首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The regulatory properties of partially purified adenosine 5'-diphosphate-(ADP) glucose pyrophosphorylase from two Serratia marcescens strains (ATCC 274 and ATCC 15365) have been studied. Slight or negligible activation by fructose-P2, pyridoxal-phosphate, or reduced nicotinamide adenine dinucleotide phosphate (NADPH) was observed. These compounds were previously shown to be potent activators of the ADPglucose pyrophosphorylases from the enterics, Salmonella typhimurium, Enterobacter aerogenes, Enterobacter cloacae, Citrobacter freundii, Escherichia aurescens, Shigella dysenteriae, and Escherichia coli. Phosphoenolpyruvate stimulated the rate of ADPglucose synthesis catalyzed by Serratia ADPglucose pyrophosphorylase about 1.5- to 2-fold but did not affect the S0.5 values (concentration of substrate required for 50% maximal stimulation) of the substrates, alpha-glucose-1-phosphate, and adenosine 5'-triphosphate. Adenosine 5'-monophosphate (AMP), a potent inhibitor of the enteric ADPglucose pyrophosphorylase, is an effective inhibitor of the S. marcescens enzyme. ADP also inhibits but is not as effective as AMP. Activators of the enteric enzyme counteract the inhibition caused by AMP. This is in contrast to what is observed for the S. marcescens enzyme. Neither phosphoenolpyruvate, fructose-diphosphate, pyridoxal-phosphate, NADPH, 3-phosphoglycerate, fructose-6-phosphate, nor pyruvate effect the inhibition caused by AMP. The properties of the S. marcescens HY strain and Serratia liquefaciens ADPglucose pyrophosphorylase were found to be similar to the above two S. marcescens enzymes with respect to activation and inhibition. These observations provide another example where the properties of an enzyme found in the genus Serratia have been found to be different from the properties of the same enzyme present in the enteric genera Escherichia, Salmonella, Shigella, Citrobacter, and Enterobacter.  相似文献   

2.
ADPglucose synthetase from the photosynthetic bacterium Rhodopseudomonas sphaeroides was purified to greater than 95% purity. The molecular weight of the R. sphaeroides enzyme, as determined by sucrose density gradient ultracentrifugation, was approximately 204,000. The subunit molecular weight of the enzyme based on sodium dodecyl sulfate-gel electrophoresis was 46,000. Although the amino acid composition of the enzyme was similar to that found for the enzymes from Escherichia coli, Salmonella typhimurium, and Rhodospirillum tenue, no apparent homology has been observed between the N-terminal or C-terminal amino acid sequences. Antisera prepared against the ADPglucose synthetase could inhibit the activities of the enzyme from other photosynthetic bacteria. Therefore, some sequence homology may exist within the internal portion of their peptide chain.  相似文献   

3.
Abstract Nine strains of brown rhodospirilla, i.e. Rhodospirillum photometricum, R. molischianum and R. fulvum were examined with respect to nitrogen nutrition and the pathway of ammonia assimilation. R. photometricum strains were nutritionally more versatile than strains of the other two species; glutamate, aspartate, and several other amino acids supported good growth of R. photometricum but were poorly utilized by R. molischianum and R. fulvum . Glutamine and N2 supported excellent growth of strains of all species. The glutamine synthetase/glutamate synthase pathway served as the major means of ammonia assimilation in brown rhodospirilla; no evidence for glutamate dehydrogenase was obtained from any species. NADPH was required as coenzyme for glutamate synthase activity in R. photometricum strain while only NADH served in this connection in R. molischianum and R. fulvum .  相似文献   

