首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The trans-Golgi network (TGN) plays a pivotal role in directing proteins in the secretory pathway to the appropriate cellular destination. VAMP4, a recently discovered member of the vesicle-associated membrane protein (VAMP) family of trafficking proteins, has been suggested to play a role in mediating TGN trafficking. To better understand the function of VAMP4, we examined its precise subcellular distribution. Indirect immunofluorescence and electron microscopy revealed that the majority of VAMP4 localized to tubular and vesicular membranes of the TGN, which were in part coated with clathrin. In these compartments, VAMP4 was found to colocalize with the putative TGN-trafficking protein syntaxin 6. Additional labeling was also present on clathrin-coated and noncoated vesicles, on endosomes and the medial and trans side of the Golgi complex, as well as on immature secretory granules in PC12 cells. Immunoprecipitation of VAMP4 from rat brain detergent extracts revealed that VAMP4 exists in a complex containing syntaxin 6. Converging lines of evidence implicate a role for VAMP4 in TGN-to-endosome transport.  相似文献   

2.
Membrane-associated RING-CH (MARCH) is a recently identified member of the mammalian E3 ubiquitin ligase family, some members of which down-regulate the expression of immune recognition molecules. Here, we have identified MARCH-II, which is ubiquitously expressed and localized to endosomal vesicles and the plasma membrane. Immunoprecipitation and in vitro binding studies established that MARCH-II directly associates with syntaxin 6. Overexpression of MARCH-II resulted in redistribution of syntaxin 6 as well as some syntaxin-6-interacting soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) into the MARCH-II-positive vesicles. In addition, the retrograde transport of TGN38 and a chimeric version of furin to trans-Golgi network (TGN) was perturbed--without affecting the endocytic degradative and biosynthetic secretory pathways--similar to effects caused by a syntaxin 6 mutant lacking the transmembrane domain. MARCH-II overexpression markedly reduced the cell surface expression of transferrin (Tf) receptor and Tf uptake and interfered with delivery of internalized Tf to perinuclear recycling endosomes. Depletion of MARCH-II by small interfering RNA perturbed the TGN localization of syntaxin 6 and TGN38/46. MARCH-II is thus likely a regulator of trafficking between the TGN and endosomes, which is a novel function for the MARCH family.  相似文献   

3.
MARCH comprises a recently identified family of transmembrane RING-finger proteins which is implicated in diverse biological functions, such as immune regulation, protein quality control, and membrane trafficking. We previously identified MARCH-II, as a binding partner of syntaxin 6, which plays a role in endosomal protein transport. In this paper, we describe the cloning and characterization of MARCH-III which is the closest homolog of MARCH-II. It is broadly expressed at relatively high levels in spleen, colon, and lung. An immunofluorescence study of HeLa cells demonstrated that MARCH-III is present in peripheral vesicles partially colocalized with transferrin receptor. Overexpression of MARCH-III resulted in the redistribution of TGN46 and strong inhibition of transferrin uptake. Immunoprecipitation studies revealed that MARCH-III is associated with syntaxin 6 and MARCH-II. Mutational analyses revealed that the PDZ-binding motif and RING finger are essential for the subcellular localization of MARCH-III and the inhibitory effect on transferrin uptake. The location, associated molecules, and effects of overexpression suggest that MARCH-III is involved in the regulation of vesicular trafficking in endosomes.  相似文献   

4.
The final step in the liberation of secretory vesicles from the trans-Golgi network (TGN) involves the mechanical action of the large GTPase dynamin as well as conserved dynamin-independent fission mechanisms, e.g. mediated by Brefeldin A-dependent ADP-ribosylated substrate (BARS). Another member of the dynamin family is the mammalian dynamin-like protein 1 (DLP1/Drp1) that is known to constrict and tubulate membranes, and to divide mitochondria and peroxisomes. Here, we examined a potential role for DLP1 at the Golgi complex. DLP1 localized to the Golgi complex in some but not all cell lines tested, thus explaining controversial reports on its cellular distribution. After silencing of DLP1, an accumulation of the apical reporter protein YFP-GL-GPI, but not the basolateral reporter VSVG-SP-GFP at the Golgi complex was observed. A reduction in the transport of YFP-GL-GPI to the plasma membrane was confirmed by surface immunoprecipitation and TGN-exit assays. In contrast, YFP-GL-GPI trafficking was not disturbed in cells silenced for BARS, which is involved in basolateral sorting and trafficking of VSVG-SP-GFP in COS-7 cells. Our data indicate a new role for DLP1 at the Golgi complex and thus a role for DLP1 as a novel component of the apical sorting machinery at the TGN is discussed.  相似文献   

