首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
During cell division, kinetochores form the primary chromosomal attachment sites for spindle microtubules. We previously identified a network of 10 interacting kinetochore proteins conserved between Caenorhabditis elegans and humans. In this study, we investigate three proteins in the human network (hDsn1Q9H410, hNnf1PMF1, and hNsl1DC31). Using coexpression in bacteria and fractionation of mitotic extracts, we demonstrate that these proteins form a stable complex with the conserved kinetochore component hMis12. Human or chicken cells depleted of Mis12 complex subunits are delayed in mitosis with misaligned chromosomes and defects in chromosome biorientation. Aligned chromosomes exhibited reduced centromere stretch and diminished kinetochore microtubule bundles. Consistent with this, localization of the outer plate constituent Ndc80HEC1 was severely reduced. The checkpoint protein BubR1, the fibrous corona component centromere protein (CENP) E, and the inner kinetochore proteins CENP-A and CENP-H also failed to accumulate to wild-type levels in depleted cells. These results indicate that a four-subunit Mis12 complex plays an essential role in chromosome segregation in vertebrates and contributes to mitotic kinetochore assembly.  相似文献   

2.
3.
CENP-A is an evolutionarily conserved, centromere-specific variant of histone H3 that is thought to play a central role in directing kinetochore assembly and in centromere function. Here, we have analyzed the consequences of disrupting the CENP-A gene in the chicken DT40 cell line. In CENP-A-depleted cells, kinetochore protein assembly is impaired, as indicated by mislocalization of the inner kinetochore proteins CENP-I, CENP-H, and CENP-C as well as the outer components Nuf2/Hec1, Mad2, and CENP-E. However, BubR1 and the inner centromere protein INCENP are efficiently recruited to kinetochores. Following CENP-A depletion, chromosomes are deficient in proper congression on the mitotic spindle and there is a transient delay in prometaphase. CENP-A-depleted cells further proceed through anaphase and cytokinesis with unequal chromosome segregation, suggesting that some kinetochore function remains following substantial depletion of CENP-A. We furthermore demonstrate that CENP-A-depleted cells exhibit a specific defect in maintaining kinetochore localization of the checkpoint protein BubR1 under conditions of checkpoint activation. Our data thus point to a specific role for CENP-A in assembly of kinetochores competent in the maintenance of mitotic checkpoint signaling.  相似文献   

4.
Mitotic chromosome segregation is orchestrated by the dynamic interaction of spindle microtubules with the kinetochores. During chromosome alignment, kinetochore-bound microtubules undergo dynamic cycles between growth and shrinkage, leading to an oscillatory movement of chromosomes along the spindle axis. Although kinetochore protein CENP-H serves as a molecular control of kinetochore-microtubule dynamics, the mechanistic link between CENP-H and kinetochore microtubules (kMT) has remained less characterized. Here, we show that CSPP1 is a kinetochore protein essential for accurate chromosome movements in mitosis. CSPP1 binds to CENP-H in vitro and in vivo. Suppression of CSPP1 perturbs proper mitotic progression and compromises the satisfaction of spindle assembly checkpoint. In addition, chromosome oscillation is greatly attenuated in CSPP1-depleted cells, similar to what was observed in the CENP-H-depleted cells. Importantly, CSPP1 depletion enhances velocity of kinetochore movement, and overexpression of CSPP1 decreases the speed, suggesting that CSPP1 promotes kMT stability during cell division. Specific perturbation of CENP-H/CSPP1 interaction using a membrane-permeable competing peptide resulted in a transient mitotic arrest and chromosome segregation defect. Based on these findings, we propose that CSPP1 cooperates with CENP-H on kinetochores to serve as a novel regulator of kMT dynamics for accurate chromosome segregation.  相似文献   

