首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the circular dichroism spectral transients associated with the light-induced reversible reorganizations in chirally organized macrodomains of pea thylakoid membranes and loosely stacked lamellar aggregates of the main chlorophyll a/b light harvesting complexes (LHCII) isolated from the same membranes. These reorganizations have earlier been assigned to originate from a thermo-optic effect. According to the thermo-optic mechanism, fast local thermal transients due to dissipation of the excess excitation energy induce elementary structural changes in the close vicinity of the dissipation [Cseh et al. (2000) Biochemistry 39: 15250–15257]. Here we show that despite the markedly different CD spectra in the dark, the transient (light-minus-dark) CD spectra associated with the structural changes induced by high light in thylakoids and LHCII are virtually indistinguishable. This, together with other close similarities between the two systems, strongly suggests that the gross short-term, thermo-optically induced structural reorganizations in the membranes occur mainly, albeit probably not exclusively, in the LHCII-only domains [Boekema et al. (2000) J Mol Biol 301: 1123–1133]. Hence, LHCII-only domains might play an important role in light adaptation and photoprotection of plants.  相似文献   

2.
The thermo-optic mechanism in thylakoid membranes was earlier identified by measuring the thermal and light stabilities of pigment arrays with different levels of structural complexity [Cseh, Z., et al. (2000) Biochemistry 39, 15250-15257]. (According to the thermo-optic mechanism, fast local thermal transients, arising from the dissipation of excess, photosynthetically not used, excitation energy, induce elementary structural changes due to the "built-in" thermal instabilities of the given structural units.) The same mechanism was found to be responsible for the light-induced trimer-to-monomer transition in LHCII, the main chlorophyll a/b light-harvesting antenna of photosystem II (PSII) [Garab, G., et al. (2002) Biochemistry 41, 15121-15129]. In this paper, differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy on thylakoid membranes of barley and pea are used to correlate the thermo-optically inducible structural changes with well-discernible calorimetric transitions. The thylakoid membranes exhibited six major DSC bands, with maxima between about 43 and 87 degrees C. The heat sorption curves were analyzed both by mathematical deconvolution of the overall endotherm and by a successive annealing procedure; these yielded similar thermodynamic parameters, transition temperature and calorimetric enthalpy. A systematic comparison of the DSC and CD data on samples with different levels of complexity revealed that the heat-induced disassembly of chirally organized macrodomains contributes profoundly to the first endothermic event, a weak and broad DSC band between 43 and 48 degrees C. Similarly to the main macrodomain-associated CD signals, this low enthalpy band could be diminished by prolonged photoinhibitory preillumination, the extent of which depended on the temperature of preillumination. By means of nondenaturing, "green" gel electrophoresis and CD fingerprinting, it is shown that the second main endotherm, around 60 degrees C, originates to a large extent from the monomerization of LHCII trimers. The main DSC band, around 70 degrees C, which exhibits the highest enthalpy change, and another band around 75-77 degrees C relate to the dismantling of LHCII and other pigment-protein complexes, which under physiologically relevant conditions cannot be induced by light. The currently available data suggest the following sequence of events of thermo-optically inducible changes: (i) unstacking of membranes, followed by (ii) lateral disassembly of the chiral macrodomains and (iii) monomerization of LHCII trimers. We propose that thermo-optical structural reorganizations provide a structural flexibility, which is proportional to the intensity of the excess excitation, while for their localized nature, the structural stability of the system can be retained.  相似文献   

3.
The main chlorophyll a/b light-harvesting complex of photosystem II, LHCIIb, has earlier been shown to be capable of undergoing light-induced reversible structural changes and chlorophyll a fluorescence quenching in a way resembling those observed in granal thylakoids when exposed to excess light [Barzda, V., et al. (1996) Biochemistry 35, 8981-8985]. The nature and mechanism of this unexpected structural flexibility has not been elucidated. In this work, by using density gradient centrifugation and nondenaturing green gel electrophoresis, as well as absorbance and circular dichroic spectroscopy, we show that light induces a significant degree of monomerization, which is in contrast with the preferentially trimeric organization of the isolated complexes in the dark. Monomerization is accompanied by a reversible release of Mg ions, most likely from the outer loop of the complexes. These data, as well as the built-in thermal and light instability of the trimeric organization, are explained in terms of a simple theoretical model of thermo-optic mechanism, effect of fast thermal transients (local T-jumps) due to dissipated photon energies in the vicinity of the cation binding sites, which lead to thermally assisted elementary structural transitions. Disruption of trimers to monomers by excess light is not confined to isolated trimers and lamellar aggregates of LHCII but occurs in photosystem II-enriched grana membranes, intact thylakoid membranes, and whole plants. As indicated by differences in the quenching capability of trimers and monomers, the appearance of monomers could facilitate the nonphotochemical quenching of the singlet excited state of chlorophyll a. The light-induced formation of monomers may also be important in regulated proteolytic degradation of the complexes. Structural changes driven by thermo-optic mechanisms may therefore provide plants with a novel mechanism for regulation of light harvesting in excess light.  相似文献   

4.
Cseh Z  Rajagopal S  Tsonev T  Busheva M  Papp E  Garab G 《Biochemistry》2000,39(49):15250-15257
In chloroplast thylakoid membranes, chiral macrodomains, i.e., large arrays of pigment molecules with long-range chiral order, have earlier been shown to undergo light-induced reversible and irreversible structural changes; such reorganizations did not affect the short-range, excitonic pigment-pigment interactions. These structural changes and similar changes in lamellar aggregates of the main chlorophyll a/b light-harvesting complexes exhibited a linear dependence on the intensity of light that was not utilized in photosynthesis. It has been hypothesized that the light-induced rearrangements are driven by a thermooptic effect, i.e., thermal fluctuations due to the dissipation of excess excitation energies [Barzda, V., et al. (1996) Biochemistry 35, 8981-8985]. To test this hypothesis, we have utilized circular dichroism (CD) spectroscopy to investigate the structural stability of the chiral macrodomains and the constituent bulk pigment-protein complexes of granal thylakoid membranes against heat and prolonged, intense illumination. (i) In intact thylakoid membranes, the chiral macrodomains displayed high stability below 40 degrees C, but they were gradually disassembled between 50 and 60 degrees C; the thermal stability of the chiral macrodomains could be decreased substantially by suspending the membranes in reaction media that were hypotonic or had low ionic strength. (ii) The chiral macrodomains were also susceptible to high light: prolonged illumination with intense white light (25 min, 2500 microE m(-)(2) s(-)(1), 25 degrees C) induced similar, irreversible disassembly to that observed at high temperatures; in different preparations, lower thermal stability was coupled to lower light stability. (iii) The light stability depended significantly on the temperature: between about 5 and 15 degrees C, the macrodomains in the intact thylakoids were virtually not susceptible to high light; in contrast, the same preillumination at 35-40 degrees C almost completely destroyed the chiral macrodomains. (iv) As testified by the excitonic CD bands, the molecular organization of the pigment-protein complexes in all samples exhibited very high thermal stability between about 15 and 65 degrees C, and virtually total immunity against intense illumination. These data are fully consistent with the hypothesis of a thermooptic effect, and are interpreted within the frame of a simple model.  相似文献   