5.
Mutations in the VPS (vacuolar protein sorting) genes of Saccharomyces cerevisiae have been used to define the trafficking steps that soluble vacuolar hydrolases take en route from the late Golgi to the vacuole. The class D VPS genes include VPS21, PEP12, and VPS45, which appear to encode components of a membrane fusion complex involved in Golgi-to-endosome transport. Vps21p is a member of the Rab family of small Ras-like GTPases and shows strong homology to the mammalian Rab5 protein, which is involved in endocytosis and the homotypic fusion of early endosomes. Although Rab5 and Vps21p appear homologous at the sequence level, it has not been clear if the functions of these two Rabs are similar. We find that Vps21p is an endosomal protein that is involved in the delivery of vacuolar and endocytosed proteins to the vacuole. Vacuolar and endocytosed proteins accumulate in distinct transport intermediates in cells that lack Vps21p function. Therefore, it appears that Vps21p is involved in two trafficking steps into the prevacuolar/late endosomal compartment.  相似文献   

6.
During membrane traffic, transport carriers are first tethered to the target membrane prior to undergoing fusion. Mechanisms exist to connect tethering with fusion, but in most cases, the details remain poorly understood. GM130 is a member of the golgin family of coiled-coil proteins tat is involved in membrane tethering at the endoplasmic reticulum (ER) to Golgi intermediate compartment and cis-Golgi. Here, we demonstrate that GM130 interacts with syntaxin 5, a t-SNARE also localized to the early secretory pathway. Binding to syntaxin 5 is specific, direct, and mediated by the membrane-proximal region of GM130. Interestingly, interaction with syntaxin 5 is inhibited by the binding of the vesicle docking protein p115 to a distal binding site in GM130. The interaction between GM130 and the small GTPase Rab1 is also inhibited by p115 binding. Our findings suggest a mechanism for coupling membrane tethering and fusion at the ER to Golgi intermediate compartment and cis-Golgi, with GM130 playing a central role in linking these processes. Consistent with this hypothesis, we find that depletion of GM130 by RNA interference slows the rate of ER to Golgi trafficking in vivo. The interactions of GM130 with syntaxin 5 and Rab1 are also regulated by mitotic phosphorylation, which is likely to contribute to the inhibition of ER to Golgi trafficking that occurs when mammalian cells enter mitosis.  相似文献   

7.
Two mammalian proteins, vtila and vtilb, are homologous to the yeast Q-SNARE Vtilp which is part of several SNARE complexes in different transport steps. In vitro experiments suggest distinct functions for vtila and vtilb. Here we compared the subcellular localization of endogenous vtila and vtilb by immunofluorescence and immuno-electron microscopy. Both proteins had a distinct but overlapping localization. vtila was found predominantly on the Golgi and the TGN, vtilb mostly on tubules and vesicles in the TGN area and on endosomes. vti1a coimmunoprecipitated with VAMP-4, syntaxin 6, and syntaxin 16. These four SNAREs could assemble into a SNARE complex of conserved structure because one SNARE motif of each subgroup is present. vtila-beta, VAMP-4, syntaxin 6, and syntaxin 16 are coenriched with small synaptic vesicles and with clathrin-coated vesicles isolated from rat brain synaptosomes. Therefore, this SNARE complex may have a role in synaptic vesicle biogenesis or recycling.  相似文献   

