首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Giardia synthesizes UDP-GalNAc during cyst wall formation (encystment) via a pathway of inducible enzymes similar to that used to synthesize chitin or peptidoglycan and that includes the UTP-requiring UDP-N-acetylglucosamine pyrophosphorylase. Although it has never been reported as a regulatory enzyme in any system studied to date, kinetic data including Hill plots demonstrate clearly that UDP-N-acetylglucosamine pyrophosphorylase activity, purified from encysting Giardia, is allosterically activated anabolically by physiological levels of glucosamine 6-phosphate (3 microm). Capillary electrophoresis demonstrates that within 24 h after trophozoites are induced to encyst, the level of glucosamine 6-phosphate increases 3-fold over that of non-encysting cells and that by 48 h into encystment the level of glucosamine 6-phosphate has decreased to non-encysting levels or below. UDP-N-acetylglucosamine pyrophosphorylase protein is present constitutively in encysting as well as non-encysting cells. UDP-N-acetylglucosamine pyrophosphorylase immunoaffinity purified from encysting and non-encysting cells exhibited the same molecular weight, amino acid composition, and circular dichroism spectra. Moreover, regardless of whether the enzyme came from encysting or non-encysting cells, the change in its circular dichroism spectra and up to a 6-fold increase in its specific activity anabolically were due to its activation with glucosamine 6-phosphate. Thus, the data support the idea that UDP-N-acetylglucosamine pyrophosphorylase is a major regulatory point in amino sugar synthesis in encysting Giardia and that its allosteric anabolic activation may shift the equilibrium of this pathway toward UDP-GalNAc synthesis.  相似文献   

2.
The stability of AMP: pyrophosphate phosphoribosyltransferases (AMP pyrophosphorylase) from erythrocytes of normal subjects and patients with Lesch-Nyhan disease has been studied. Storage of intact cells, but not lysates, led to increased heat stability of the normal but not the Lesch-Nyhan enzyme. Passage of lysates of stored normal erythrocytes through Sephadex gave a further increase in the heat stability of AMP pyrophosphorylase. Boiled extracts of stored erythrocytes contained a potent destabilizer of the enzyme which was identified as hypoxanthine. A heat stable form of AMP pyrophosphorylase was generated by pre-incubation with 5-phosphoribosyl i-pyrophosphate, a substrate. These observations suggest that the level of AMP pyrophosphorylase in the erythrocyte may be controlled by the relative concentrations of stabilizer and destabilizer.  相似文献   

3.
Potato branching enzyme, a key enzyme in the biosynthesis of starch, was localized in amyloplasts in starch-storage cells of potato (Solanum tuberosum L.) with the use of immunogold electron microscopy. Branching enzyme was found in the amyloplast stroma, concentrated at the interface of the stroma and the surface of the starch granule. ADP-glucose pyrophosphorylase, a key regulatory enzyme in starch synthesis, was localized for comparison to exclude possible artifacts. ADP-glucose pyrophosphorylase, in contrast with branching enzyme, proved to be evenly distributed throughout the stroma. Branching enzyme also appears to be present in a membrane-bounded inclusion body in the stroma, whereas ADP-glucose pyrophosphorylase is not. The presence of branching enzyme predominantly at the surface of the starch granule indicates that branching takes place at that surface and not throughout the amyloplast stroma.  相似文献   