5.
Kinetochores are the chromosomal sites for spindle interaction and play a vital role for chromosome segregation. The composition of kinetochore proteins and their cellular roles are, however, poorly understood in higher eukaryotes. We identified a novel kinetochore protein family conserved from yeast to human that is essential for equal chromosome segregation. The human homologue hMis12 of yeast spMis12/scMtw1 retains conserved sequence features and locates at the kinetochore region indistinguishable from CENP-A, a centromeric histone variant. RNA interference (RNAi) analysis of HeLa cells shows that the reduced hMis12 results in misaligned metaphase chromosomes, lagging anaphase chromosomes, and interphase micronuclei without mitotic delay, while CENP-A is located at kinetochores. Further, the metaphase spindle length is abnormally extended. Spindle checkpoint protein hMad2 temporally localizes at kinetochores at early mitotic stages after RNAi. The RNAi deficiency of CENP-A leads to a similar mitotic phenotype, but the kinetochore signals of other kinetochore proteins, hMis6 and CENP-C, are greatly diminished. RNAi for hMis6, like that of a kinetochore kinesin CENP-E, induces mitotic arrest. Kinetochore localization of hMis12 is unaffected by CENP-A RNAi, demonstrating an independent pathway of CENP-A in human kinetochores.  相似文献   

6.
Genetic evidence suggests that conjugation of Small Ubiquitin-like Modifier proteins (SUMOs) plays an important role in kinetochore function, although the mechanism underlying these observations are poorly defined. we found that depletion of the SUMO protease SENP6 from HeLa cells causes chromosome misalignment, prolonged mitotic arrest and chromosome missegregation. Many inner kinetochore proteins (IKPs) were mis-localized in SENP6-depleted cells. This gross mislocalization of IKPs is due to proteolytic degradation of CENP-I and CENP-H via the SUMO targeted Ubiquitin Ligase (STUbL) pathway. Our findings show that SENP6 is a key regulator of inner kinetochore assembly that antagonizes the cellular STUbL pathway to protect IKPs from degradation during S phase. Here, we will briefly review the implications of our findings and present new data on how SUMOylation during S phase can control chromosome alignment in the subsequent metaphase.Key words: SUMO, kinetochore, mitosis, SENP6, CENP-H, CENP-I  相似文献   

7.
Centromeric DNA forms two structures on the mitotic chromosome: the kinetochore, which interacts with kinetochore microtubules, and the inner centromere, which connects sister kinetochores. The assembly of the inner centromere is poorly understood. In this study, we show that the human Mis14 (hMis14; also called hNsl1 and DC8) subunit of the heterotetrameric hMis12 complex is involved in inner centromere architecture through a direct interaction with HP1 (heterochromatin protein 1), mediated via a PXVXL motif and a chromoshadow domain. We present evidence that the mitotic function of hMis14 and HP1 requires their functional association at interphase. Alterations in the hMis14 interaction with HP1 disrupt the inner centromere, characterized by the absence of hSgo1 (Shugoshin-like 1) and aurora B. The assembly of HP1 in the inner centromere and the localization of hMis14 at the kinetochore are mutually dependent in human chromosomes. hMis14, which contains a tripartite-binding domain for HP1 and two other kinetochore proteins, hMis13 and blinkin, is a cornerstone for the assembly of the inner centromere and kinetochore.  相似文献   

8.
We have analyzed the mitotic function of SENP6, a small ubiquitin-like modifier (SUMO) protease that disassembles conjugated SUMO-2/3 chains. Cells lacking SENP6 showed defects in spindle assembly and metaphase chromosome congression. Analysis of kinetochore composition in these cells revealed that a subset of proteins became undetectable on inner kinetochores after SENP6 depletion, particularly the CENP-H/I/K complex, whereas other changes in kinetochore composition mimicked defects previously reported to result from CENP-H/I/K depletion. We further found that CENP-I is degraded through the action of RNF4, a ubiquitin ligase which targets polysumoylated proteins for proteasomal degradation, and that SENP6 stabilizes CENP-I by antagonizing RNF4. Together, these findings reveal a novel mechanism whereby the finely balanced activities of SENP6 and RNF4 control vertebrate kinetochore assembly through SUMO-targeted destabilization of inner plate components.  相似文献   