8.
Meeting Report     
Syntaxin 10 is a soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) protein localized to the trans-Golgi network (TGN), where two other members of the syntaxin family, syntaxins 6 and 16, also reside. The role of syntaxin 10 in regulating TGN protein traffic is not yet defined. Syntaxin 10 co-localizes well with syntaxins 6 and 16 at the TGN in interphase cells, and appears to interact with both syntaxin 6 and 16 as evidenced by co-immunoprecipitation analyses. However, unlike syntaxin 6 and 16, neither syntaxin 10 antibodies nor its cytosolic domain inhibits endosome-TGN transport of shiga toxin. Syntaxin 16 knockdown with small interfering RNA (siRNA) affects the TGN localization of syntaxin 6 but not syntaxin 10, and clearly inhibits endosome-TGN transport. On the other hand, knockdown of syntaxin 10 expressions had no significant effect on the TGN localization of syntaxin 6 and 16, and did not inhibit endosome-TGN transport. Unlike syntaxin 16, syntaxin 10 does not interact specifically with Vps45, the Sec1/Munc18 (SM) family member at the TGN. On the other hand, syntaxin 10 reciprocally co-immunoprecipitated endosomal syntaxin 12/13, and knockdown of syntaxin 10 expressions affects the surface expression of transferrin receptor (TfR) and seems to induce the formation of an immobile TfR pool. Therefore, in spite of its co-localization and possible interaction with syntaxin 16, syntaxin 10 is not part of the syntaxin 16-based SNARE complex involved in endosome-TGN transport, and may have a hitherto unrecognized function in the TGN-endosome boundary.  相似文献   

9.
Syntaxin 10 is a soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) protein localized to the trans-Golgi network (TGN), where two other members of the syntaxin family, syntaxins 6 and 16, also reside. The role of syntaxin 10 in regulating TGN protein traffic is not yet defined. Syntaxin 10 co-localizes well with syntaxins 6 and 16 at the TGN in interphase cells, and appears to interact with both syntaxin 6 and 16 as evidenced by co-immunoprecipitation analyses. However, unlike syntaxin 6 and 16, neither syntaxin 10 antibodies nor its cytosolic domain inhibits endosome-TGN transport of shiga toxin. Syntaxin 16 knockdown with small interfering RNA (siRNA) affects the TGN localization of syntaxin 6 but not syntaxin 10, and clearly inhibits endosome-TGN transport. On the other hand, knockdown of syntaxin 10 expressions had no significant effect on the TGN localization of syntaxin 6 and 16, and did not inhibit endosome-TGN transport. Unlike syntaxin 16, syntaxin 10 does not interact specifically with Vps45, the Sec1/Munc18 (SM) family member at the TGN. On the other hand, syntaxin 10 reciprocally co-immunoprecipitated endosomal syntaxin 12/13, and knockdown of syntaxin 10 expressions affects the surface expression of transferrin receptor (TfR) and seems to induce the formation of an immobile TfR pool. Therefore, in spite of its co-localization and possible interaction with syntaxin 16, syntaxin 10 is not part of the syntaxin 16-based SNARE complex involved in endosome-TGN transport, and may have a hitherto unrecognized function in the TGN-endosome boundary.  相似文献   

10.
Membrane trafficking intermediates involved in the transport of proteins between the TGN and the lysosome-like vacuole in the yeast Saccharomyces cerevisiae can be accumulated in various vps mutants. Loss of function of Vps45p, an Sec1p-like protein required for the fusion of Golgi-derived transport vesicles with the prevacuolar/endosomal compartment (PVC), results in an accumulation of post-Golgi transport vesicles. Similarly, loss of VPS27 function results in an accumulation of the PVC since this gene is required for traffic out of this compartment.

The vacuolar ATPase subunit Vph1p transits to the vacuole in the Golgi-derived transport vesicles, as defined by mutations in VPS45, and through the PVC, as defined by mutations in VPS27. In this study we demonstrate that, whereas VPS45 and VPS27 are required for the vacuolar delivery of several membrane proteins, the vacuolar membrane protein alkaline phosphatase (ALP) reaches its final destination without the function of these two genes. Using a series of ALP derivatives, we find that the information to specify the entry of ALP into this alternative pathway to the vacuole is contained within its cytosolic tail, in the 13 residues adjacent to the transmembrane domain, and loss of this sorting determinant results in a protein that follows the VPS-dependent pathway to the vacuole.