4.
A A Iglesias  Y Y Charng  S Ball    J Preiss 《Plant physiology》1994,104(4):1287-1294
ADP-glucose pyrophosphorylase (ADP-Glc PPase) from Chlamydomonas reinhardtii cells was purified over 2000-fold to a specific activity of 81 units/mg protein, and its kinetic and regulatory properties were characterized. Inorganic orthophosphate and 3-phosphoglycerate were the most potent inhibitor and activator, respectively. Rabbit antiserum raised against the spinach leaf ADP-Glc PPase (but not the one raised against the enzyme from Escherichia coli) inhibited the activity of the purified algal enzyme, which migrated as a single protein band in native polyacrylamide gel electrophoresis. Two-dimensional and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicate that the enzyme from C. reinhardtii is composed of two subunits with molecular masses of 50 and 53 kD, respectively. The molecular mass of the native enzyme is estimated to be 210 kD. Antisera raised against the spinach leaf holoenzyme and against the 51-kD spinach subunit cross-reacted with both subunits of the algal ADP-Glc PPase in immunoblot hybridization, but the cross-reaction was stronger for the 50-kD algal subunit than for the 53-kD subunit. No cross-reaction was observed when antiserum raised against the spinach leaf pyrophosphorylase 54-kD subunit was used. These results suggest that the ADP-Glc PPase from C. reinhardtii is a heterotetrameric protein, since the enzyme from higher plants and its two subunits are structurally more related to the small subunit of the spinach leaf enzyme than to its large subunit. This information is discussed in the context of the possible evolutionary changes leading from the bacterial ADP-Glc PPase to the cyanobacterial and higher plant enzymes.  相似文献   

5.
The cytoplasm of cells infected with EMC virus contains new structures which possess activity of the nuclear enzyme NAD pyrophosphorylase [14]. An attempt was made to understand the mode of formation of these structures in the infected cell. It was found that soluble NAD pyrophosphorylase manifests a strong affinity for cytoplasmic ribosomes, sedimenting at 90S. When cytoplasmic ribosomes were dissociated to the 60S and 40S subunits, the enzyme was found to be adsorbed only to the 60S unit. In extracts of rat liver nuclei, NAD pyrophosphorylase is associated with 35S particles, composed mainly of protein and DNA. The bond between enzyme and particle is of a loose nature. When ribosomes are mixed with 35S nuclear particles, most of the enzyme activity is transferred from the nuclear particles to the ribosomes, thus forming particles with an average sedimentation coefficient of 90S. Similar structures are obtained when either soluble NAD pyrophosphorylase or 35S nuclear particles are mixed with preparations of cytoplasm isolated from non-infected cells. The results of these experiments suggest that the 90S cytoplasmic structures found in virus-infected cells could result from an association between either free or particle-bound NAD pyrophosphorylase with cytoplasmic ribosomes.  相似文献   

6.
A procedure for screening large numbers of clones for an enzyme activity was used to isolate mutations which affect UDPG pyrophosphorylase activity (EC 2.7.7.9) in the cellular slime mold Dictyostelium discoideum. Five strains were recovered which have little or no UDPG pyrophosphorylase activity. Ten other strains were found which have significant activity in vivo which is rapidly inactivated upon cell lysis. These strains have permitted us to evaluate the role of UDPG pyrophosphorylase during growth and development. The enzyme affects the growth rate of the cells but is not essential for growth. However, during development the lack of enzyme activity leads to cell death and lysis. Strains which lack UDPG pyrophosphorylase accomplish early developmental events but are unable to culminate. However, certain biochemical and cytological differentiations associated with late stages were observed.  相似文献   

7.
1. The activity of NAD pyrophosphorylase is lower in nuclei isolated from regenerating rat liver than in normal nuclei, and this is due to leakage of the enzyme from the nuclei during the isolation. 2. The NAD pyrophosphorylase activity is lower in liver nuclei from newborn rats, and from rats on a protein-free diet, but no leakage occurs in these cases. 3. Poisoning with alpha-amanitin brings about a transient enhancement of NAD pyrophosphorylase activity in mouse liver nuclei. 4. No changes of enzyme activity were observed after 72hr. starvation, administration of actinomycin D or infection with MHV3 virus.  相似文献   