4.
ADPglucose pyrophosphorylase catalyzes the regulatory step in the pathway for bacterial glycogen synthesis. The enzymes from different organisms exhibit distinctive regulatory properties related to the main carbon metabolic pathway. Escherichia coli ADPglucose pyrophosphorylase is mainly activated by fructose 1,6-bisphosphate (FBP), whereas the Agrobacterium tumefaciens enzyme is activated by fructose 6-phosphate (F6P) and pyruvate. Little is known about the regions determining the specificity for the allosteric regulator. To study the function of different domains, two chimeric enzymes were constructed. "AE" contains the N-terminus (271 amino acids) of the A. tumefaciens ADPglucose pyrophosphorylase and the C-terminus (153 residues) of the E. coli enzyme, and "EA", the inverse construction. Expression of the recombinant wild-type and chimeric enzymes was performed using derivatives of the pET24a plasmid. Characterization of the purified chimeric enzymes showed that the C-terminus of the E. coli enzyme is relevant for the selectivity by FBP. However, this region seems to be less important for the specificity by F6P in the A. tumefaciens enzyme. The chimeric enzyme AE is activated by both FBP and F6P, neither of which affect EA. Pyruvate activates EA with higher apparent affinity than AE, suggesting that the C-terminus of the A. tumefaciens enzyme plays a role in the binding of this effector. The allosteric inhibitor site is apparently disrupted, as a marked desensitization toward AMP was observed in the chimeric enzymes.  相似文献   

5.
The Escherichia coli B glycogen synthase has been purified to apparent homogeneity with the use of a 4-aminobutyl-Sepharose column. Two fractions of the enzyme were obtained: glycogen synthase I with a specific activity of 380 mumol mg-1 and devoid of branching enzyme activity and glycogen synthase II having a specific activity of 505 mumol mg-1 and containing branching enzyme activity which was 0.1% of the activity observed for the glycogen synthase. Only one protein band was found in disc gel electrophoresis for each glycogen synthase fraction and they were coincident with glycogen synthase activity. One major protein band and one very faint protein band which hardly moved into the gel were observed in sodium dodecyl sulfate gel electrophoresis of the glycogen synthase fractions. The subunit molecular weight of the major protein band in sodium dodecyl sulfate gel electrophoresis of both glycogen synthase fractions was determined to be 49 000 +/- 2 000. The molecular weights of the native enzymes were determined by sucrose density gradient ultracentrifugation. Glycogen synthase I had a molecular weight of 93 000 while glycogen synthase II had a molecular weight of 200 000. On standing at 4 degrees C or at -85 degrees C both enzymes transform into species having molecular weights of 98 000, 135 000, and 185 000. Thus active forms of the E. coli B glycogen synthase can exist as dimers, trimers, and tetramers of the subunit. The enzyme was shown to catalyze transfer of glucose from ADPglucose to maltose and to higher oligosaccharides of the maltodextrin series but not to glucose. 1,5-Gluconolactone was shown to be a potent inhibitor of the glycogen synthase reaction. The glycogen synthase reaction was shown to be reversible. Formation of labeled ADPglucose occurred from either [14C]ADP or [14C]glycogen. The ratio of ADP to ADPglucose at equilibrium at 37 degrees C was determined and was found to vary threefold in the pH range of 5.27-6.82. From these data the ratio of ADP2- to ADPglucose at equilibrium was determined to be 45.8 +/- 4.5. Assuming that deltaF degrees of the hydrolysis of the alpha-1,4-glucosidic linkage is -4.0 kcal the deltaF degrees of hydrolysis of the glucosidic linkage in ADPglucose is -6.3 kcal.  相似文献   

6.
Xenopus eggs contain large stores of glycogen, but this glycogen is not glycolytically processed during cleavage. The Embden-Meyerhof pathway is inhibited by the absence of pyruvate kinase activity in vivo, and lactate and pyruvate are present at relatively low levels. In the late blastula, just preceding gastrulation, lactate levels increase, indicating the onset of glycogen breakdown and glycolytic flux. Glycolysis from microinjected [14C]glucose-6-phosphate could be transiently activated, however, by the coinjection of ADP into fertilized eggs, and constitutively activated by the injection of the ATPase potato apyrase, indicating the presence of all enzymes necessary for glycolytic activity. The isozyme profiles of pyruvate kinase and malic enzyme, two enzymes involved in carbon metabolism during cleavage or in the subsequent activation of glycogen breakdown, do not change between the egg and gastrula stages. These data suggest that the activation of glycogen breakdown and glycolysis in the late blastula is probably not a result of new gene activity but may be the metabolic consequence of increased free ADP that is then able to support the pyruvate kinase reaction.  相似文献   