9.
Zhu M  Wang F  Yan F  Yao PY  Du J  Gao X  Wang X  Wu Q  Ward T  Li J  Kioko S  Hu R  Xie W  Ding X  Yao X 《The Journal of biological chemistry》2008,283(27):18916-18925
Chromosome segregation in mitosis is orchestrated by dynamic interaction between spindle microtubules and the kinetochore. Septin (SEPT) belongs to a conserved family of polymerizing GTPases localized to the metaphase spindle during mitosis. Previous study showed that SEPT2 depletion results in chromosome mis-segregation correlated with a loss of centromere-associated protein E (CENP-E) from the kinetochores of congressing chromosomes (1). However, it has remained elusive as to whether CENP-E physically interacts with SEPT and how this interaction orchestrates chromosome segregation in mitosis. Here we show that SEPT7 is required for a stable kinetochore localization of CENP-E in HeLa and MDCK cells. SEPT7 stabilizes the kinetochore association of CENP-E by directly interacting with its C-terminal domain. The region of SEPT7 binding to CENP-E was mapped to its C-terminal domain by glutathione S-transferase pull-down and yeast two-hybrid assays. Immunofluorescence study shows that SEPT7 filaments distribute along the mitotic spindle and terminate at the kinetochore marked by CENP-E. Remarkably, suppression of synthesis of SEPT7 by small interfering RNA abrogated the localization of CENP-E to the kinetochore and caused aberrant chromosome segregation. These mitotic defects and kinetochore localization of CENP-E can be successfully rescued by introducing exogenous GFP-SEPT7 into the SEPT7-depleted cells. These SEPT7-suppressed cells display reduced tension at kinetochores of bi-orientated chromosomes and activated mitotic spindle checkpoint marked by Mad2 and BubR1 labelings on these misaligned chromosomes. These findings reveal a key role for the SEPT7-CENP-E interaction in the distribution of CENP-E to the kinetochore and achieving chromosome alignment. We propose that SEPT7 forms a link between kinetochore distribution of CENP-E and the mitotic spindle checkpoint.  相似文献   

10.
Genetic evidence suggests that conjugation of Small Ubiquitin-like Modifier proteins (SUMOs) plays an important role in kinetochore function, although the mechanism underlying these observations are poorly defined. We found that depletion of the SUMO protease SENP6 from HeLa cells causes chromosome misalignment, prolonged mitotic arrest and chromosome missegregation. Many inner kinetochore proteins (IKPs) were mis-localized in SENP6-depleted cells. This gross mislocalization of IKPs is due to proteolytic degradation of CENP-I and CENP-H via the SUMO targeted Ubiquitin Ligase (STUbL) pathway. Our findings show that SENP6 is a key regulator of inner kinetochore assembly that antagonizes the cellular STUbL pathway to protect IKPs from degradation during S phase. Here, we will briefly review the implications of our findings and present new data on how SUMOylation during S phase can control chromosome alignment in the subsequent metaphase.  相似文献   

11.
We previously identified a multisubunit complex (CENP-H/I complex) in kinetochores from human and chicken cells. We showed that the CENP-H/I complex is divided into three functional classes. In the present study, we investigated CENP-O class proteins, which include CENP-O, -P, -Q, -R, and -50 (U). We created chicken DT40 cell knockouts of each of these proteins, and we found that all knockout lines were viable, but that they showed slow proliferation and mitotic defects. Kinetochore localization of CENP-O, -P, -Q, and -50 was interdependent, but kinetochore localization of these proteins was observed in CENP-R-deficient cells. A coexpression assay in bacteria showed that CENP-O, -P, -Q, and -50 proteins form a stable complex that can associate with CENP-R. Phenotype analysis of knockout cells showed that all proteins except for CENP-R were required for recovery from spindle damage, and phosphorylation of CENP-50 was essential for recovery from spindle damage. We also found that treatment with the proteasome inhibitor MG132 partially rescued the severe mitotic phenotype observed in response to release from nocodazole block in CENP-50-deficient cells. This suggests that CENP-O class proteins are involved in the prevention of premature sister chromatid separation during recovery from spindle damage.  相似文献   