8.
A positive method is proposed for selecting Pichia guilliermondii mutants with derepressed GTP cyclohydrolase. Mutants with the incompletely blocked gene RIB2 were used as parent strains; these can grow in a medium without riboflavin (RF) only if the enzyme is derepressed as the result of iron deficiency in cells. Strains growing in a medium without RF at the optimal supply of cells with iron were selected as regulatory mutants. The mutants accumulated 6,7-dimethylpterin in high concentrations and a small amount of RF in the medium and in the cells. The activity of GTP cyclohydrolase rather than that of RF synthase increased in the mutants; the activity of RF kinase and FAD pyrophosphorylase was not elevated. Hybrids produced by crossing the regulatory mutants with wild type strains did not accumulate 6,7-dimethylpterin in the medium and the activity of the GTP cyclohydrolase did not increase; this is indicative of the negative regulation for the expression of the structural gene for GTP cyclohydrolase. The authors propose a model for the regulation of GTP cyclohydrolase and RF synthase at the gene level involving iron ions as a corepressor.  相似文献   

9.
Phosphoenolpyruvate-UDP-N-acetylglucosamine enolpyruvyltransferase, UDP-N-acetylglucosamine pyrophosphorylase and CDP-glycerol pyrophosphorylase activities were demonstrated in soluble extracts from Bacillus licheniformis A.T.C.C. 9945. The effect of various nucleotides, sugar nucleotides and sugar phosphates on the nucleotide pyrophosphorylases was investigated. UDP-N-acetylglucosamine pyrophosphorylase was inhibited by UDP-MurAc-pentapeptide (UDP-N-acetylmuramyl-l-alanyl-d-glutamyl- meso-diaminopimelyl-d-alanyl -d-alanine) and CDP-glycerol. CDP-glycerol pyrophosphorylase was inhibited by UDP-MurAc-pentapeptide and stimulated by UDP-N-acetylglucosamine. Interaction between a precursor of one cell-wall polymer and an enzyme involved in the synthesis of a precursor of a second polymer has therefore been demonstrated. The possible role of such interaction in the control of bacterial cell-wall synthesis is discussed. Of the other compounds investigated mono- and di-nucleotides were shown to be inhibitory, indicating that nucleotide pyrophosphorylase activities may be influenced by the energy charge of the cell.  相似文献   

10.
Synthesis of granulose was investigated in 15 solvent-producing Clostridium strains. Only one of the strains did not produce granulose. The structure of granulose in Clostridium acetobutylicum P262 consisted of a high-molecular-weight polyglucan containing only (1-->4) linked d-glucopyranose units. Biosynthesis of granulose in C. acetobutylicum P262 was dependent on ADPglucose pyrophosphorylase, and granulose synthase and mutants defective in granulose accumulation lacked either one or both enzyme activities. Granulose-positive revertants exhibited both enzyme activities. ADPglucose pyrophosphorylase and granulose synthase were not subject to allosteric control by metabolites. Granulose accumulation and the biosynthetic enzyme activities were initiated immediately before the pH breakpoint and were detected in cells only at the end of the exponential growth phase. Granulose accumulation did not occur under conditions of nitrogen limitation, excess carbon, or excess energy.  相似文献   

11.
Cultures of carrot (Daucus carota L.) in a medium without added 2,4-dichlorophenoxyacetic acid were separated into fractions of embryos at different stages of development (large globular and heart, torpedo, and germinating) and nonembryogenic cells. The average starch content per cell in these fractions was similar. However, due to the smaller sizes of the cells of the embryos relative to the nonembryogenic cells, starch content per weight of tissue was higher in the embryos. The ADP-glucose pyrophosphorylase activity per cell in the nonembryogenic cells was double that of the embryo cells. Furthermore, the ratio of ADP-glucose pyrophosphorylase to starch was over 2-fold higher in the nonembryogenic cells, indicating that starch content is not simply determined by ADP-glucose pyrophosphorylase levels. ADP-glucose pyrophosphorylase activity of all culture fractions was directly proportional to the level of a single 50 kilodalton polypeptide detected by immunoblot analysis, using antiserum raised to the purified spinach leaf enzyme. In the same immunoblot analysis, novel polypeptides of 63 and 100 kilodalton were detected in embryos but were absent from nonembryogenic cells. This is one of the few reported examples of specific proteins which differentially accumulate in embryos and nonembryogenic cells.  相似文献   