7.
Abstract The phylogenetic structure of non-sulfur purple bacteria in the Proteobacteria α group was elucidated by the comparative analysis of 16S rRNA sequences from 29 strains of phototrophs and 14 strains of related non-phototrophs. The sequences of 12 strains including 7 isolates were determined in this study. The phototrophs in the α group were found to be extremely diversified and intermingled with non-phototrophs. Rhodopseudomonas species were dispersed into 3 lines of descent and Rhodospirillum species were dispersed into 5 lines. Marine organisms were composed of 4 lineages which were independent of each other and of freshwater lineages. Rhodospirillum fulvum, Rhodospirillum molischianum and the genus Magnetospirillum were found to be monophyletic.  相似文献   

8.
Adenosine diphosphate glucose synthetase from the photosynthetic bacterium Rhodospirillum tenue has been purified greater than 95%. The molecular weight of the enzyme is approximately 215,000, with a subunit molecular weight of about 51,000. The enzyme appears to be composed of four similar if not identical subunits. Although the amino acid composition of the enzyme is similar to that of Escherichia coli and Salmonella typhimurium, no apparent homology has been observed between their N-terminal amino acid sequences. Antisera prepared against the R. tenue enzyme can partially inhibit the activities of adenosine diphosphate glucose synthetases from other photosynthetic bacteria.  相似文献   

9.
1. The pyruvate kinases of the desert locust fat body and flight muscle were partially purified by ammonium sulphate fractionation. 2. The fat-body enzyme is allosterically activated by very low (1mum) concentrations of fructose 1,6-diphosphate, whereas the flight-muscle enzyme is unaffected by this metabolite at physiological pH. 3. Flight-muscle pyruvate kinase is activated by preincubation at 25 degrees for 5min., whereas the fat-body enzyme is unaffected by such treatment. 4. Both enzymes require 1-2mm-ADP for maximal activity and are inhibited at higher concentrations. With the fat-body enzyme inhibition by ADP is prevented by the presence of fructose 1,6-diphosphate. 5. Both enzymes are inhibited by ATP, half-maximal inhibition occurring at about 5mm-ATP. With the fat-body enzyme ATP inhibition can be reversed by fructose 1,6-diphosphate. 6. The fat-body enzyme exhibits maximal activity at about pH7.2 and the activity decreases rapidly above this pH. This inactivation at high pH is not observed in the presence of fructose 1,6-diphosphate, i.e. maximum stimulating effects of fructose 1,6-diphosphate are observed at high pH. The flight-muscle enzyme exhibits two optima, one at about pH7.2 as with the fat-body enzyme and the other at about pH8.5. Stimulation of the enzyme activity by fructose 1,6-diphosphate was observed at pH8.5 and above.  相似文献   