5.
Higher plant thylakoid membranes contain a protein kinase that phosphorylates certain threonine residues of light-harvesting complex II (LHCII), the main light-harvesting antenna complexes of photosystem II (PSII) and some other phosphoproteins (Allen, Biochim Biophys Acta 1098:275, 1992). While it has been established that phosphorylation induces a conformational change of LHCII and also brings about changes in the lateral organization of the thylakoid membrane, it is not clear how phosphorylation affects the dynamic architecture of the thylakoid membranes. In order to contribute to the elucidation of this complex question, we have investigated the effect of duroquinol-induced phosphorylation on the membrane ultrastructure and the thermal and light stability of the chiral macrodomains and of the trimeric organization of LHCII. As shown by small angle neutron scattering on thylakoid membranes, duroquinol treatment induced a moderate (~10%) increase in the repeat distance of stroma membranes, and phosphorylation caused an additional loss of the scattering intensity, which is probably associated with the partial unstacking of the granum membranes. Circular dichroism (CD) measurements also revealed only minor changes in the chiral macro-organization of the complexes and in the oligomerization state of LHCII. However, temperature dependences of characteristic CD bands showed that phosphorylation significantly decreased the thermal stability of the chiral macrodomains in phosphorylated compared to the non-phosphorylated samples (in leaves and isolated thylakoid membranes, from 48.3°C to 42.6°C and from 47.5°C to 44.3°C, respectively). As shown by non-denaturing PAGE of thylakoid membranes and CD spectroscopy on EDTA washed membranes, phosphorylation decreased by about 5°C, the trimer-to-monomer transition temperature of LHCII. It also enhanced the light-induced disassembly of the chiral macrodomains and the monomerization of the LHCII trimers at 25°C. These data strongly suggest that phosphorylation of the membranes considerably facilitates the heat- and light-inducible reorganizations in the thylakoid membranes and thus enhances the structural flexibility of the membrane architecture.  相似文献   

6.
Diatoms possess effective photoprotection mechanisms, which may involve reorganizations in the photosynthetic machinery. We have shown earlier, by using circular dichroism (CD) spectroscopy, that in Phaeodactylum tricornutum the pigment-protein complexes are arranged into chiral macrodomains, which have been proposed to be associated with the multilamellar organization of the thylakoid membranes and shown to be capable of undergoing light-induced reversible reorganizations (Szabó et al. Photosynth Res 95:237, 2008). Recently, by using small-angle neutron scattering (SANS) on the same algal cells we have determined the repeat distances and revealed reversible light-induced reorganizations in the lamellar order of thylakoids (Nagy et al. Biochem J 436:225, 2011). In this study, we show that in moderately heat-treated samples, the weakening of the lamellar order is accompanied by the diminishment of the psi-type CD signal associated with the long-range chiral order of the chromophores (psi, polymer or salt-induced). Further, we show that the light-induced reversible increase in the psi-type CD is associated with swelling in the membrane system, with magnitudes larger in high light than in low light. In contrast, shrinkage of the membrane system, induced by sorbitol, brings about a decrease in the psi-type CD signal; this shrinkage also diminishes the non-photochemical quenching capability of the cells. These data shed light on the origin of the psi-type CD signal, and confirm that both CD spectroscopy and SANS provide valuable information on the macro-organization of the thylakoid membranes and their dynamic properties; these parameters are evidently of interest with regard to the photoprotection in whole algal cells.  相似文献   

7.
Liu XD  Shen YG 《FEBS letters》2004,569(1-3):337-340
Light could induce phosphorylation of light harvesting chlorophyll a/b binding proteins (LHCII) in Dunaliella salina and spinach thylakoid membranes. We found that neither phosphorylation was affected by glycerol, whereas treatment with NaCl significantly enhanced light-induced LHCII phosphorylation in D. salina thylakoid membranes and inhibited that in spinach. Furthermore, even in the absence of light, NaCl and several other salts induced LHCII phosphorylation in D. salina thylakoid membranes, but not in spinach thylakoid membranes. In addition, hypertonic shock induced LHCII phosphorylation in intact D. salina under dark conditions and cells adapted to different NaCl concentrations exhibited similar LHCII phosphorylation levels. Taken together, these results show for the first time that while LHCII phosphorylation of D. salina thylakoid membranes resembles that of spinach thylakoid membranes in terms of light-mediated control, the two differ with respect to NaCl sensitivity under light and dark conditions.  相似文献   

8.
This study investigated the regulation of the major light harvesting chlorophyll a/b protein (LHCII) phosphorylation in Dunaliella salina thylakoid membranes. We found that both light and NaCl could induce LHCII phosphorylation in D. salina thylakoid membranes. Treatments with oxidants (ferredoxin and NADP) or photosynthetic electron flow inhibitors (DCMU, DBMIB, and stigmatellin) inhibited LHCII phosphorylation induced by light but not that induced by NaCl. Furthermore, neither addition of CuCl(2), an inhibitor of cytochrome b(6)f complex reduction, nor oxidizing treatment with ferricyanide inhibited light- or NaCl-induced LHCII phosphorylation, and both salts even induced LHCII phosphorylation in dark-adapted D. salina thylakoid membranes as other salts did. Together, these results indicate that the redox state of the cytochrome b(6)f complex is likely involved in light- but not salt-induced LHCII phosphorylation in D. salina thylakoid membranes.  相似文献   