12.
The subcellular localization of ADPglucose pyrophosphorylase, a key regulatory enzyme in starch biosynthesis, was determined in developing potato tuber cells by immunocytochemical localization techniques at the light microscopy level. Specific labeling of ADPglucose pyrophosphorylase by either immunofluorescence or immunogold followed by silver enhancement was detected only in the amyloplasts and indicates that this enzyme is located exclusively in the amyloplasts in developing potato tuber cells. Labeling occurred on the starch grains and, in some instances, specific labeling patterns were evident which may be related to sites active in starch deposition.  相似文献   

13.
Uridine diphosphoglucose pyrophosphorylase (UTP:α-d-glucose-1-phosphate uridylyltransferase, EC 2.7.7.9) is a developmentally regulated enzyme in Dictyostelium discoideum essential for the completion of its life cycle. During vegetative growth and the early stages of differentiation the specific activity of the enzyme remains constant. However, it increases threefold by the time fruiting bodies are formed. We have identified a developmentally specific form of uridine diphosphoglucose pyrophosphorylase, altered in both isoelectric point and apparent molecular weight, by resolving crude extracts of cells on two-dimensional denaturing polyacrylamide gels, renaturing the protein in situ, and localizing active enzyme with a histochemical stain. Quantitation of the amount of enzyme stain deposited in the gels shows that the activity in the new form can account for the increase observed in development. The appearance of the developmental form of the enzyme requires de novo protein synthesis since it is inhibited by cycloheximide. Immunoprecipitation of uridine diphosphoglucose pyrophosphorylase from in vivo and in vitro synthesized proteins has revealed heterogeneity not previously detected in the enzyme from both vegetative and developed cells. Two different proteins are synthesized in vitro by mRNA from either vegetative or developed cells. These two proteins are also found in vivo in developed cells. Only one of the two proteins is found in vegetative cells. Enzyme protein synthesized in vivo appears to be modified after translation. Therefore, the observed heterogeneity in uridine diphosphoglucose pyrophosphorylase found in vivo appears due both to post-translational modification and to synthesis of two polypeptides from one or more species of mRNA.  相似文献   

14.
UMP pyrophosphorylase (EC 2.4.2.9, UMP:pyrophosphate phosphoribosyltransferase) was purified approximately 85-fold from exponentially growing cells of Tetrahymena pyriformis GL-7. It was found to have a molecular weight of 36,000, and was active over a broad pH range, with an optimum at 7.5. The enzyme exhibited a temperature optimum at 40 °C, above which irreversible inactivation began to occur. The apparent Km values for uracil and phosphoribosyl pyrophosphate (PRPP) were 0.4 and 6.9 m, respectively. The pyrophosphorylase exhibited a pyrimidine base specificity for uracil, although 5-fluorouracil was utilized by the enzyme. Neither cytosine, orotic acid, nor 6-azauracil competed with uracil for the enzyme or inhibited the production of UMP from uracil and PRPP. Although most triphosphates had little effect on pyrophosphorylase activity, UTP and dUTP, each at a concentration of 1 mm, depressed UMP formation by 86 and 59%, respectively. Thus, UMP pyrophosphorylase may be sensitive to feedback inhibition by the product of the pathway it initiates. UMP pyrophosphorylase specific activity in extracts of Tetrahymena grown in a medium containing uracil as the sole pyrimidine source was threefold higher than that in extracts of cells grown on uridine or UMP.  相似文献   