12.
Dynein light chains are accessory subunits of the cytoplasmic dynein complex, a minus-end directed microtubule motor. Here, we demonstrate that the dynein light chain Tctex-1 associates with unattached kinetochores and is essential for accurate chromosome segregation. Tctex-1 knockdown in cells does not affect the localization and function of dynein at the kinetochore, but produces a prolonged mitotic arrest with a few misaligned chromosomes, which are subsequently missegregated during anaphase. This function is independent of Tctex-1''s association with dynein. The kinetochore localization of Tctex-1 is independent of the ZW10-dynein pathway, but requires the Ndc80 complex. Thus, our findings reveal a dynein independent role of Tctex-1 at the kinetochore to enhance the stability of kinetochore-microtubule attachment.  相似文献   

13.
Kinetochores are large proteinaceous structure on the surface of chromosomes’ primary constriction during mitosis. They link chromosomes to spindle microtubules and also regulate the spindle assem- bly checkpoint, which is crucial for correct chromosome segregation in all eukaryotes. The better known core networks of kinetochores include the KMN network (K, KNL1; M, Mis12 complex; N, Ndc80 complex)and CCAN (constitutive centromere-associated network). However, the detailed molecular mechanism of the kinetoc...  相似文献   

14.
The Drosophila gene ald encodes the fly ortholog of mps1, a conserved kinetochore-associated protein kinase required for the meiotic and mitotic spindle assembly checkpoints. Using live imaging, we demonstrate that oocytes lacking Ald/Mps1 (hereafter referred to as Ald) protein enter anaphase I immediately upon completing spindle formation, in a fashion that does not allow sufficient time for nonexchange homologs to complete their normal partitioning to opposite half spindles. This observation can explain the heightened sensitivity of nonexchange chromosomes to the meiotic effects of hypomorphic ald alleles. In one of the first studies of the female meiotic kinetochore, we show that Ald localizes to the outer edge of meiotic kinetochores after germinal vesicle breakdown, where it is often observed to be extended well away from the chromosomes. Ald also localizes to numerous filaments throughout the oocyte. These filaments, which are not observed in mitotic cells, also contain the outer kinetochore protein kinase Polo, but not the inner kinetochore proteins Incenp or Aurora-B. These filaments polymerize during early germinal vesicle breakdown, perhaps as a means of storing excess outer kinetochore kinases during early embryonic development.  相似文献   

15.
It is well established that B-Raf signaling through the MAP kinase (ERK) pathways plays a prominent role in regulating cell proliferation but how it does this is not completely understood. Here, we show that B-Raf serves a physiological role during mitosis in human somatic cells. Knockdown of B-Raf using short interfering RNA (siRNA) resulted in pleiotropic spindle abnormalities and misaligned chromosomes in over 80% of the mitotic cells analyzed. A second B-Raf siRNA gave similar results suggesting these effects are specific to down-regulating B-Raf protein. In agreement with these findings, a portion of B-Raf was detected at the spindle structures including the spindle poles and kinetochores. Knockdown of C-Raf (Raf-1) had no detectable effects on spindle formation or chromosome alignment. Activation of the spindle assembly checkpoint was found to be dependent on B-Raf as evident by the inability of checkpoint proteins Bub1 and Mad2 to localize to unattached kinetochores in HeLa cells treated with B-Raf siRNA. Consistent with this, live-cell imaging microscopy showed that B-Raf-depleted cells exited mitosis earlier than control non-depleted cells. Finally, we provide evidence that B-Raf signaling promotes phosphorylation and kinetochore localization of the mitotic checkpoint kinase Mps1. Blocking B-Raf expression, ERK activity, or phosphorylation at Ser-821 residue perturbed Mps1 localization at unattached kinetochores. Thus, our data implicates a mitotic role for B-Raf in regulating spindle formation and the spindle checkpoint in human somatic cells.  相似文献   