10.
A new adenosine analogue has been synthesized, 5'-fluorosulfonylbenzoyl adenosine, which reacts covalently with bovine liver glutamate dehydrogenase with the incorporation of approximately 1 mol of 5'-sulfonylbenzoyl adenosine per peptide chain. Native glutamate dehydrogenase is known to be inhibited by relatively high concentrations of DPNH by binding to a second noncatalytic site; the major change in the kinetic characteristics of the modified enzyme is a total loss of this inhibition by DPNH. The modified enzyme retains full catalytic activity as measured in the absence of allosteric ligands, is still inhibited more than 90% by GTP, and is activated normally by ADP. These results demonstrate that the catalytic as well as the GTP and ADP regulatory sites are distinct from the inhibitory DPNH site. The rate constant for reaction of 5'-fluorosulfonylbenzoyl adenosine is decreased by high concentrations of DPNH alone or by DPNH plus GTP, but not by the substrate alpha-ketoglutarate, the coenzymes DPN or TPNH, or the regulators ADP or GTP alone. These observations are consistent with the postulate that the 5'-fluorosulfonylbenzoyl adenosine attacks exclusively the second inhibitory DPNH site. The DPNH inhibition is abolished when an average of only 0.5 mol of 5'-sulfonylbenzoyl adenosine per peptide chain has been incorporated. The structure of 5'-fluorosulfonylbenzoyl adenosine is critical in determining the course of the modification reaction. The smaller compound p-fluorosulfonylbenzoic acid does not affect the kinetic characteristics of the enzyme, and the isomeric compound 3'-fluorosulfonylbenzoyl adenosine produces a different pattern of changes in the regulatory properties (Pal. P. K., Wechter, W. J., and Colman, R. F. (1975) Biochemistry 14, 707-715). Indeed, enzyme which has combined stoichiometrically with 5'-fluorosulfonylbenzoyl adenosine is still able to react with 3'-fluorosulfonylbenzoyl adenosine; thus, the two adenosine analogues appear to react at distinct sites on glutamate dehydrogenase. It is proposed that 5'-fluorosulfonylbenzoyl adenosine will be complementary to 3'-fluorosulfonylbenzoyl adenosine as a general affinity label for dehydrogenases as well as other classes of enzymes which use adenine nucleotides as substrates or regulators.  相似文献   

11.
Basal Organelles of Bacterial Flagella   总被引:19,自引:16,他引:3  
Liberated by enzymatic lysis of the cells, the flagella of Rhodospirillum rubrum, R. molischianum, and R. fulvum all have a similar structure. The hook at the base of the flagellum is connected by a short, narrow collar to a paired disc in the basal organelle. This paired disc is in turn connected to a second paired disc. The disposition of flagella to which fragments of the cell membrane still adhere suggests that the narrow collar at the base of the hook traverses both the wall and the membrane, and that the upper pair of discs in the basal organelle lies just beneath the surface of the membrane.  相似文献   

12.
A mutant strain of Escherichia coli K-12, designated 618, accumulates glycogen at a faster rate than wild-type strain 356. The mutation affects the ADPglucose pyrophosphorylase regulatory properties (N. Creuzat-Sigal, M. Latil-Damotte, J. Cattaneo, and J. Puig, p. 647-680, in R. Piras and H. G. Pontis, ed., Biochemistry of the Glycocide Linkage, 1972). The enzyme is less dependent on the activator, fructose 1,6 bis-phosphate for activity and is less sensitive to inhibition by the inhibitor, 5'-AMP. The structural gene, glgC, for this allosteric mutant enzyme was cloned into the bacterial plasmid pBR322 by inserting the chromosomal DNA at the PstI site. The glycogen biosynthetic genes were selected by cotransformation of the neighboring asd gene into an E. coli mutant also defective in branching enzyme (glgB) activity. Two recombinant plasmids, pEBL1 and pEBL3, that had PstI chromosomal DNA inserts containing glgC and glgB were isolated. Branching enzyme and ADPglucose pyrophosphorylase activities were increased 240- and 40-fold, respectively, in the asd glgB mutant, E. coli K-12 6281. The E. coli K-12 618 mutant glgC gene product was characterized after transformation of an E. coli B ADPglucose pyrophosphorylase mutant with the recombinant plasmid pEBL3. The kinetic properties of the cloned ADPglucose pyrophosphorylase were similar to those of the E. coli K-12 618 enzyme. The inserted DNA in pEBL1 was arranged in opposite orientation to that in pEBL3.  相似文献   