15.
An Escherichia coli B mutant, SG14, accumulates glycogen at 28% the rate observed for the parent E. coli B strain. The glycogen accumulated in the mutant is similar to the glycogen isolated from the parent strain with respect to alpha- and beta-amylosis, chain length determination, and I2-complex absorption spectra. The SG14 mutant contains normal glycogen synthase and branching enzyme activity but has an ADP-glucose pyrophosphorylase with altered kinetic and allosteric properties. The mutant enzyme has been partially purified and requires a 12-fold higher concentration of fructose-P2 or a 26 fold higher concentration of pyridoxal-P than the parent type enzyme for 50% of maximal allosteric activation. TPNH, an effective activator of the E. coli B enzyme, does not activate the SG14 ADP-glucose pyrophosphorylase. Other studies show that for the SG14 enzyme the concentrations of ATP and Mg2+ in the synthesis direction and the concentrations of ADP-glucose and PPi in the pyrophosphorolysis direction required to give 50% of maximal activity are 3- to 6-fold higher than those observed for the parent E. coli B ADP-glucose pyrophosphorylase. The Km for alpha-glucose-1-P at saturating to half-saturating concentrations of the activator, fructose-P2, are about the same for both enzymes. However, in the presence of no activator, the concentration of glucose-1-P required for half-maximal activity is about 1.8-fold higher for the SG14 enzyme. Thus SG14 ADP-glucose pyrophosphorylase has lower affinity for its substrates than does the parent enzyme. Previously the SG14 enzyme had been shown to be less sensitive to inhibition by 5'-AMP than the E. coli B enzyme. This ensensitivity to inhibition renders the SG14 enzyme less responsive to energy charge than the E. coli B ADP-glucose pyrophosphorylase. On the basis of the above results and taking into account the reported concentrations of fructose-P2, of pyridoxal-P, and of the adenine nucleotide pool and its energy charge in E. coli strains, it is concluded that furctose-P2 is the important physiological allosteric activator of E. coli ADP-glucose pyrophosphorylase. Furthermore, the 1.7-fold increased rate of accumulation of glycogen observed when E. coli B or SG14 shifts from exponential phase to stationary phase of growth in nitrogen-limiting media can be accounted for by the 2.4-fold increase of the levels of the glycogen biosynthetic enzymes, glycogen synthase, and ADP-glucose pyrophosphorylase. Thus both allosteric regulation of the ADP-glucose pyrophosphorylase as well as the genetic regulation of the biosynthesis of the glycogen biosynthetic enzymes are involved in the regulation of glycogen accumulation in E. coli B.  相似文献   

16.
A simple enzymatic method is described for the measurement of NMN pyrophosphorylase in tissue homogenates at levels as low as 10(-12) to 10(-9) mol. The product, nicotinamide mononucleotide, is converted to NAD using NAD pyrophosphorylase and the NAD is quantified in an enzymatic cycling assay. The enzyme described here is stimulated more at low concentrations of Mn2+ than Mg2+. ATP is not required for NMN pyrophosphorylase activity; the reaction is neither stimulated nor inhibited by ATP concentrations as high as 3 mM. The enzyme is totally dependent on phosphoribosylpyrophosphate. The method is highly reproducible in all tissues examined. Various cell lines and tissues from mouse were analyzed for NMN pyrophosphorylase.  相似文献   

17.
A method is described for the preparation of spheroplasts in high yield from Schizosaccharomyces pombe, by treating cells grown in the presence of glucose and deoxyglucose with snail digestive enzymes. Gentle disruption of such spheroplasts yielded homogenates, from which marker enzymes for nuclei (NAD pyrophosphorylase) and mitochondria (cytochrome c oxidase activity and spectroscopically-detectable cytochromes a + a3) could be quantitatively sedimented by low-speed centrifugation. In contrast to previous findings with Saccharomyces carlsbergensis, cytochrome c oxidase and another mitochondrial enzyme, succinate dehydrogenase, were completely sedimentable by zonal centrifugation in sucrose gradients in the presence of either 2 mM-MgCl2 or 0-4 mM-EDTA. Mitochondria were apparently smaller and of lower buoyant density in gradients containing EDTA. The bulk of the total units of malate dehydrogenase and NADH; cytochrome c oxidoreductase sedimented with mitochondria, whereas NADPH: cytochrome c oxidoreductase was located in fractions containing no mitochondria. The distributions of mitochondrial enzymes were heterogeneous in populations of mitochondria separated on the basis of size or density. The possible origins of mitochondrial heterogeneity in extracts of S. pombe are discussed with special reference to changes in the enzyme activities of cells during the cell cycle.  相似文献   

