable in a malT-negative mutant and constitutive in a malTc strain. Furthermore, the plasmid carrying pulA titrated the MalT protein. When produced in E. coli, pullulanase was not localized in the same way as in K. pneumoniae. In the latter case it was first exported to the outer membrane, with which it remained loosely associated, and was then released into the growth medium. In E. coli the enzyme was distributed both in the inner and the outer membranes and was never released into the growth medium.  相似文献   

6.
Using a pUC19-based genomic library of the anaerobic thermophilic bacterium C. thermohydrosulfuricum a DNA fragment that confers pullulanase activity to E. coli cells has been identified. Subcloning and restriction mapping procedures was carried out and the primary structure of the 5'-region of the pullulanase gene (pul) was determined. The pul enzyme was shown to be a protein with molecular weight of approximately 60,000. It was found that both pullulanase and glucoamylase activities resides in pullulanase. The intracellular distribution of pullulanase was studied. An E. coli strain that produces large amounts of thermostable pullulanase has been constructed.  相似文献   

7.
Summary We cloned the structural gene for monoamine oxidase (maoA) from Klebsiella aerogenes into a pKI212 vector in an maoA mutant strain of K. aerogenes. Deletion analysis and complementation tests of the recombinant plasmid showed that the maoA gene was located entirely within a 4.1-kb segment. In an maoA mutant strain harbouring the cloned maoA gene, synthesis of monoamine oxidase was induced by addition of tyramine and related compounds. Transfer of a plasmid containing the maoA gene into a monoamine oxidase-producing strain of K. aerogenes W70 resulted in about a 30- to 40-fold increase in total production of the enzyme. When cells of K. aerogenes carrying the plasmid containing the maoA gene were grown with tyramine, more than 85% of the monoamine oxidase was produced in soluble form, whereas the parent strain W70 produced most monoamine oxidase as the membrane-bound form. Offprint requests to: Y. Murooka  相似文献   

8.
The expressed gene (pul) for a thermostable pullulanase from Clostridium thermohydrosulfuricum was cloned into Escherichia coli. The enzyme was purified from cell extracts of E. coli by thermoinactivation, ammonium sulphate precipitation and gel exclusion. The purified enzyme was characterized as monomer with both pullulanase and glucoamylase activities. The general physico-chemical and catalytic properties of this enzyme were obtained. In particular, pullulanase and glucoamylase activities were stable and optimally active at 65 degrees C. The pH optimum for activity was 5.8. The amino acid composition and amino acid sequence of N-terminal end were estimated.  相似文献   

9.
A negative regulator gene for synthesis of arylsulfatase in Klebsiella aerogenes was cloned. Deletion analysis showed that the regulator gene was located within a 1.6-kb cloned segment. Transfer of the plasmid, which contains the cloned fragment, into constitutive atsR mutant strains of K. aerogenes resulted in complementation of atsR; the synthesis of arylsulfatase was repressed in the presence of inorganic sulfate or cysteine, and this repression was relieved, in each case, by the addition of tyramine. The nucleotide sequence of the 1.6-kb fragment was determined. From the amino acid sequence deduced from the DNA sequence, we found two open reading frames. One of them lacked the N-terminal region but was highly homologous to the gene which codes for diadenosine tetraphosphatase (apaH) in Escherichia coli. The other open reading frame was located counterclockwise to the apaH-like gene. This gene was highly homologous to the gene which codes for dihydrofolate reductase (folA) in E. coli. We detected 30 times more activity of dihydrofolate reductase in the K. aerogenes strains carrying the plasmid, which contains the arylsulfatase regulator gene, than in the strains without plasmid. Further deletion analysis showed that the K. aerogenes folA gene is consistent with the essential region required for the repression of arylsulfatase synthesis. Transfer of a plasmid containing the E. coli folA gene into atsR mutant cells of K. aerogenes resulted in repression of the arylsulfatase synthesis. Thus, we conclude that the folA gene codes a negative regulator for the ats operon.  相似文献   