Using a combination of immunofluorescence localization and pulse/chase immunoprecipitation analysis, we demonstrate that, in addition to ALP, the vacuolar syntaxin Vam3p also follows this VPS45/27-independent pathway to the vacuole. In addition, the function of Vam3p is required for membrane traffic along the VPS-independent pathway.

  相似文献   

11.
The GGAs (Golgi-localized, gamma ear-containing, ADP ribosylation factor-binding proteins) are multidomain proteins implicated in protein trafficking between the Golgi and endosomes. We examined whether the three mammalian GGAs act independently or together to mediate their functions. Using cryo-immunogold electron microscopy, the three GGAs were shown to colocalize within coated buds and vesicles at the trans-Golgi network (TGN) of HeLa cells. In vitro binding experiments revealed multidomain interactions between the GGAs, and chemical cross-linking experiments demonstrated that GGAs 1 and 2 form a complex on Golgi membranes. RNA interference of each GGA resulted in decreased levels of the other GGAs and their redistribution from the TGN to cytosol. This was associated with impaired incorporation of the cation-independent mannose 6-phosphate receptor into clathrin-coated vesicles at the TGN, partial redistribution of the receptor to endosomes, and missorting of cathepsin D. The morphology of the TGN was also altered. These findings indicate that the three mammalian GGAs cooperate to sort cargo and are required for maintenance of TGN structure.  相似文献   

12.
Bensen ES  Costaguta G  Payne GS 《Genetics》2000,154(1):83-97
Clathrin is involved in selective protein transport at the Golgi apparatus and the plasma membrane. To further understand the molecular mechanisms underlying clathrin-mediated protein transport pathways, we initiated a genetic screen for mutations that display synthetic growth defects when combined with a temperature-sensitive allele of the clathrin heavy chain gene (chc1-521) in Saccharomyces cerevisiae. Mutations, when present in cells with wild-type clathrin, were analyzed for effects on mating pheromone alpha-factor precursor maturation and sorting of the vacuolar protein carboxypeptidase Y as measures of protein sorting at the yeast trans-Golgi network (TGN) compartment. By these criteria, two classes of mutants were obtained, those with and those without defects in protein sorting at the TGN. One mutant with unaltered protein sorting at the TGN contains a mutation in PTC1, a type 2c serine/threonine phosphatase with widespread influences. The collection of mutants displaying TGN sorting defects includes members with mutations in previously identified vacuolar protein sorting genes (VPS), including the dynamin family member VPS1. Striking genetic interactions were observed by combining temperature-sensitive alleles of CHC1 and VPS1, supporting the model that Vps1p is involved in clathrin-mediated vesicle formation at the TGN. Also in the spectrum of mutants with TGN sorting defects are isolates with mutations in the following: RIC1, encoding a product originally proposed to participate in ribosome biogenesis; LUV1, encoding a product potentially involved in vacuole and microtubule organization; and INP53, encoding a synaptojanin-like inositol polyphosphate 5-phosphatase. Disruption of INP53, but not the related INP51 and INP52 genes, resulted in alpha-factor maturation defects and exacerbated alpha-factor maturation defects when combined with chc1-521. Our findings implicate a wide variety of proteins in clathrin-dependent processes and provide evidence for the selective involvement of Inp53p in clathrin-mediated protein sorting at the TGN.  相似文献   

13.
Mannose 6-phosphate receptors (MPRs) deliver newly synthesized lysosomal enzymes to endosomes and then recycle to the Golgi. MPR recycling requires Rab9 GTPase; Rab9 recruits the cytosolic adaptor TIP47 and enhances its ability to bind to MPR cytoplasmic domains during transport vesicle formation. Rab9-bearing vesicles then fuse with the trans-Golgi network (TGN) in living cells, but nothing is known about how these vesicles identify and dock with their target. We show here that GCC185, a member of the Golgin family of putative tethering proteins, is a Rab9 effector that is required for MPR recycling from endosomes to the TGN in living cells, and in vitro. GCC185 does not rely on Rab9 for its TGN localization; depletion of GCC185 slightly alters the Golgi ribbon but does not interfere with Golgi function. Loss of GCC185 triggers enhanced degradation of mannose 6-phosphate receptors and enhanced secretion of hexosaminidase. These data assign a specific pathway to an interesting, TGN-localized protein and suggest that GCC185 may participate in the docking of late endosome-derived, Rab9-bearing transport vesicles at the TGN.  相似文献   