9.
Extraction of plant light-harvesting complex II (LHCII) from the native thylakoid membrane or from aggregates by the use of surfactants brings about significant changes in the excitonic circular dichroism (CD) spectrum and fluorescence quantum yield. To elucidate the cause of these changes, e.g. trimer-trimer contacts or surfactant-induced structural perturbations, we compared the CD spectra and fluorescence kinetics of LHCII aggregates, artificial and native LHCII-lipid membranes, and LHCII solubilized in different detergents or trapped in polymer gel. By this means we were able to identify CD spectral changes specific to LHCII-LHCII interactions, at (−)-437 and (+)-484 nm, and changes specific to the interaction with the detergent n-dodecyl-β-maltoside (β-DM) or membrane lipids, at (+)-447 and (−)-494 nm. The latter change is attributed to the conformational change of the LHCII-bound carotenoid neoxanthin, by analyzing the CD spectra of neoxanthin-deficient plant thylakoid membranes. The neoxanthin-specific band at (−)-494 nm was not pronounced in LHCII in detergent-free gels or solubilized in the α isomer of DM but was present when LHCII was reconstituted in membranes composed of phosphatidylcholine or plant thylakoid lipids, indicating that the conformation of neoxanthin is sensitive to the molecular environment. Neither the aggregation-specific CD bands, nor the surfactant-specific bands were positively associated with the onset of fluorescence quenching, which could be triggered without invoking such spectral changes. Significant quenching was not active in reconstituted LHCII proteoliposomes, whereas a high degree of energetic connectivity, depending on the lipid:protein ratio, in these membranes allows for efficient light harvesting.  相似文献   

10.
Xian-De Liu 《BBA》2005,1706(3):215-219
This study investigated the regulation of the major light harvesting chlorophyll a/b protein (LHCII) phosphorylation in Dunaliella salina thylakoid membranes. We found that both light and NaCl could induce LHCII phosphorylation in D. salina thylakoid membranes. Treatments with oxidants (ferredoxin and NADP) or photosynthetic electron flow inhibitors (DCMU, DBMIB, and stigmatellin) inhibited LHCII phosphorylation induced by light but not that induced by NaCl. Furthermore, neither addition of CuCl2, an inhibitor of cytochrome b6f complex reduction, nor oxidizing treatment with ferricyanide inhibited light- or NaCl-induced LHCII phosphorylation, and both salts even induced LHCII phosphorylation in dark-adapted D. salina thylakoid membranes as other salts did. Together, these results indicate that the redox state of the cytochrome b6f complex is likely involved in light- but not salt-induced LHCII phosphorylation in D. salina thylakoid membranes.  相似文献   

11.
The supramolecular reorganization of LHCII complexes within the thylakoid membrane in Secale cereale leaves under low and high light condition was examined. Rye seedlings were germinated hydroponically in a climate chamber with a 16 h daylight photoperiod, photosynthetic photon flux density (PPFD) of 150 μmol m−2 s−1 and 24/16 °C day/night temperature. The influence of pre-illumination of the plants with high light intensity on the PSII antenna complexes was studied by comparison of the structure and function of the LHCII complexes and organization of thylakoid membranes isolated from 10-day-old plants illuminated with low (150 μmol m−2 s−1) or high (1200 μmol m−2 s−1) light intensity. Aggregated and trimeric with monomeric forms of LHCII complexes were separated from the whole thylakoid membranes using non-denaturing electrophoresis. Analyses of fluorescence emission spectra of these different LHCII forms showed that the monomer was the most effective aggregating antenna form. Moreover, photoprotection connected with LHCII aggregation was more effective upon LHCII monomers in comparison to trimer aggregation. Light stress induced specific organization of neighboring LHCII complexes, causing an increase in fluorescence yield of the long-wavelength bands (centered at 701 and 734 nm). The changes in the organization of the thylakoid membrane under light stress, observed by analysis of absorbance spectra obtained by Fourier transform infrared spectroscopy, also indicated light-induced LHCII aggregation.  相似文献   

12.
Diurnal fluctuations were observed in the content and some structural and functional properties of the light-harvesting chlorophyll (Chl) a/b pigment-protein complex of photosystem II (LHCII) in young developing wheat (Triticum aestivum) leaves grown under 16 hours light/8 hours dark illumination regime. The fluctuations could be correlated with the diurnal oscillation in the level of mRNA for LHCII. The most pronounced changes occurred in the basal segments of the leaves. They were weaker or hardly discernible in the middle and tip segments. As judged from the diurnal variations of the Chl-a/Chl-b molar ratio, the LHCII content of the thylakoid membranes peaked around 2 pm. This can be accounted for by the cumulative effect of the elevated level of mRNA in the morning and early afternoon. In the basal segment, the extent of the fluctuation in the LHCII content was approximately 25%, as determined from gel electrophoresis (“green gels”). The amplitude of the principal bands of the circular dichroism (CD) spectra of isolated chloroplasts paralleled the changes in the LHCII content. Our circular dichroism data suggest that the newly synthesized LHCII complexes are incorporated into the existing helically organized macrodomains of the pigment-protein complexes or themselves form such macrodomains in the thylakoid membranes. Chl-a fluorescence induction kinetics also showed diurnal variations especially in the basal segments of the leaves. This most likely indicates fluctuations in the ability of membranes to undergo “state transitions.” These observations suggest a physiological role of diurnal rhythm of mRNA for LHCII in young developing leaves.  相似文献   