10.
The gene encoding a type I pullulanase was identified from the genome sequence of the anaerobic thermoalkaliphilic bacterium Anaerobranca gottschalkii. In addition, the homologous gene was isolated from a gene library of Anaerobranca horikoshii and sequenced. The proteins encoded by these two genes showed 39% amino acid sequence identity to the pullulanases from the thermophilic anaerobic bacteria Fervidobacterium pennivorans and Thermotoga maritima. The pullulanase gene from A. gottschalkii (encoding 865 amino acids with a predicted molecular mass of 98 kDa) was cloned and expressed in Escherichia coli strain BL21(DE3) so that the protein did not have the signal peptide. Accordingly, the molecular mass of the purified recombinant pullulanase (rPulAg) was 96 kDa. Pullulan hydrolysis activity was optimal at pH 8.0 and 70 degrees C, and under these physicochemical conditions the half-life of rPulAg was 22 h. By using an alternative expression strategy in E. coli Tuner(DE3)(pLysS), the pullulanase gene from A. gottschalkii, including its signal peptide-encoding sequence, was cloned. In this case, the purified recombinant enzyme was a truncated 70-kDa form (rPulAg'). The N-terminal sequence of purified rPulAg' was found 252 amino acids downstream from the start site, presumably indicating that there was alternative translation initiation or N-terminal protease cleavage by E. coli. Interestingly, most of the physicochemical properties of rPulAg' were identical to those of rPulAg. Both enzymes degraded pullulan via an endo-type mechanism, yielding maltotriose as the final product, and hydrolytic activity was also detected with amylopectin, starch, beta-limited dextrins, and glycogen but not with amylose. This substrate specificity is typical of type I pullulanases. rPulAg was inhibited by cyclodextrins, whereas addition of mono- or bivalent cations did not have a stimulating effect. In addition, rPulAg' was stable in the presence of 0.5% sodium dodecyl sulfate, 20% Tween, and 50% Triton X-100. The pullulanase from A. gottschalkii is the first thermoalkalistable type I pullulanase that has been described.  相似文献   

11.
克隆嗜热枯草芽孢杆菌WY-34普鲁兰酶基因并在大肠杆菌中进行表达,对重组酶进行纯化和酶学性质研究,根据枯草芽孢杆菌的普鲁兰酶蛋白序列,设计PCR引物对WY-34的普鲁兰酶基因进行克隆及异源表达.对表达蛋白的最适pH、pH稳定性及最适温度、温度稳定性等特性进行研究,并测定重组普鲁兰酶的底物特异性.将普鲁兰酶基因pluA克隆及分析序列后,发现基因长度为2.2 kb,编码718个氨基酸,在大肠杆菌中异源表达.通过Ni-IDA亲和层析一步纯化得到比活力为93.2 U/mg的纯酶,SDS-PAGE和凝胶层析测定的分子量分别为76.2 kD和74.3 kD.酶学性质研究表明,该酶的最适温度为40℃,在温度不高于45℃条件下稳定;最适pH为6.0,同一温度下pH 6.0-9.0范围内处理30 min可以保持80%以上的酶活力,此酶对普鲁兰糖有很强的底物特异性.此重组普鲁兰酶的酶学性质表明此酶具有一定的工业化应用价值.  相似文献   

12.
对地衣芽孢杆菌基因组序列分析显示。其中标注为amyX的基因可能编码普鲁兰酶。以PCR方法,从地衣芽孢杆菌染色体DNA中扩增出amyX基因蛋白编码区,插入大肠杆菌表达载体pET28aT7启动予下游。含重组质粒的大肠杆菌BL21(DE3)在IPTG诱导下表达出有活性的普鲁兰酶。酶学性质初步分析表明,重组普鲁兰酶最适反应温度为40℃,最适pH值为6.0。  相似文献   