14.
Phogrin (IA2-beta) is an integral membrane protein of dense-core vesicles in neuroendocrine cells. We have examined the recycling of endogenous phogrin following exocytosis in insulin secreting Min6 beta-cells by monitoring stimulus dependent-uptake of antibodies directed against the lumenal domain of the protein. While low levels of internalized phogrin accumulated in LAMP1-positive lysosomes, more than 35% of internalized phogrin recycled back to an insulin-positive compartment and could return to the cell surface during a second exocytic stimulation. The recycling phogrin transited a syntaxin 6-positive compartment but did not appear to go through the TGN38-positive trans Golgi network. The results suggest a model in which secretory membrane components can recycle from the endosomal system to immature secretory granules without interaction with the major portion of the TGN.  相似文献   

15.
Retrograde transport pathways from early/recycling endosomes to the trans-Golgi network (TGN) are poorly defined. We have investigated the role of TGN golgins in retrograde trafficking. Of the four TGN golgins, p230/golgin-245, golgin-97, GCC185, and GCC88, we show that GCC88 defines a retrograde transport pathway from early endosomes to the TGN. Depletion of GCC88 in HeLa cells by interference RNA resulted in a block in plasma membrane-TGN recycling of two cargo proteins, TGN38 and a CD8 mannose-6-phosphate receptor cytoplasmic tail fusion protein. In GCC88-depleted cells, cargo recycling was blocked in the early endosome. Depletion of GCC88 dramatically altered the TGN localization of the t-SNARE syntaxin 6, a syntaxin required for endosome to TGN transport. Furthermore, the transport block in GCC88-depleted cells was rescued by syntaxin 6 overexpression. Internalized Shiga toxin was efficiently transported from endosomes to the Golgi of GCC88-depleted cells, indicating that Shiga toxin and TGN38 are internalized by distinct retrograde transport pathways. These findings have identified an essential role for GCC88 in the localization of TGN fusion machinery for transport from early endosomes to the TGN, and they have allowed the identification of a retrograde pathway which differentially selects TGN38 and mannose-6-phosphate receptor from Shiga toxin.  相似文献   

16.
The trans-Golgi network (TGN) is the major sorting station in the secretory pathway of all eukaryotic cells. How the TGN sorts proteins and lipids to generate the enrichment of sphingolipids and sterols at the plasma membrane is poorly understood. To address this fundamental question in membrane trafficking, we devised an immunoisolation procedure for specific recovery of post-Golgi secretory vesicles transporting a transmembrane raft protein from the TGN to the cell surface in the yeast Saccharomyces cerevisiae. Using a novel quantitative shotgun lipidomics approach, we could demonstrate that TGN sorting selectively enriched ergosterol and sphingolipid species in the immunoisolated secretory vesicles. This finding, for the first time, indicates that the TGN exhibits the capacity to sort membrane lipids. Furthermore, the observation that the immunoisolated vesicles exhibited a higher membrane order than the late Golgi membrane, as measured by C-Laurdan spectrophotometry, strongly suggests that lipid rafts play a role in the TGN-sorting machinery.  相似文献   

17.
《The Journal of cell biology》1994,126(5):1157-1172
To investigate the mechanisms of membrane protein localization to the Golgi complex, we have examined the intracellular trafficking of epitope-tagged forms of the mammalian endopeptidase, furin, in stably transformed rat basophilic leukemia cells. Our studies show that furin is predominantly localized to the trans-Golgi network (TGN) at steady state, with smaller amounts present in intracellular vesicles. Biochemical and morphological analyses reveal that furin is progressively delivered to a lysosomal compartment, where it is degraded. Analyses of furin deletion mutants and chimeric proteins show that the cytoplasmic domain is both necessary and sufficient for localization to the TGN in various cell types. Interestingly, deletion of most of the cytoplasmic domain of furin results in a molecule that is predominantly localized to intracellular vesicles, some of which display characteristics of lysosomes. To a lesser extent, the cytoplasmically deleted molecule is also localized to the plasma membrane. These observations suggest the existence of an additional determinant for targeting to the endosomal/lysosomal system within the lumenal and/or transmembrane domains of furin. Thus, the overall pattern of trafficking and steady state localization of furin are determined by targeting information contained within more than one region of the molecule.  相似文献   