13.
Several proteins of photosystem II (PSII) and its light-harvesting antenna (LHCII) are reversibly phosphorylated according to light quantity and quality. Nevertheless, the interdependence of protein phosphorylation, nonphotochemical quenching, and efficiency of electron transfer in the thylakoid membrane has remained elusive. These questions were addressed by investigating in parallel the wild type and the stn7, stn8, and stn7 stn8 kinase mutants of Arabidopsis (Arabidopsis thaliana), using the stn7 npq4, npq4, npq1, and pgr5 mutants as controls. Phosphorylation of PSII-LHCII proteins is strongly and dynamically regulated according to white light intensity. Yet, the changes in phosphorylation do not notably modify the relative excitation energy distribution between PSII and PSI, as typically occurs when phosphorylation is induced by “state 2” light that selectively excites PSII and induces the phosphorylation of both the PSII core and LHCII proteins. On the contrary, under low-light conditions, when excitation energy transfer from LHCII to reaction centers is efficient, the STN7-dependent LHCII protein phosphorylation guarantees a balanced distribution of excitation energy to both photosystems. The importance of this regulation diminishes at high light upon induction of thermal dissipation of excitation energy. Lack of the STN7 kinase, and thus the capacity for equal distribution of excitation energy to PSII and PSI, causes relative overexcitation of PSII under low light but not under high light, leading to disturbed maintenance of fluent electron flow under fluctuating light intensities. The physiological relevance of the STN7-dependent regulation is evidenced by severely stunted phenotypes of the stn7 and stn7 stn8 mutants under strongly fluctuating light conditions.Several proteins of PSII and its light-harvesting antenna (LHCII) are reversibly phosphorylated by the STN7 and STN8 kinase-dependent pathways according to the intensity and quality of light (Bellafiore et al., 2005; Bonardi et al., 2005). The best-known phosphorylation-dependent phenomenon in the thylakoid membrane is the state transition: a regulatory mechanism that modulates the light-harvesting capacity between PSII and PSI. According to the traditional view, “state 1” prevails when plants are exposed to far-red light (state 1 light), which selectively excites PSI. Alternatively, thylakoids are in “state 2” when plants are exposed to blue or red light (state 2 light), favoring PSII excitation. In state 1, the yield of fluorescence from PSII is higher in comparison with state 2 (for review, see Allen and Forsberg, 2001). State transitions are dependent on the phosphorylation of LHCII proteins (Bellafiore et al., 2005) and their association with PSI proteins, particularly PSI-H (Lunde et al., 2000). Under state 2 light, both the PSII core and LHCII proteins are strongly phosphorylated, whereas the state 1 light induces dephosphorylation of both the PSII core and LHCII phosphoproteins (Piippo et al., 2006; Tikkanen et al., 2006). In nature, however, such extreme changes in light quality rarely occur. The intensity of light, on the contrary, fluctuates frequently in all natural habitats occupied by photosynthetic organisms, thus constantly modulating the extent of thylakoid protein phosphorylation in a highly dynamic manner (Tikkanen et al., 2008a).The regulation of PSII-LHCII protein phosphorylation by the quantity of light is much more complex than the regulatory circuits induced by the state 1 and state 2 lights. Whereas changes in light quality induce a concurrent increase or decrease in the phosphorylation levels of both the PSII core (D1, D2, and CP43) and LHCII (Lhcb1 and Lhcb2) proteins, the changes in white light intensity may influence the kinetics of PSII core and LHCII protein phosphorylation in higher plant chloroplasts even in opposite directions (Tikkanen et al., 2008a). Indeed, it is well documented that low light (LL; i.e. lower than that generally experienced during growth) induces strong phosphorylation of LHCII but relatively weak phosphorylation of the PSII core proteins. Exposure of plants to high light (HL) intensities, on the contrary, promotes the phosphorylation of PSII core proteins but inhibits the activity of the LHCII kinase, leading to dephosphorylation of LHCII proteins (Rintamäki et al., 2000; Hou et al., 2003).Thylakoid protein phosphorylation induces dynamic migrations of PSII-LHCII proteins along the thylakoid membrane (Bassi et al., 1988; Iwai et al., 2008) and modulation of thylakoid ultrastructure (Chuartzman et al., 2008). According to the traditional state transition theory, the phosphorylation of LHCII proteins decreases the antenna size of PSII and increases that of PSI, which is reflected as a quenched fluorescence emission from PSII. Alternatively, subsequent dephosphorylation of LHCII increases the antenna size of PSII and decreases that of PSI, which in turn is seen as increased PSII fluorescence (Bennett et al., 1980; Allen et al., 1981; Allen and Forsberg, 2001). This view was recently challenged based on studies with thylakoid membrane fractions, revealing that modulations in the relative distribution of excitation energy between PSII and PSI by LHCII phosphorylation specifically occur in the areas of grana margins, where both PSII and PSI function under the same antenna system, and the energy distribution between the photosystems is regulated via a more subtle mechanism than just the robust migration of phosphorylated LHCII (Tikkanen et al., 2008b). It has also been reported that most of the PSI reaction centers are located in the grana margins in a close vicinity to PSII-LHCII-rich grana thylakoids (Kaftan et al., 2002), providing a perfect framework for the regulation of excitation energy distribution from LHCII to both PSII and PSI.When considering the natural light conditions, the HL intensities are the only known light conditions that in higher plant chloroplasts specifically dephosphorylate only the LHCII proteins but not the PSII core proteins. However, such light conditions do not lead to enhanced function of PSII. Instead, the HL conditions strongly down-regulate the function of PSII via nonphotochemical quenching of excitation energy (NPQ) and PSII photoinhibition (for review, see Niyogi, 1999). On the other hand, after dark acclimation of leaves and relaxation of NPQ, PSII functions much more efficiently when plants/leaves are transferred to LL despite strong phosphorylation of LHCII, as compared with the low phosphorylation state of LHCII upon transfer to HL conditions.The delicate regulation of thylakoid protein phosphorylation in higher plant chloroplasts according to prevailing light intensity is difficult to integrate with the traditional theory of state transitions (i.e. the regulation of the absorption cross-section of PSII and PSI by reversible phosphorylation of LHCII). Moreover, besides LHCII proteins, reversible phosphorylation of the PSII core proteins may also play a role in dynamic light acclimation of plants. Recently, we demonstrated that the PSII core protein phosphorylation is a prerequisite for controlled turnover of the PSII reaction center protein D1 upon photodamage (Tikkanen et al., 2008a). This, however, does not exclude the possibility that the strict regulation of PSII core protein phosphorylation is also connected to the regulation of light harvesting and photosynthetic electron transfer. Moreover, the interactions between PSII and LHCII protein phosphorylation, nonphotochemical quenching, and cyclic electron flow around PSI in the regulation of photosynthetic electron transfer reactions remain poorly understood. To gain a deeper insight into such regulatory networks, we explored the effect of strongly fluctuating white light on chlorophyll (chl) fluorescence in Arabidopsis (Arabidopsis thaliana) mutants differentially deficient in PSII-LHCII protein phosphorylation and/or the regulatory systems of NPQ.  相似文献   

14.
W.S. Chow  J. Barber 《BBA》1980,593(1):149-157
Salt-induced changes in thylakoid stacking and chlorophyll fluorescence do not occur with granal membranes obtained by treatment of stacked thylakoids with digitonin. In contrast to normal untreated thylakoids, digitonin prepared granal membranes remain stacked under all ionic conditions and exhibit a constant high level of chlorophyll fluorescence. However, unstacking of these granal membranes is possible if they are pretreated with either acetic anhydride or linolenic acid.Trypsin treatment of the thylakoids inhibits the salt induced chlorophyll fluorescence and stacking changes but stacking of these treated membranes does occur when the pH is lowered, with the optimum being at about pH 4.5. This type of stacking is due to charge neutralization and does not require the presence of the 2000 dalton fragment of the polypeptide associated with the chlorophyll achlorophyll b light harvesting complex and known to be lost during treatment with trypsin (Mullet, J.E. and Arntzen, C.J. (1980) Biochim. Biophys. Acta 589, 100–117).Using the method of 9-aminoacridine fluorescence quenching it is argued that the surface charge density, on a chlorophyll basis, of unstacked thylakoid membranes is intermediate between digitonin derived granal and stromal membranes, with granal having the lowest value.The results are discussed in terms of the importance of surface negative charges in controlling salt induced chlorophyll fluorescence and thylakoid stacking changes. In particular, emphasis is placed on a model involving lateral diffusion of different types of chlorophyll protein complex within the thylakoid lipid matrix.  相似文献   