13.
The presence of a single aspartokinase was demonstrated in Rhodospirillum tenue. The enzyme has been purified about 60-fold. No physical association exists in this species between aspartokinase and homoserine dehydrogenase. The general properties of the enzyme are described. Inhibition by l-lysine, by l-threonine, and concerted inhibition by these two end products are regulatory characters which have also been found in many other species. In R. tenue, aspartokinase is also subject to a hitherto not encountered type of concerted feedback inhibition, by l-threonine plus l-methionine. The inhibition caused by lysine can be reversed either by glycine, l-isoleucine, l-methionine, or l-phenylalanine. The concerted inhibition by lysine plus threonine is reversed by glycine, l-isoleucine, or l-phenylalanine, but not by l-methionine, which exerts in conjunction with threonine the independent concerted inhibition referred to above. Addition of single or several metabolites to cultures of R. tenue caused inhibition of growth and reversal of growth inhibition, compatible with the effects observed in vitro on aspartokinase activity. The regulation of this enzyme in relation to that of other bacterial aspartokinases is discussed.  相似文献   

14.
Regulation of bacterial glycogen synthesis   总被引:4,自引:0,他引:4  
The formation of the alpha 1,4 glucosidic linkages of bacterial glycogen occurs first by synthesis of ADPglucose from ATP and alpha glucose 1-P and then transfer of the glucose moiety from the formed sugar nucleotide to a pre-existing glucan primer. Unlike mammalian glycogen synthesis, regulation occurs at the synthesis of the sugar nucleotide. Generally glycolytic intermediates activate ADPglucose synthesis while AMP, ADP and/or Pi inhibit ADPglucose synthesis. A variation of activator specificity is is seen when the enzyme is isolated from different bacteria and is thought to be related to the predominant type of carbon assimilation or dissimilation pathways present in the particular organism. Evidence indicating that the allosteric activation effects observed in vitro are physiologically pertinent for the regulation of glycogen synthesis is reviewed. The recent experiments in identifying the allosteric activator site of the Escherichia coli ADPglucose pyrophosphorylase as well as other chemical modification studies identifying amino acid residues essential for allosteric activation and for catalytic activity are discussed. Evidence is also presented for the covalent modification of the Rhodopseudomonas sphaeroides ADPglucose pyrophosphorylase by bromopyruvate at its allosteric activator site. Regulation of the biosynthesis of glycogen also occurs at the genetic level and the current evidence for the existence of a glycogen operon is presented. In addition the current studies concerning the cloning of the DNA region containing the Escherichia coli structural genes coding for the glycogen biosynthetic enzymes as well as the nucleotide sequence of the E. coli ADPglucose pyrophosphorylase are presented.  相似文献   

15.
ADPglucose pyrophosphorylase fromRhodospirillum rubrum has been purified to homogeneity or near homogeneity using affinity chromatography techniques. The subunit molecular weight of the enzyme is 50,000. Thus, the enzyme is similar in subunit molecular weight to that found for other bacterial ADPglucose pyrophosphorylases. The amino acid composition is similar to that found for theRhodospirillum tenue enzyme. However, the N-terminal amino acid sequence of theR. rubrum enzyme shows no apparent homology with theR. tenue enzyme N-terminal amino acid sequence.  相似文献   

