首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of water molecules with copper in wild-type azurin and different site-directed mutants of the coordinated residues is studied by nuclear magnetic relaxation dispersion. Different degrees of solvent accessibility are found. The low relaxivity of wild-type azurin agrees with a solvent-protected copper site in solution, the closest water being found at a distance of more than 5?Å from the copper. This low relaxivity contrasts with the relatively large relaxivity of the His46Gly and His117Gly azurin mutants, which shows clear evidence of copper-coordinated water. The data on the latter mutants are best analyzed in terms of one and two water molecules coordinated to the copper in His46Gly and His117Gly, respectively. The Met121His azurin mutant shows an intermediate behavior. The data are analyzed in terms of an increased solvent accessibility with respect to the wild-type azurin, resulting in semi-coordination of water at low pH. These different modes of coordination lead to different geometries, ranging from the trigonal type 1 site of wild-type azurin to the tetragonal type 2 copper sites of the His117Gly and His46Gly azurin mutants through a so-called type 1.5 site of the Met121His mutant. A correlation is found between the relaxation time (τs) of the unpaired electron of copper(II) and the geometry of the metal site: as the tetragonal character decreases the relaxation becomes significantly faster. τs values of ≤1?ns are found for the tetrahedrally distorted type 1 and type 1.5 sites and of 5–15?ns for the tetragonal type 2 sites.  相似文献   

2.
Cu-containing nitrite reductases (NiRs) perform the reduction of nitrite to NO via an ordered mechanism in which the delivery of a proton and an electron to the catalytic type 2 Cu site is highly orchestrated. Electron transfer from a redox partner protein, azurin or pseudoazurin, to the type 1 Cu site is assumed to occur through the formation of a protein-protein complex. We report here a new crystal form in space group P2(1)2(1)2(1) of the Met144Leu mutant of NiR from Alcaligenes xylosoxidans (AxNiR), revealing a head-to-head packing motif involving residues around the hydrophobic patch of domain 1. Superposition of the structure of azurin II with that of domain 1 of one of the Met144Leu molecules provides the first glimpse of an azurin II-NiR protein-protein complex. Mutations of two of the residues of AxNiR, Trp138His (Barrett et al. in Biochemistry 43:16311-16319, 2004) and Met87Leu, highlighted in the AxNiR-azurin complex, results in substantially decreased activity when azurin is used as the electron donor instead of methyl viologen, providing direct evidence for the importance of this region for complex formation.  相似文献   

3.
We report here the first detailed study of the dithionite reduction kinetics of a copper-containing dissimilatory nitrite reductase (NiR). The reduction of the blue type 1 copper (T1Cu) center of NiR preparations that contained both type 1 and type 2 copper atoms, followed biphasic kinetics. In contrast, NiR that was deficient in type 2 copper (T2DNiR), followed monophasic kinetics with a second-order rate constant (T2D)k = 3.06 x 10(6) m(-1) s(-1). In all cases the SO(2)(.-) radical rather than S(2)O(4)(2-) was the effective reductant. The observed kinetics were compatible with a reaction mechanism in which the T1Cu of the fully loaded protein is reduced both directly by dithionite and indirectly by the type 2 Cu (T2Cu) site via intramolecular electron transfer. Reduction kinetics of the T2Cu were consistent with SO(2)(.-) binding first to the T2Cu center and then transferring electrons (112 s(-1)) to reduce it. As SO(2)(.-) is a homologue of NO(2)(-), the NiR substrate, it is not unlikely that it binds to the catalytic T2Cu site. Effects on the catalytic activity of the enzyme using dithionite as a reducing agent are discussed. Reduction of the semireduced T1Cu(I)T2Cu(II) state followed either second-order kinetics with k(2) = 3.33 x 10(7) m(-1) s(-1) or first-order kinetics with 52.6 s(-1) < (T1red)k(1) < 112 s(-1). Values of formation constants of the T1Cu(II)T2Cu(II)-SO(2)(.-) and T1Cu(I)T2Cu(II)-SO(2)(.-) adducts showed that the redox state of T1Cu affected binding of SO(2)(.-) at the catalytic T2Cu center. Analysis of the kinetics required the development of a mathematical protocol that could be applied to a system with two intercommunicating sites but only one of which can be monitored. This novel protocol, reported for the first time, is of general application.  相似文献   