15.
Redox-controlled, reversible phosphorylation of the thylakoid light harvesting complex II (LHCII) regulates its association with photosystems (PS) I or II and thus, energy distribution between the two photosystems (state transition). Illumination of solubilized LHCII enhances exposure of the phosphorylation site at its N-terminal domain to protein kinase(s) and tryptic cleavage in vitro [Zer et al. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 8277-8282]. Here we report that short illumination (5-10 min, 15-30 micromol m(-2) s(-1)) enhances the accessibility of LHCII phosphorylation site to kinase(s) activity also in isolated thylakoids. However, prolonged illumination or higher light intensities (30 min, 80-800 micromol m(-2) s(-1)) prevent phosphorylation of LHCII in the isolated membranes as well as in vivo, although redox-dependent protein kinase activity persists in the illuminated thylakoids toward exogenous solubilized LHCII. This phenomenon, ascribed to light-induced inaccessibility of the phosphorylation site to the protein kinase(s), affects in a similar way the accessibility of thylakoid LHCII N-terminal domain to tryptic cleavage. The illumination effect is not redox related, decreases linearly with temperature from 25 to 5 degrees C and may be ascribed to light-induced conformational changes in the complex causing lateral aggregation of dephosphorylated LHCII bound to and/or dissociated from PSII. The later state occurs under conditions allowing turnover of the phospho-LHCII phosphate. The light-induced inaccessibility of LHCII to the membrane-bound protein kinase reverses readily in darkness only if induced under LHCII-phosphate turnover conditions. Thus, phosphorylation prevents irreversible light-induced conformational changes in LHCII allowing lateral migration of the complex and the related state transition process.  相似文献   

16.
By using absorption and fluorescence spectroscopy, we compared the effects of heat and light treatments on the phycobilisome (PBS) antenna of Synechocystis sp. PCC 6803 cells. Fluorescence emission spectra obtained upon exciting predominantly PBS, recorded at 25 °C and 77 K, revealed characteristic changes upon heat treatment of the cells. A 5-min incubation at 50 °C, which completely inactivated the activity of photosystem II, led to a small but statistically significant decrease in the F680/F655 fluorescence intensity ratio. In contrast, heat treatment at 60 °C resulted in a much larger decrease in the same ratio and was accompanied by a blue-shift of the main PBS emission band at around 655 nm (F655), indicating an energetic decoupling of PBS from chlorophylls and reorganizations in its internal structure. (Upon exciting PBS, F680 originates from photosystem II and from the terminal emitter of PBS.). Very similar changes were obtained upon exposing the cells to high light (600-7500 μmol photons m−2 s−1) for different time periods (10 min to 3 h). In cells with heat-inactivated photosystem II, the variations caused by light treatment could clearly be assigned to a similar energetic decoupling of the PBS from the membrane and internal reorganizations as induced at around 60 °C. These data can be explained within the frameworks of thermo-optic mechanism [Cseh et al. 2000, Biochemistry 39, 15250]: in high light the heat packages originating from dissipation might lead to elementary structural changes in the close vicinity of dissipation in heat-sensitive structural elements, e.g. around the site where PBS is anchored to the membrane. This, in turn, brings about a diminishment in the energy supply from PBS to the photosystems and reorganization in the molecular architecture of PBS.  相似文献   