13.
The ada gene of Escherichia coli encodes O6-methylguanine-DNA methyltransferase, which serves as a positive regulator of the adaptive response to alkylating agents and as a DNA repair enzyme. The gene which can make an ada-deficient strain of E. coli resistant to the cell-killing and mutagenic effects of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) has been cloned from Salmonella typhimurium TA1538. DNA sequence analysis indicated that the gene potentially encoded a protein with a calculated molecular weight of 39,217. Since the nucleotide sequence of the cloned gene shows 70% similarity to the ada gene of E. coli and there is an ada box-like sequence (5'-GAATTAAAACGCA-3') in the promoter region, we tentatively refer to this cloned DNA as the adaST gene. The gene encodes Cys-68 and Cys-320, which are potential acceptor sites for the methyl group from the damaged DNA. The multicopy plasmid carrying the adaST gene significantly reduced the frequency of mutation induced by MNNG both in E. coli and in S. typhimurium. The AdaST protein encoded by the plasmid increased expression of the ada'-lacZ chromosome fusion about 5-fold when an E. coli strain carrying both the fusion operon and the plasmid was exposed to a low concentration of MNNG, whereas the E. coli Ada protein encoded by a low-copy-number plasmid increased it about 40-fold under the same conditions. The low ability of AdaST to function as a positive regulator could account for the apparent lack of an adaptive response to alkylation damage in S. typhimurium.  相似文献   

14.
This article describes the reconstitution in Escherichia coli of a heterologous protein secretion system comprising a gene for an extracellular protein together with its cognate secretion genes. The protein concerned, pullulanase, is a secreted lipoprotein of the Gram-negative bacterium Klebsiella pneumoniae. It is initially localized to the cell surface before being specifically released into the medium. E. coli carrying the cloned pullulanase structural gene (pulA) produces pullulanase but does not expose or secrete it. Secretion genes were cloned together with pulA in an 18.8 kbp fragment of K. pneumoniae chromosomal DNA. E. coli carrying this fragment exhibited maltose-inducible production, exposition and specific secretion of pullulanase. Transposon mutagenesis showed that the secretion genes are located on both sides of pulA. Secretion genes located 5' to pulA were transcribed in the opposite orientation to pulA under the control of the previously identified, malT-regulated malX promoter. Thus these secretion genes are part of the maltose regulon and are therefore co-expressed with pulA. Transposon mutagenesis suggested that secretion genes located 3' of pulA are not co-transcribed with pulA, raising the possibility that some secretion functions are not maltose regulated.  相似文献   

15.
Three different techniques, protease accessibility, cell fractionation and in situ immunocytochemistry, were used to study the location of the lipoprotein pullulanase produced by Escherichia coli K12 carrying the cloned pullulanase structural gene (pulA) from Klebsiella pneumoniae, with or without the K. pneumoniae genes required to transport pullulanase to the cell surface (secretion-competent and secretion-incompetent, respectively). Pullulanase produced by secretion-competent strains could be slowly but quantitatively released into the medium by growing the cells in medium containing pronase. The released pullulanase lacked the N-terminal fatty-acylated cysteine residue (and probably also a short N-terminal segment of the pullulanase polypeptide), confirming that the N-terminus is the sole membrane anchor in the protein. Pullulanase produced by secretion-incompetent strains was not affected by proteases, confirming that it is not exposed on the cell surface. Pullulanase cofractionated with both outer and inner membrane vesicles upon isopycnic sucrose gradient centrifugation, irrespective of the secretion competence of the strain. Examination by electronmicroscopy of vesicles labelled with antipullulanase serum and protein A-gold confirmed that pullulanase was associated with both types of vesicles. When thin-sectioned cells were examined by the same technique, pullulanase was found to be located mainly on the cell surface of the secretion-competent cells and mainly in the proximity of the inner membrane in the secretion-incompetent cells. Thus, while the results from three independent techniques (substrate accessibility, protease accessibility and in situ immunocytochemistry) show that pullulanase is transported to the cell surface of secretion-competent cells, this could not be confirmed by cell-fractionation techniques. Possible explanations for this discrepancy are discussed.  相似文献   

16.
We determined the entire nucleotide sequence of the Klebsiella aerogenes W70 pullulanase gene (pulA) contained on a 4.2-kilobase-pair fragment of plasmid pPB174. The amino acid composition deduced from an open reading frame of 3,288 base pairs agreed closely with that determined for the intracellular pullalanase. The precursor enzyme consisted of 1,096 amino acid residues and contained a hydrophobic N-terminal signal peptide and the consensus sequence for the bacterial prelipoprotein signal peptide cleavage site.  相似文献   