4.
Tocheva EI  Rosell FI  Mauk AG  Murphy ME 《Biochemistry》2007,46(43):12366-12374
Nitrite reductase (NiR) is an enzyme that uses type 1 and type 2 copper sites to reduce nitrite to nitric oxide during bacterial denitrification. A copper-nitrosyl intermediate is a proposed, yet poorly characterized feature of the NiR catalytic cycle. This intermediate is formally described as Cu(I)-NO+ and is proposed to be formed at the type 2 copper site after nitrite binding and electron transfer from the type 1 copper site. In this study, copper-nitrosyl complexes were formed by prolonged exposure of exogenous NO to crystals of wild-type and two variant forms of NiR from Alcaligenes faecalis (AfNiR), and the structures were determined to 1.8 A or better resolution. Exposing oxidized wild-type crystals to NO results in the reverse reaction and formation of nitrite that remains bound at the active site. In a type 1 copper site mutant (H145A) that is incapable of electron transfer to the type 2 site, the reverse reaction is not observed. Instead, in both oxidized and reduced H145A crystals, NO is observed bound in a side-on manner to the type 2 copper. In AfNiR, Asp98 forms hydrogen bonds to both substrate and product bound to the type 2 Cu. In the D98N variant, NO is bound side-on but is more disordered when observed for the wild-type enzyme. The solution EPR spectra of the crystallographically characterized NiR-NO complexes indicate the presence of an oxidized type 2 copper site and thus are interpreted as resulting from stable copper-nitrosyls and formally assigned as Cu(II)-NO-. A reaction scheme in which a second NO molecule is oxidized to nitrite can account for the formation of a Cu(II)-NO- species after exposure of the oxidized H145A variant to NO gas.  相似文献   

5.
The nitrite reductase (Nir) isolated from Pseudomonas chlororaphis DSM 50135 is a blue enzyme, with type 1 and type 2 copper centers, as in all copper-containing Nirs described so far. For the first time, a direct determination of the reduction potentials of both copper centers in a Cu-Nir was performed: type 2 copper (T2Cu), 172 mV and type 1 copper (T1Cu), 298 mV at pH 7.6. Although the obtained values seem to be inconsistent with the established electron-transfer mechanism, EPR data indicate that the binding of nitrite to the T2Cu center increases its potential, favoring the electron-transfer process. Analysis of the EPR spectrum of the turnover form of the enzyme also suggests that the electron-transfer process between T1Cu and T2Cu is the fastest of the three redox processes involved in the catalysis: (a) reduction of T1Cu; (b) oxidation of T1Cu by T2Cu; and (c) reoxidation of T2Cu by NO(2) (-). Electrochemical experiments show that azurin from the same organism can donate electrons to this enzyme.  相似文献   

6.
 The reduction potentials of blue copper sites vary between 180 and about 1000 mV. It has been suggested that the reason for this variation is that the proteins constrain the distance between the copper ion and its axial ligands to different values. We have tested this suggestion by performing density functional B3LYP calculations on realistic models of the blue copper proteins, including solvent effects by the polarizable continuum method. Constraining the Cu-SMet bond length to values between 245 and 310 pm (the range encountered in crystal structures) change the reduction potential by less than 70 mV. Similarly, we have studied five typical blue copper proteins spanning the whole range of reduction potentials: stellacyanin, plastocyanin, azurin, rusticyanin, and ceruloplasmin. These studies included the methionine (or glutamine) ligand as well as the back-bone carbonyl oxygen group that is a ligand in azurin and is found at larger distances in the other proteins. The active-site models of these proteins show a variation in the reduction potential of about 140 mV, i.e., only a minor part of the range observed experimentally (800 mV). Consequently, we can conclude that the axial ligands have a small influence on the reduction potentials of the blue copper proteins. Instead, the large variation in the reduction potentials seems to arise mainly from variations in the solvent accessibility of the copper site and in the orientation of protein dipoles around the copper site. Received: 7 April 1999 / Accepted: 26 July 1999  相似文献   