17.
Photosystem II (PSII) core and light-harvesting complex II (LHCII) proteins in plant chloroplasts undergo reversible phosphorylation upon changes in light intensity (being under control of redox-regulated STN7 and STN8 kinases and TAP38/PPH1 and PSII core phosphatases). Shift of plants from growth light to high light results in an increase of PSII core phosphorylation, whereas LHCII phosphorylation concomitantly decreases. Exactly the opposite takes place when plants are shifted to lower light intensity. Despite distinct changes occurring in thylakoid protein phosphorylation upon light intensity changes, the excitation balance between PSII and photosystem I remains unchanged. This differs drastically from the canonical-state transition model induced by artificial states 1 and 2 lights that concomitantly either dephosphorylate or phosphorylate, respectively, both the PSII core and LHCII phosphoproteins. Analysis of the kinase and phosphatase mutants revealed that TAP38/PPH1 phosphatase is crucial in preventing state transition upon increase in light intensity. Indeed, tap38/pph1 mutant revealed strong concomitant phosphorylation of both the PSII core and LHCII proteins upon transfer to high light, thus resembling the wild type under state 2 light. Coordinated function of thylakoid protein kinases and phosphatases is shown to secure balanced excitation energy for both photosystems by preventing state transitions upon changes in light intensity. Moreover, PROTON GRADIENT REGULATION5 (PGR5) is required for proper regulation of thylakoid protein kinases and phosphatases, and the pgr5 mutant mimics phenotypes of tap38/pph1. This shows that there is a close cooperation between the redox- and proton gradient-dependent regulatory mechanisms for proper function of the photosynthetic machinery.Photosynthetic light reactions take place in the chloroplast thylakoid membrane. Primary energy conversion reactions are performed by synchronized function of the two light energy-driven enzymes PSII and PSI. PSII uses excitation energy to split water into electrons and protons. PSII feeds electrons to the intersystem electron transfer chain (ETC) consisting of plastoquinone, cytochrome b6f, and plastocyanin. PSI oxidizes the ETC in a light-driven reduction of NADP to NADPH. Light energy is collected by the light-harvesting antenna systems in the thylakoid membrane composed of specific pigment-protein complexes (light-harvesting complex I [LHCI] and LHCII). The majority of the light-absorbing pigments are bound to LHCII trimers that can serve the light harvesting of both photosystems (Galka et al., 2012; Kouřil et al., 2013; Wientjes et al., 2013b). Energy distribution from LHCII is regulated by protein phosphorylation (Bennett, 1979; Bennett et al., 1980; Allen et al., 1981) under control of the STN7 and STN8 kinases (Depège et al., 2003; Bellafiore et al., 2005; Bonardi et al., 2005; Vainonen et al., 2005) and the TAP38/PPH1 and Photosystem II Core Phosphatase (PBCP) phosphatases (Pribil et al., 2010; Shapiguzov et al., 2010; Samol et al., 2012). LHCII trimers are composed of LHCB1, LHCB2, and LHCB3 proteins, and in addition to reversible phosphorylation of LHCB1 and LHCB2, the protein composition of the LHCII trimers also affects the energy distribution from the light-harvesting system to photosystems (Damkjaer et al., 2009; Pietrzykowska et al., 2014). Most of the LHCII trimers are located in the PSII-rich grana membranes and PSII- and PSI-rich grana margins of the thylakoid membrane, and only a minor fraction resides in PSI- and ATP synthase-rich stroma lamellae (Tikkanen et al., 2008b; Suorsa et al., 2014). Both photosystems bind a small amount of LHCII trimers in biochemically isolatable PSII-LHCII and PSI-LHCII complexes (Pesaresi et al., 2009; Järvi et al., 2011; Caffarri et al., 2014). The large portion of the LHCII, however, does not form isolatable complexes with PSII or PSI, and therefore, it separates as free LHCII trimers upon biochemical fractionation of the thylakoid membrane by Suc gradient centrifugation or in native gel analyses (Caffarri et al., 2009; Järvi et al., 2011), the amount being dependent on the thylakoid isolation method. Nonetheless, in vivo, this major LHCII antenna fraction serves the light-harvesting function. This is based on the fact that fluorescence from free LHCII, peaking at 680 nm in 77-K fluorescence emission spectra, can only be detected when the energy transfer properties of the thylakoid membrane are disturbed by detergents (Grieco et al., 2015).Regulation of excitation energy distribution from LHCII to PSII and PSI has, for decades, been linked to LHCII phosphorylation and state transitions (Bennett, 1979; Bennett et al., 1980; Allen et al., 1981). It has been explained that a fraction of LHCII gets phosphorylated and migrates from PSII to PSI, which can be evidenced as increase in PSI cross section and was assigned as transition to state 2 (for review, see Allen, 2003; Rochaix et al., 2012). The LHCII proteins are, however, phosphorylated all over the thylakoid membrane (i.e. in the PSII- and LHCII-rich grana core) in grana margins containing PSII, LHCII, and PSI as well as in PSI-rich stroma lamellae also harboring PSII-LHCII, LHCII, and PSI-LHCII complexes in minor amounts (Tikkanen et al., 2008b; Grieco et al., 2012; Leoni et al., 2013; Wientjes et al., 2013a)—making the canonical-state transition theory inadequate to explain the physiological role of reversible LHCII phosphorylation (Tikkanen and Aro, 2014). Moreover, the traditional-state transition model is based on lateral segregation of PSII-LHCII and PSI-LHCI to different thylakoid domains. It, however, seems likely that PSII and PSI are energetically connected through a shared light-harvesting system composed of LHCII trimers (Grieco et al., 2015), and there is efficient excitation energy transfer between the two photosystems (Yokono et al., 2015). Nevertheless, it is clear that LHCII phosphorylation is a prerequisite to form an isolatable PSI-LHCII complex called the state transition complex (Pesaresi et al., 2009; Järvi et al., 2011). Existence of a minor state transition complex, however, does not explain why LHCII is phosphorylated all over the thylakoid membrane and how the energy transfer is regulated from the majority of LHCII antenna that is shared between PSII and PSI but does not form isolatable complexes with them (Grieco et al., 2015).Plants grown under any steady-state white light condition show the following characteristics of the thylakoid membrane: PSII core and LHCII phosphoproteins are moderately phosphorylated, phosphorylation takes place all over the thylakoid membrane, and the PSI-LHCII state transition complex is present (Järvi et al., 2011; Grieco et al., 2012; Wientjes et al., 2013b). Upon changes in the light intensity, the relative phosphorylation level between PSII core and LHCII phosphoproteins drastically changes (Rintamäki et al., 1997, 2000) in the timescale of 5 to 30 min. When light intensity increases, the PSII core protein phosphorylation increases, whereas the level of LHCII phosphorylation decreases. On the contrary, a decrease in light intensity decreases the phosphorylation level of PSII core proteins but strongly increases the phosphorylation of the LHCII proteins (Rintamäki et al., 1997, 2000). The presence and absence of the PSI-LHCII state transition complex correlate with LHCII phosphorylation (similar to the state transitions; Pesaresi et al., 2009; Wientjes et al., 2013b). Despite all of these changes in thylakoid protein phosphorylation, the relative excitation of PSII and PSI (i.e. the absorption cross section of PSII and PSI measured by 77-K fluorescence) remains nearly unchanged upon changes in white-light intensity (i.e. no state transitions can be observed despite massive differences in LHCII protein phosphorylation; Tikkanen et al., 2010).The existence of the opposing behaviors of PSII core and LHCII protein phosphorylation, as described above, has been known for more than 15 years (Rintamäki et al., 1997, 2000), but the physiological significance of this phenomenon has remained elusive. It is known that PSII core protein phosphorylation in high light (HL) facilitates the unpacking of PSII-LHCII complexes required for proper processing of the damaged PSII centers and thus, prevents oxidative damage of the photosynthetic machinery (Tikkanen et al., 2008a; Fristedt et al., 2009; Goral et al., 2010; Kirchhoff et al., 2011). It is also known that the damaged PSII core protein D1 needs to be dephosphorylated before its proteolytic degradation upon PSII turnover (Koivuniemi et al., 1995). There is, however, no coherent understanding available to explain why LHCII proteins are dephosphorylated upon exposure of plants to HL and PSII core proteins are dephosphorylated upon exposure to low light (LL).The above-described light quantity-dependent control of thylakoid protein phosphorylation drastically differs from the light quality-dependent protein phosphorylation (Tikkanen et al., 2010). State transitions are generally investigated by using different light qualities, preferentially exciting either PSI or PSII. State 1 light favors PSI excitation, leading to oxidation of the ETC and dephosphorylation of both the PSII core and LHCII proteins. State 2 light, in turn, preferentially excites PSII, leading to reduction of ETC and strong concomitant phosphorylation of both the PSII core and LHCII proteins (Haldrup et al., 2001). Shifts between states 1 and 2 lights induce state transitions, mechanisms that change the excitation between PSII and PSI (Murata and Sugahara, 1969; Murata, 2009). Similar to shifts between state lights, the shifts between LL and HL intensity also change the phosphorylation of the PSII core and LHCII proteins (Rintamäki et al., 1997, 2000). Importantly, the white-light intensity-induced changes in thylakoid protein phosphorylation do not change the excitation energy distribution between the two photosystems (Tikkanen et al., 2010). Despite this fundamental difference between the light quantity- and light quality-induced thylakoid protein phosphorylations, a common feature for both mechanisms is a strict requirement of LHCII phosphorylation for formation of the PSI-LHCII complex. However, it is worth noting that LHCII phosphorylation under state 2 light is not enough to induce the state 2 transition but that the P-LHCII docking proteins in the PSI complex are required (Lunde et al., 2000; Jensen et al., 2004; Zhang and Scheller, 2004; Leoni et al., 2013).Thylakoid protein phosphorylation is a dynamic redox-regulated process dependent on the interplay between two kinases (STN7 and STN8; Depège et al., 2003; Bellafiore et al., 2005; Bonardi et al., 2005; Vainonen et al., 2005) and two phosphatases (TAP38/PPH1 and PBCP; Pribil et al., 2010; Shapiguzov et al., 2010; Samol et al., 2012). Concerning the redox regulation mechanisms in vivo, only the LHCII kinase (STN7) has so far been thoroughly studied (Vener et al., 1997; Rintamäki et al., 2000; Lemeille et al., 2009). The STN7 kinase is considered as the LHCII kinase, and indeed, it phosphorylates the LHCB1 and LHCB2 proteins (Bellafiore et al., 2005; Bonardi et al., 2005; Tikkanen et al., 2006). In addition to this, STN7 takes part in the phosphorylation of PSII core proteins (Vainonen et al., 2005), especially in LL (Tikkanen et al., 2008b, 2010). The STN8 kinase is required for phosphorylation of PSII core proteins in HL but does not significantly participate in phosphorylation of LHCII (Bellafiore et al., 2005; Bonardi et al., 2005; Vainonen et al., 2005; Tikkanen et al., 2010). It has been shown that, in traditional state 1 condition, which oxidizes the ETC, the dephosphorylation of LHCII is dependent on TAP38/PPH1 phosphatase (Pribil et al., 2010; Shapiguzov et al., 2010), whereas the PSII core protein dephosphorylation is dependent on the PBCP phosphatase (Samol et al., 2012). However, it remains unresolved whether and how the TAP38/PPH1 and PBCP phosphatases are involved in the light intensity-dependent regulation of thylakoid protein phosphorylation typical for natural environments.Here, we have used the two kinase (stn7 and stn8) and the two phosphatase (tap38/pph1and pbcp) mutants of Arabidopsis (Arabidopsis thaliana) to elucidate the individual roles of these enzymes in reversible thylakoid protein phosphorylation and distribution of excitation energy between PSII and PSI upon changes in light intensity. It is shown that the TAP38/PPH1-dependent, redox-regulated LHCII dephosphorylation is the key component to maintain excitation balance between PSII and PSI upon increase in light intensity, which at the same time, induces strong phosphorylation of the PSII core proteins. Collectively, reversible but opposite phosphorylation and dephosphorylation of the PSII core and LHCII proteins upon increase or decrease in light intensity are shown to be crucial for maintenance of even distribution of excitation energy to both photosystems, thus preventing state transitions. Moreover, evidence is provided indicating that the pH gradient across the thylakoid membrane is yet another important component in regulation of the distribution of excitation energy to PSII and PSI, possibly by affecting the regulation of thylakoid kinases and phosphatases.  相似文献   