18.
ADPglucose pyrophosphorylase level and mechanisms regulating its activity were studied in cucumber plants infected with the cucumber mosaic virus at the stage of chronic infection. Studies carried out with partially purified preparations of the enzyme have shown that there was no substantial difference in the regulatory influence of the ratio 3-PGA/P1, or in the number of binding sites of the effectors on the enzyme, but that the virus infection reduced the level of the enzyme in the tissues to 74% of the control and the 3-PGA/P1 ratio to one half which resulted in a further decrease in ADPglucose pyrophosphorylase activity. In crude homogenate prepared from diseased plants, activity of the enzyme was reduced to 42% of the healthy control. The level of UDPglucose pyrophosphorylase was three times higher in cucumber leaf tissues than the level of ADPglucose pyrophosphorylase which was inhibited by both 3-PGA and P1. Inhibitory effects of both these effectors were cumulated. The enzyme isolated from healthy plants was inhibited by inorganic phosphate more strongly than the enzyme isolated from diseased plants. UDPglucose pyrophosphorylase activity was increased in crude homogenate of diseased plants to 127% of the healthy control when the level of the enzyme was the same in the tissues of both healthy and diseased plants which was presumably connected with the enhanced rate of sucrose catabolism.  相似文献   

19.
UDP-glucose pyrophosphorylase from potato tuber was purified 243-fold to a nearly homogeneous state with a recovery of 30%. The purified enzyme utilized UDP-glucose, but not ADP-glucose, as the substrate, and was not activated by 3-phosphoglyceric acid. Product inhibition studies revealed the sequential binding of UDP-glucose and MgPPi and the sequential release of glucose-1-phosphate and MgUTP, in this order. Analyses of the effects of Mg2+ on the enzyme activity suggest that the MgPPi and MgUTP complexes are the actual substrates for the enzyme reaction, and that free UTP acts as an inhibitor. The enzyme exists probably as the monomer of an approximately 50-kDa polypeptide with a blocked amino terminus. For structural comparison, 29 peptides isolated from a tryptic digest of the S-carboxymethylated enzyme were sequenced. The results show that the potato tuber enzyme is homologous to UDP-glucose pyrophosphorylase from slime mold, but not to ADP-glucose pyrophosphorylase from Escherichia coli, and provide structural evidence that UDP-glucose and ADP-glucose pyrophosphorylase are two different protein entities.  相似文献   

20.
ADP-glucose pyrophosphorylase is a key regulatory enzyme in starch synthesis in most plant tissues. Unlike the allosteric regulatory dependent properties of the leaf enzyme, the enzymes from non-photosynthetic tissues exhibit varying levels of sensitivity to allosteric regulation, a behavior which may be an inherent property of the enzyme or a product of post-translational modification. As partial proteolysis of the holoenzyme may account for the wide variation of allosteric regulatory behavior exhibited by enzymes from non-photosynthetic tissues, small N- and C-terminal peptide deletions were made on either the potato large and small subunit and co-expressed with the counterpart wild-type subunit in Escherichia coli. Removal of the putative carboxy-terminal allosteric binding region from either subunit type results in an abolishment of enzyme formation indicating that the carboxy terminus of each subunit type is essential for proper subunit folding and/or enzyme assembly as well as its suggested role in allosteric regulation. Removal of a small 10 amino acid peptide from the N-terminus of the small subunit increased its resistance to the allosteric inhibitor Pi as well as its sensitivity to heat treatment. Likewise, removal of the corresponding peptide (17 residues) at the N-terminus of the large subunit also increased its resistance towards Pi inhibition but, in addition, increased its sensitivity to 3-PGA activation. Deletion of an additional 11 residues reversed these changes in allosteric properties but at the expense of a reduced catalytic turnover rate. Combined, these results indicate that the N- and C-terminal regions are essential for the proper catalytic and allosteric regulatory properties of the potato ADP-glucose pyrophosphorylase. The possible significance of these results on the observed insensitivity to effector molecules by ADP-glucose pyrophosphorylases from other non-photosynthetic tissues is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号