7.
Lipid-modified azurin (Laz) from Neisseria gonorrhoeae is a type 1 copper protein proposed to be the electron donor to several enzymes involved in the resistance mechanism to reactive oxygen and nitrogen species. Here we report the backbone and side-chain resonance assignment of Laz in the reduced form, which has been complete at 97 %. The predicted secondary structure indicates that this protein belongs to the azurin subfamily of type 1 copper proteins.  相似文献   

8.
On the basis of spectroscopic and crystallographic data for dopamine beta-monooxygenase and peptidylglycine alpha-hydroxylating monooxygenase (PHM), a variety of ligand sets have been used to model the oxygen-binding Cu site in these enzymes. Calculations which employed a combination of density functional and multireference second-order perturbation theory methods provided insights into the optimal ligand set for supporting eta (1) superoxo coordination as seen in a crystal structure of a precatalytic Cu/O(2) complex for PHM (Prigge et al. in Science 304:864-867, 2004). Anionic ligand sets stabilized eta (2) dioxygen coordination and were found to lead to more peroxo-like Cu-O(2) complexes with relatively exergonic binding free energies, suggesting that these adducts may be unreactive towards substrates. Neutral ligand sets (including a set of two imidazoles and a thioether), on the other hand, energetically favored eta (1) dioxygen coordination and exhibited limited dioxygen reduction. Binding free energies for the 1:1 adducts with Cu supported by the neutral ligand sets were also higher than with their anionic counterparts. Deviations between the geometry and energetics of the most analogous models and the PHM crystal structures suggest that the protein environment influences the coordination geometry at the Cu(B) site and increases the lability of water bound to the preoxygenated reduced form. Another implication is that a neutral ligand set will be critical in biomimetic models in order to stabilize eta (1) dioxygen coordination.  相似文献   

9.
 In the redox center of azurin, the Cu(II) is strongly coordinated to one thiolate S from Cys 112 and two imidazole Ns from His 46 and 117. This site yields a complex resonance Raman (RR) spectrum with >20 vibrational modes between 200 and 1500 cm–1. We have investigated the effects of ligand-selective isotope replacements on the RR spectrum of Pseudomonas aeruginosa azurin to determine the relative spectral contribution from each of the copper ligands. Growth on 34S-sulfate labels the cysteine ligand and allows the identification of a cluster of bands with Cu–S(Cys) stretching character between 370 and 430 cm–1 whose frequencies are consistent with the trigonal or distorted tetrahedral coordination in type 1 sites. In type 2 copper-cysteinate sites, the lower ν (Cu–S) frequencies between 260 and 320 cm–1 are consistent with square-planar coordination. Addition of exogenous 15N-labeled imidazole or histidine to the His117Gly mutant generates type 1 or type 2 sites, respectively. Because neither the above nor the His46Gly mutant reconstituted with 15N-imidazole exhibits significant isotope dependence, the histidine ligands can be ruled out as important contributors to the RR spectrum. Instead, a variety of evidence, including extensive isotope shifts upon global substitution with 15N, suggests that the multiple RR modes of azurin are due principally to vibrations of the cysteine ligand. These are resonance-enhanced through kinematic coupling with the Cu–S stretch in the ground state or through an excited-state A-term mechanism involving a Cu-cysteinate chromophore that extends into the peptide backbone. Received: 29 July 1996 / Accepted: 9 November 1996  相似文献   

10.
 The possibility that ceruloplasmin (CP) functions as a copper transferase has fueled a continuing interest in studies of the copper release process. The principal goal of the current investigation has been to identify the most labile copper centers in sheep protein. In fact, subjecting the enzyme to a slow flux of cyanide at pH 5.2 under nitrogen in the presence of ascorbate and a phenanthroline ligand produces partially demetalated forms of the protein. By standard chromatographic techniques it is possible to isolate protein with a Cu/CP ratio of ∼4 or ∼5 as opposed to the native protein which has Cu/CP=5.8. In contrast to other blue oxidases, analysis suggests that CP preferentially loses its type 1 coppers under these conditions. Thus, the spectroscopic signals from the type 1 centers exhibit a loss of intensity while the EPR signal of the type 2 copper becomes stronger. Furthermore, the Cu/CP≈4 and Cu/CP≈5 components retain about 50% of the activity of the native protein, consistent with an intact type 2/type 3 cluster. All three type 1 copper sites appear to suffer copper loss. Reconstitution with a copper(I) reagent restores the spectroscopic properties of the native protein and 90% of the original activity. The results suggest a possible functional significance for the presence of three type 1 coppers in CP. By employing a pool of redox-active but relatively labile type 1 copper centers, the enzyme can serve as a copper donor, if necessary, without completely sacrificing its oxidase activity. Received: 15 February 1999 / Accepted: 22 April 1999  相似文献   