18.
By using absorption and fluorescence spectroscopy, we compared the effects of heat and light treatments on the phycobilisome (PBS) antenna of Synechocystis sp. PCC 6803 cells. Fluorescence emission spectra obtained upon exciting predominantly PBS, recorded at 25 degrees C and 77 K, revealed characteristic changes upon heat treatment of the cells. A 5-min incubation at 50 degrees C, which completely inactivated the activity of photosystem II, led to a small but statistically significant decrease in the F(680)/F(655) fluorescence intensity ratio. In contrast, heat treatment at 60 degrees C resulted in a much larger decrease in the same ratio and was accompanied by a blue-shift of the main PBS emission band at around 655 nm (F(655)), indicating an energetic decoupling of PBS from chlorophylls and reorganizations in its internal structure. (Upon exciting PBS, F(680) originates from photosystem II and from the terminal emitter of PBS.). Very similar changes were obtained upon exposing the cells to high light (600-7500 micromol photons m(-2) s(-1)) for different time periods (10 min to 3 h). In cells with heat-inactivated photosystem II, the variations caused by light treatment could clearly be assigned to a similar energetic decoupling of the PBS from the membrane and internal reorganizations as induced at around 60 degrees C. These data can be explained within the frameworks of thermo-optic mechanism [Cseh et al. 2000, Biochemistry 39, 15250]: in high light the heat packages originating from dissipation might lead to elementary structural changes in the close vicinity of dissipation in heat-sensitive structural elements, e.g. around the site where PBS is anchored to the membrane. This, in turn, brings about a diminishment in the energy supply from PBS to the photosystems and reorganization in the molecular architecture of PBS.  相似文献   

19.
We studied the periodicity of the multilamellar membrane system of granal chloroplasts in different isolated plant thylakoid membranes, using different suspension media, as well as on different detached leaves and isolated protoplasts—using small-angle neutron scattering. Freshly isolated thylakoid membranes suspended in isotonic or hypertonic media, containing sorbitol supplemented with cations, displayed Bragg peaks typically between 0.019 and 0.023 Å− 1, corresponding to spatially and statistically averaged repeat distance values of about 275–330 Å. Similar data obtained earlier led us in previous work to propose an origin from the periodicity of stroma thylakoid membranes. However, detached leaves, of eleven different species, infiltrated with or soaked in D2O in dim laboratory light or transpired with D2O prior to measurements, exhibited considerably smaller repeat distances, typically between 210 and 230 Å, ruling out a stromal membrane origin. Similar values were obtained on isolated tobacco and spinach protoplasts. When NaCl was used as osmoticum, the Bragg peaks of isolated thylakoid membranes almost coincided with those in the same batch of leaves and the repeat distances were very close to the electron microscopically determined values in the grana. Although neutron scattering and electron microscopy yield somewhat different values, which is not fully understood, we can conclude that small-angle neutron scattering is a suitable technique to study the periodic organization of granal thylakoid membranes in intact leaves under physiological conditions and with a time resolution of minutes or shorter. We also show here, for the first time on leaves, that the periodicity of thylakoid membranes in situ responds dynamically to moderately strong illumination. This article is part of a Special Issue entitled: Photosynthesis research for sustainability: Keys to produce clean energy.  相似文献   