16.
The kinetic properties of cytosolic pyruvate kinase (PKc) from germinating castor oil seeds (COS) have been investigated. From experiments in which the free Mg2+ concentration was varied at constant levels of either the complexed or free forms of the substrates it was determined that the true substrates are the free forms of both phosphoenolpyruvate (PEP) and ADP. This conclusion is corroborated by the quenching of intrinsic PKC tryptophan fluorescence by free PEP and ADP. Mg2+ is bound as the free bivalent cation but is likely released as MgATP. The fluorescence data, substrate interaction kinetics, and pattern of inhibition by products and substrate analogues (adenosine 5'-O-(2-thiodiphosphate) for ADP and phenyl phosphate for PEP) are compatible with a sequential, compulsory-ordered, Tri-Bi type kinetic reaction mechanism. PEP is the leading substrate, and pyruvate the last product to abandon the enzyme. The dissociation constant and limiting Km for free PEP (8.2 to 22 and 38 microM, respectively) and the limiting Km for free ADP (2.9 microM) are considerably lower than those reported for the non-plant enzyme. The results indicate that COS PKc exists naturally in an activated state, similar to the fructose 1,6-bisphosphate-activated yeast enzyme. This deduction is consistent with a previous study (F.E. Podestá and W.C. Plaxton (1991) Biochem. J. 279, 495-501) that failed to identify any allosteric activators for the COS PKc, but which proposed a regulatory mechanism based upon ATP levels and pH-dependent alterations in the enzyme's response to various metabolite inhibitors. As plant phosphofructokinases display potent inhibition by PEP, the overall rate of glycolytic flux from hexose 6-phosphate to pyruvate in the plant cytosol will ultimately depend upon variations in PEP levels brought about by the regulation of PKc.  相似文献   

17.
N6,O2-Dibutyryl adenosine 3':5'-monophosphate (Bt2cAMP) inhibits gluconeogenesis and lactate formation but increases ketogenesis by isolated liver cells incubated with high concentrations of pyruvate. The inhibitory effects can not be explained on the basis of an inhibition of the pyruvate dehydrogenase complex nor by a change in the NAD+ oxidation-reduction potential of the mitochondrial compartment. Both oleate and 3-hydroxybutyrate substantially increase the rates of gluconeogenesis and lactate formation from pyruvate but do not overcome the inhibition caused by Bt2cAMP. A decreased effectiveness of pyruvate kinase is proposed to account for the inhibition of both gluconeogenesis and lactate formation by Bt2cAMP. This enzyme catalyzes a step required in the transfer of reducing equivalents from the mitochondrial compartment to the cytoplasm and participates in the formation of glucose and lactate from pyruvate by the overall reaction: 2 pyruvate- + 2 NADHmito + 4 ATP4- + 4 H2O leads to 1/2 glucose + lactate- + 2 NAD+ mito + 4 ADP3- + 4 HPO4(2)- + H+. Inhibition of pyruvate kinase promotes gluconeogenesis with most substrates but inhibits gluconeogenesis from pyruvate for want of cytoplasmic reducing equivalents.  相似文献   

18.
Bovine liver glutamate dehydrogenase reacts covalently with the adenine nucleotide analogue 2-(4-bromo-2,3-dioxobutylthio)adenosine 5'-monophosphate (2-BDB-TAMP) with incorporation of about 1 mol of reagent/mol of enzyme subunit. The modified enzyme is not inactivated by this reaction as measured in the absence of allosteric effectors. Native glutamate dehydrogenase is activated by ADP and inhibited by high concentrations of NADH; both of these effects are irreversibly decreased upon reaction of the enzyme with 2-BDB-TAMP. The decrease in activation by ADP was used to determine the rate constant for reaction with 2-BDB-TAMP. The rate constant (kobs) for loss of ADP activation exhibits a nonlinear dependence on 2-BDB-TAMP concentration, suggesting a reversible binding of reagent (KR = 0.74 mM) prior to irreversible modification. At 1.2 mM 2-BDB-TAMP, kobs = 0.060 min-1 and is not affected by alpha-ketoglutarate or GTP, but is decreased to 0.020 min-1 by 5 mM NADH and to zero by 5 mM ADP. Incorporation after incubation with 1.2 mM 2-BDB-TAMP for 1 h at pH 7.1 is 1.02 mol/mol enzyme subunit in the absence but only 0.09 mol/subunit in the presence of ADP. The enzyme protected with 5 mM ADP behaves like native enzyme in its activation by ADP and in its inhibition by NADH. Native enzyme binds reversibly 2 mol of [14C]ADP/subunit, whereas modified enzyme binds only 1 mol of ADP/peptide chain. These results indicate that incorporation of 1 mol of 2-BDB-TAMP causes elimination of one of the ADP sites of the native enzyme. 2-BDB-TAMP acts as an affinity label of an ADP site of glutamate dehydrogenase and indirectly influences the NADH inhibitory site.  相似文献   