18.
The Sec1/Munc18 (SM) family of proteins is thought to impart compartmental specificity to vesicle fusion reactions. Here we report characterization of Vps33p, an SM family member previously thought to act exclusively at the vacuolar membrane with the vacuolar syntaxin Vam3p. Vacuolar morphology of vps33Delta cells resembles that of cells lacking both Vam3p and the endosomal syntaxin Pep12p, suggesting that Vps33p may function with these syntaxins at the vacuole and the endosome. Consistent with this, vps33 mutants secrete the Golgi precursor form of the vacuolar hydrolase CPY into the medium. We also demonstrate that Vps33p acts at other steps, for vps33 mutants show severe defects in endocytosis at the late endosome. At the endosome, Vps33p and other class C members exist as a complex with Vps8p, a protein previously known to act in transport between the late Golgi and the endosome. Vps33p also interacts with Pep12p, a known interactor of the SM protein Vps45p. High copy PEP7/VAC1 suppresses vacuolar morphology defects of vps33 mutants. These findings demonstrate that Vps33p functions at multiple trafficking steps and is not limited to action at the vacuolar membrane. This is the first report demonstrating the involvement of a single syntaxin with two SM proteins at the same organelle.  相似文献   

19.
The roles of the components of the Sec34p protein complex in intracellular membrane trafficking, first identified in the yeast Saccharomyces cerevisiae, have yet to be characterized in higher eukaryotes. We cloned a human cDNA whose predicted amino acid sequence showed 41% similarity to yeast Sec34p with homology throughout the entire coding region. Affinity-purified antibodies raised against the human SEC34 protein (hSec34p) recognized a cellular protein of 94 kDa in both soluble and membrane fractions. Like yeast Sec34p, cytosolic hSec34p migrated with an apparent molecular mass of 300 kDa on a glycerol velocity gradient, suggesting that it is part of a protein complex. Immunofluorescence microscopy localized hSec34p to the Golgi compartment in cells of all species examined, where it co-localized well with the cis/medial Golgi marker membrin and partially co-localized with cis-Golgi network marker p115 and trans-Golgi marker TGN38. The co-localization with membrin was maintained at 15 degrees C and after microtubule depolymerization with nocodazole. During transport of the tsO45 vesicular stomatitis virus G protein through the Golgi, there was significant overlap with the hSec34p compartment. Green fluorescent protein-hSec34 expressed in HeLa cells was restricted to Golgi cisternae, and its membrane association was sensitive to brefeldin A treatment. Taken together, our findings indicate that hSec34p is part of a peripheral membrane protein complex localized on cis/medial Golgi cisternae where it may participate in tethering intra-Golgi transport vesicles.  相似文献   

20.
Sec6/8 complex regulates delivery of exocytic vesicles to plasma membrane docking sites, but how it is recruited to specific sites in the exocytic pathway is poorly understood. We identified an Sec6/8 complex on trans-Golgi network (TGN) and plasma membrane in normal rat kidney (NRK) cells that formed either fibroblast- (NRK-49F) or epithelial-like (NRK-52E) intercellular junctions. At both TGN and plasma membrane, Sec6/8 complex colocalizes with exocytic cargo protein, vesicular stomatitis virus G protein (VSVG)-tsO45. Newly synthesized Sec6/8 complex is simultaneously recruited from the cytosol to both sites. However, brefeldin A treatment inhibits recruitment to the plasma membrane and other treatments that block exocytosis (e.g., expression of kinase-inactive protein kinase D and low temperature incubation) cause accumulation of Sec6/8 on the TGN, indicating that steady-state distribution of Sec6/8 complex depends on continuous exocytic vesicle trafficking. Addition of antibodies specific for TGN- or plasma membrane-bound Sec6/8 complexes to semiintact NRK cells results in cargo accumulation in a perinuclear region or near the plasma membrane, respectively. These results indicate that Sec6/8 complex is required for several steps in exocytic transport of vesicles between TGN and plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号