16.
Kinetochores orchestrate mitotic chromosome segregation. Here, we use quantitative mass spectrometry of mitotic chromosomes isolated from a comprehensive set of chicken DT40 mutants to examine the dependencies of 93 confirmed and putative kinetochore proteins for stable association with chromosomes. Clustering and network analysis reveal both known and unexpected aspects of coordinated behavior for members of kinetochore protein complexes. Surprisingly, CENP-T depends on CENP-N for chromosome localization. The Ndc80 complex exhibits robust correlations with all other complexes in a “core” kinetochore network. Ndc80 associated with CENP-T interacts with a cohort of Rod, zw10, and zwilch (RZZ)–interacting proteins that includes Spindly, Mad1, and CENP-E. This complex may coordinate microtubule binding with checkpoint signaling. Ndc80 associated with CENP-C forms the KMN (Knl1, Mis12, Ndc80) network and may be the microtubule-binding “workhorse” of the kinetochore. Our data also suggest that CENP-O and CENP-R may regulate the size of the inner kinetochore without influencing the assembly of the outer kinetochore.  相似文献   

17.
In vertebrates, centromeres lack defined sequences and are thought to be propagated by epigenetic mechanisms involving the incorporation of specialized nucleosomes containing the histone H3 variant centromere protein (CENP)-A. However, the precise mechanisms that target CENP-A to centromeres remain poorly understood. Here, we isolated a multi-subunit complex, which includes the established inner kinetochore components CENP-H and CENP-I, and nine other proteins, from both human and chicken cells. Our analysis of these proteins demonstrates that the CENP-H-I complex can be divided into three functional sub-complexes, each of which is required for faithful chromosome segregation. Interestingly, newly expressed CENP-A is not efficiently incorporated into centromeres in knockout mutants of a subclass of CENP-H-I complex proteins, indicating that the CENP-H-I complex may function, in part, as a marker directing CENP-A deposition to centromeres.  相似文献   

18.
Characterization of a novel kinetochore protein, CENP-H.   总被引:11,自引:0,他引:11  
  相似文献   

19.
Xenopus egg extracts provide a powerful tool for studying formation and function of chromosomes. Two alternative protocols are generally used to obtain mitotic chromosomes. The first one employs direct assembly of chromatin from sperm nuclei in CSF-arrested meiotic extracts, while the second is based on transition of sperm DNA through a replication step, followed by re-establishing of CSF arrest. In this study we show that general kinetochore structure is disrupted in chromosomes assembled directly in CSF egg extracts: the amounts of outer kinetochore proteins such as Bub1, BubR1 and Dynactin subunit p150glued are reduced and the components of the inner centromeric region (Aurora B kinase and Survivin) show compromised recruitment to centromeres. In contrast, kinetochores on chromosomes assembled according to the second protocol closely resemble those in somatic cells. Our results argue that transition of sperm nuclei through interphase is an essential step for proper kinetochore assembly.  相似文献   

20.
The kinetochore, a macromolecular complex located at the centromere of chromosomes, provides essential functions for accurate chromosome segregation. Kinetochores contain checkpoint proteins that monitor attachments between the kinetochore and microtubules to ensure that cells do not exit mitosis in the presence of unaligned chromosomes. Here we report that human CENP-I, a constitutive protein of the kinetochore that shares limited similarity with Mis6 of Schizosaccharomyces pombe, is required for the localization of CENP-F and the checkpoint proteins MAD1 and MAD2 to kinetochores. Depletion of CENP-I from kinetochores causes the cell cycle to delay in G2. Although monopolar chromosomes in CENP-I-depleted cells fail to establish bipolar connections, the cells are unable to arrest in mitosis. These cells are transiently delayed in mitosis in a MAD2-dependent manner, even though their kinetochores are depleted of MAD2. The delay is extended considerably when the number of unattached kinetochores is increased. This suggests that no single unattached kinetochore in CENP-I-depleted cells can arrest mitosis. The collective output from many unattached kinetochores is required to reach a threshold signal of 'wait for anaphase' to sustain a prolonged mitotic arrest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号