19.
The nonglycolytic, anaerobic organism Veillonella parvula M4 has been shown to contain an active pyruvate kinase. The enzyme was purified 126-fold and was shown by disc-gel electrophoresis to contain only two faint contaminating bands. The purified enzyme had a pH optimum of 7.0 in the forward direction and exhibited sigmoidal kinetics at varying concentrations o-f phosphoenol pyruvate (PEP), adenosine 5'-monophosphate (AMP), and Mg-2+ ions with S0.5 values of 1.5, 2.0, and 2.4 mM, respectively. Substrate inhibition was observed above 4 m PEP. Hill plots gave slope values (n) of 4.4 (PEP), 2.8 (adenosine 5'-diphosphate), and 2.0 (Mg-2+), indicating a high degree of cooperativity. The enzyme was inhibited non-competitively by adenosine 5'-triphosphate (Ki = 3.4 mM), and this inhibition was only slightly affected by increasing concentration of Mg-2+ ions to 30 mM. Competitive inhibition was observed with 3-phosphoglycerate, malate, and 2,3-diphosphoglycerate but only at higher inhibitor concentrations. The enzyme was activated by glucose-6-phosphate (P), fructose-6-P, fructose-1,6-diphosphate (P2), dihydroxyacetone-P, and AMP; the Hill coefficients were 2.2, 1.8, 1.5, 2.1, and 2.0, respectively. The presence of each these metabolites caused substrate velocity curves to change from sigmoidal to hyperbolic curves, and each was accompanied by an increase in the maximum activity, e.g., AMP greater than fructose-1,6-P2 greater than dihydroxyacetone-P greater than glucose-6-P greater than fructose-6-P. The activation constants for fructose-1,6-P2, AMP, and glucose-6-P were 0.3, 1.1, and 5.3 mM, respectively. The effect of 5 mM fructose-1,6-P2 was significantly different from the other compounds in that this metabolite was inhibitory between 1.2 and 3 mM PEP. Above this concentration, fructose-1,6-P2 activated the enzyme and abolished substrate inhibition by PEP. The enzyme was not affected by glucose, glyceraldehyde-3-P, 2-phosphoglycerate, lactate, malate, fumerate, succinate, and cyclic AMP. The results suggest that the pyruvate kinase from V. parvula M4 plays a central role in the control of gluconeogenesis in this organism by regulating the concentration of PEP.  相似文献   

20.
Graded doses of ochratoxin A incorporated into the diet (0, 0.5, 1.0, 2.0, 4.0, and 8.0 micrograms/g) of broiler chickens significantly (P < 0.05) inhibited activity of protein kinase, the initiator enzyme of the glycogen phosphorylase system, in the livers at all dose levels. Only the highest dose, 8.0 micrograms/g, significantly reduced the total activity of phosphorylase kinase, which is activated by protein kinase. The total activity of phosphorylase, which is activated by phosphorylase kinase, was unaltered by ochratoxin A at any level. Additon of ochratoxin A to liver extracts control birds inhibited protein kinase but not phosphorylase kinase. When added to extracts of livers from control birds, cyclic adenosine 3',5'-monophosphate stimulated protein kinase but not phosphorylase kinase. The cyclic adenosine 3',5'-monophosphate had no effect when added to extracts from birds fed ochratoxin A. These results suggest that ochratoxin A affects primarily the cyclic adenosine 3',5'-monophosphate-dependent protein kinase which initiates the enzymatic cascade leading to glycogenolysis. Furthermore, these results conform an earlier assignment on morphological criteria of the glycogenosis of ochratoxicosis as a type X glycogen storage disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号