20.
Light-harvesting complex II (LHCII) is a crucial component of the photosynthetic machinery, with central roles in light capture and acclimation to changing light. The association of an LHCII trimer with PSI in the PSI-LHCII supercomplex is strictly dependent on LHCII phosphorylation mediated by the kinase STATE TRANSITION7, and is directly related to the light acclimation process called state transitions. In Arabidopsis (Arabidopsis thaliana), the LHCII trimers contain isoforms that belong to three classes: Lhcb1, Lhcb2, and Lhcb3. Only Lhcb1 and Lhcb2 can be phosphorylated in the N-terminal region. Here, we present an improved Phos-tag-based method to determine the absolute extent of phosphorylation of Lhcb1 and Lhcb2. Both classes show very similar phosphorylation kinetics during state transition. Nevertheless, only Lhcb2 is extensively phosphorylated (>98%) in PSI-LHCII, whereas phosphorylated Lhcb1 is largely excluded from this supercomplex. Both isoforms are phosphorylated to different extents in other photosystem supercomplexes and in different domains of the thylakoid membranes. The data imply that, despite their high sequence similarity, differential phosphorylation of Lhcb1 and Lhcb2 plays contrasting roles in light acclimation of photosynthesis.Light capture and its conversion to chemical energy occur in a set of transmembrane protein complexes of the thylakoid membrane. PSII, the cytochrome b6f complex, and PSI drive photosynthetic electron flow and the creation of a proton gradient across the thylakoid membrane. ATP synthase couples the dissipation of this gradient to the synthesis of ATP. The light-harvesting antennae play an important role in collecting light and transferring energy to the photosystems. Light-Harvesting Complex I (LHCI) exclusively transfers light energy to PSI, with which it is tightly associated (Croce and van Amerongen, 2014). In contrast, LHCII, which is the most abundant complex of the thylakoid membrane, can transfer energy to PSI or PSII (Grieco et al., 2015). Light is highly variable in natural environments, and plants experience continuous changes in both the spectrum and intensity of light on timescales as short as seconds. Changes in light quality may unbalance the activity of the two photosystems since their absorption spectra differ, whereas high light intensity can lead to overexcitation and induce photodamage. At low or moderate light intensities, the LHCII complex differentially associates with PSII or PSI, in a phosphorylation-dependent process known as state transitions, to rapidly respond to changes in the spectrum of light. In brief, under light quality that activates PSII more than PSI (e.g. blue light), LHCII is phosphorylated, and as a consequence, its binding to PSI is favored (state 2). Conversely, under light that preferentially excites PSI (enriched in far-red), this association can be reverted by dephosphorylation of the LHCII antenna, which favors its binding to PSII (state 1; Goldschmidt-Clermont and Bassi, 2015; Kim et al., 2015). A protein kinase, STATE TRANSITION7 (STN7), and a protein phosphatase, PROTEIN PHOSPHATASE1 (PPH1)/THYLAKOID-ASSOCIATED PHOSPHATASE38 (TAP38), are essential for the rapid phosphorylation and dephosphorylation of the LHCII antenna that regulates its differential association to PSI or PSII (Bellafiore et al., 2005; Pribil et al., 2010; Shapiguzov et al., 2010). Only a relatively small fraction of the LHCII antenna (<20%) is estimated to participate in state transitions in Arabidopsis (Arabidopsis thaliana; Allen, 1992). However, the process is conserved across the green eukaryotes and is relevant to plant fitness (Frenkel et al., 2007). Under high light, energy-dependent quenching of LHCII predominates, and furthermore, this antenna can uncouple from PSII (Wientjes et al., 2013b).The differential association of photosystems, LHCII, and other components of the thylakoid membrane gives rise to a set of supercomplexes that are central in ensuring photosynthetic efficiency and a rapid response to environmental cues (Caffarri et al., 2009; Duffy et al., 2013; Pietrzykowska et al., 2014; Fristedt et al., 2015). Fine tuning the dynamic assembly of these supercomplexes involves the association of antennae containing specific sets of Lhcb proteins. The major LHCII antenna comprises homo- and heterotrimers of Lhcb1 to Lhcb3 (Jackowski et al., 2001), whereas the minor LHCII isoforms (Lhcb4–Lhcb6) are monomeric (de Bianchi et al., 2008). Lhcb1 and Lhcb2 share a very similar primary structure and associated pigments (Formaggio et al., 2001; Zhang et al., 2008), whereas Lhcb3 appears to have slightly different features (Standfuss and Kühlbrandt, 2004). In Arabidopsis, five genes encode Lhcb1 isoforms, three genes encode Lhcb2 isoforms, and a single gene encodes Lhcb3. The principal discriminant between these classes is a short stretch of residues at the N-terminal end, which is of particular importance since it contains the Thr that is reversibly phosphorylated during light-acclimation processes (Goldschmidt-Clermont and Bassi, 2015). During evolution, land plants have maintained a major LHCII composed of different classes of Lhcb subunits. The phosphorylated N terminus of Lhcb2 was particularly well conserved (Alboresi et al., 2008; Zhang et al., 2008).PSII-LHCII supercomplexes have been isolated from Arabidopsis with up to four LHCII trimers bound to a PSII dimer, as well as the three minor monomeric antennae (Lhcb4–Lhcb6; Caffarri et al., 2009; Kouřil et al., 2012). In the LHCII trimers of these supercomplexes, different classes of Lhcb subunits are distributed differently, suggesting a specific role in light acclimation for each of them (Damkjaer et al., 2009; Pietrzykowska et al., 2014). In the stably bound S trimer, Lhcb1 and Lhcb2 are more abundant, whereas the moderately bound M trimer contains mostly Lhcb1 and Lhcb3 (Galka et al., 2012). PSII supercomplexes isolated from spinach (Spinacia oleracea) showed the presence of an extra LHCII trimer (L trimer); therefore, it is possible that, in Arabidopsis, other trimers are associated with the PSII dimer in a more labile supercomplex that cannot be isolated (Boekema et al., 1999). A single LHCII trimer, containing Lhcb1 and Lhcb2, stably associates with PSI to constitute the PSI-LHCII supercomplex, whose formation is dependent on LHCII phosphorylation by STN7 in state 2 (Kouřil et al., 2005; Galka et al., 2012).Previous reports have shown that the relative phosphorylation of Lhcb1 and Lhcb2 isoforms differs among thylakoid supercomplexes (Galka et al., 2012; Leoni et al., 2013). Here, we address the specific roles of Lhcb1 and Lhcb2 phosphorylation in photosynthetic acclimation. The improved protocol for SDS-PAGE in the presence of Phos-tag (Wako Chemicals) that we present allows quantification of the extent of phosphorylation for each class of antenna isoforms. We report that, in the PSI-LHCII supercomplex that is assembled in state 2, only the phosphorylated form of Lhcb2 is present, whereas the phosphorylated form of Lhcb1 is excluded. In contrast, both Lhcb1 and Lhcb2 are phosphorylated to different levels in other supercomplexes. This quantitative information on the level of phosphorylation of Lhcb1 and Lhcb2 offers new insights into the specific roles of the two classes of LHCII isoforms in light acclimation and supercomplex formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号