17.
以自行分离筛选出的天然枯草芽孢杆菌(Bacillus subtilis)C-36的染色体DNA为模板,PCR扩增得到含有内切葡聚糖酶基因的DNA片段,将其克隆到pMD-18T载体中,序列分析表明,克隆得到的DNA片段全长1602bp,编码一个含有499个氨基酸的多肽。与其他芽孢杆菌内切葡聚糖酶基因序列比对,其核苷酸同源率为90%~93%,其编码的氨基酸序列的同源性在90%~98%,已将此基因注册GenBank(DQ782954)。将含内切葡聚糖酶基因的重组克隆质粒进行亚克隆,用Kpn I和EcoR I双酶切后,与相同酶切的表达载体pET-32a相连接,并导入大肠杆菌BL21中表达。蛋白质电泳实验结果表明在6.47×10^4处有表达蛋白带。经测定表达蛋白比酶活力达99.02U/mL,为出发菌C-36(63.78U/mL)的1.55倍。  相似文献   

18.
A series of fusions between the gene for the Klebsiella pneumoniae secreted lipoprotein pullulanase (pulA) and the genes for cytoplasmic beta-galactosidase (lacZ) or periplasmic alkaline phosphatase (phoA) were created by transposon mutagenesis using mini-MudII1681 or TnphoA, respectively. The hybrid genes were expressed in Escherichia coli K-12 with or without the K. pneumoniae genes that promote pullulanase secretion in E. coli. We characterized seven different pulA-lacZ gene fusions encoding hybrid polypeptides containing from 14 to c. 1060 residues of pro-pullulanase. All but the smallest hybrid were fatty acylated and were toxic to producing cells, causing the accumulation of precursors of other exported proteins. Four different pulA-phoA gene fusions encoded hybrids with alkaline phosphatase activity. All four hybrids were fatty acylated, but were not toxic. Although the hybrids were apparently membrane-associated, they were not secreted into the medium either by E. coli carrying pullulanase secretion genes or by K. pneumoniae. Immunofluorescence tests indicated that the pullulanase secretion genes promoted the localization of one of these hybrids to the outer face of the E. coli outer membrane, which may have important implications for the design of live vaccine strains and of immobilized enzymes.  相似文献   

19.
The determined nucleotide sequence of the Klebsiella pneumoniae UNF5023 gene pulA comprises a single open reading frame coding for a 1090-residue precursor of the secreted protein pullulanase. The predicted sequence of this protein is highly homologous to that of pullulanase of Klebsiella aerogenes strain W70. However, the UNF5023 pullulanase lacks a collagen-like sequence present at the N-terminus of the mature W70 enzyme and differs further from the W70 pullulanase around residue 300 and at the C-terminus. Pullulanases with or without the collagen-like sequence could not be separated by gel electrophoresis under denaturing or non-denaturing conditions, and were unaffected by collagenase. A large central domain which is highly conserved in both UNF5023 and W70 polypeptides contains eight short sequences that are also found in amylases and iso-amylases. Linker mutations in the region of the UNF5023 pulA gene coding for this domain abolished catalytic activity without affecting transport of the polypeptide across the outer membrane. Hybrid proteins comprising at least the amino-terminal 656 residues of prepullulanase fused to alkaline phosphatase were partially localized to the cell surface, as judged by their accessibility to anti-pullulanase serum in immuno-fluorescence tests. On the basis of these results, we tentatively propose that secretion signals required for recognition and translocation across the outer membrane via the pullulanase-specific extension of the secretion pathway are located near the N-terminus of the pullulanase polypeptide.  相似文献   

20.
根据文献报道的核苷酸序列合成Bacillus deramificans普鲁兰酶成熟肽编码基因BdP。将BdP基因插入芽孢杆菌分泌表达载体pUC980信号肽编码区下游,获得重组质粒pUC980-BdP,重组质粒转化中温α-淀粉酶生产菌解淀粉芽孢杆菌BF7658菌株。摇瓶发酵实验表明,重组转化子发酵液有明显普鲁兰酶酶活,约48h酶活达到最高水平,为2.8ASPU/mL。酶学性质分析表明,重组酶最适作用温度约为60℃,最适反应pH为5.0,60℃保温3h仍保存50%的活性。重组酶性质适合淀粉糖化工艺的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号