11.
To study the importance of a rigid copper site for the structure and function of azurin, a mutant with a reduced number of internal hydrogen bonds around the copper has been prepared and characterized. To this purpose, the previously cloned azu gene from Alcaligenes denitrificans (Hoitink, C. W. G., Woudt, L. P., Turenhout, J. C. M., Van de Kamp, M., and Canters, G. W. (1990) Gene (Amst.) 90, 15-20) was expressed in Escherichia coli and an isolation and purification procedure for the azurin was developed. The azurin obtained after heterologous expression in E. coli appears spectroscopically indistinguishable from azurin derived from A. denitrificans. The hydrogen bonding network around the copper site was altered by replacing Asn47 by a leucine by means of site-directed mutagenesis. Asn47 is a conserved residue in all blue copper proteins of which the primary structure has been reported. Characterization of the mutant protein with UV-visible, electron spin resonance, and NMR spectroscopy, and comparison with the wild type azurin revealed that the structure of the copper site as well as the overall structure of the protein have been largely retained. The redox activity as measured by the electron self-exchange rate appears not to have changed either. However, the mutant differs from the wild type azurin with respect to stability and midpoint potential. Midpoint potentials of mutant and wild type azurin amount to 396 and 286 mV, respectively. The difference is due to sizable entropic and enthalpic contributions which to a large extent cancel. Possible explanations for the outcome of these experiments are discussed.  相似文献   

12.
Nitrite reductase (NiR) is a multicopper protein, with a trimeric structure containing two types of copper site: type 1 is present in each subunit whereas type 2 is localized at the subunits interface. The paper reports on the thermal behaviour of wild type NiR from Alcaligenes faecalis S-6. The temperature-induced changes of the copper centres are characterized by optical spectroscopy and electron paramagnetic resonance spectroscopy, and by establishing the thermal stability by differential scanning calorimetry. The calorimetric profile of the enzyme shows a single endothermic peak with maximum heat absorption at Tm  100 °C, revealing an exceptional thermal stability. The thermal transition is irreversible and the scan rate dependence of the calorimetric trace indicates that the denaturation of NiR is kinetically controlled. The divergence of the activation energy values determined by different methods is used as a criterion for the inapplicability of the one-step irreversible model. The best fit of the DSC profiles is obtained when the classical Lumry–Eyring model, N ? U ? F, is considered. The simulation results indicate that the irreversible step prevails on the reversible one. Moreover, it is found that the conformational changes within the type-1 copper environments precede the denaturation of the whole protein. No evidence of protein dissociation within the temperature range investigated was observed.  相似文献   

13.
Jaron S  Blackburn NJ 《Biochemistry》1999,38(46):15086-15096
Peptidylglycine monooxygenase (PHM) carries out the hydroxylation of the alpha-C atom of glycine-extended propeptides, the first step in the amidation of peptide hormones by the bifunctional enzyme peptidyl-alpha-amidating monooxygenase (PAM). Since PHM is a copper-containing monooxygenase, a study of the interaction between the reduced enzyme and carbon monoxide has been carried out as a probe of the interaction of the Cu(I) sites with O(2). The results show that, in the absence of peptide substrate, reduced PHM binds CO with a stoichiometry of 0.5 CO/Cu(I), indicating that only one of the two copper centers, Cu(B), forms a Cu(I)-carbonyl. FTIR spectroscopy shows a single band in the 2200-1950 cm(-)(1) energy region with nu(CO) = 2093 cm(-)(1) assigned to the intraligand C-O stretch via isotopic labeling with (13)CO. A His242Ala mutant of PHM, which deletes the Cu(B) site by replacing one of its histidine ligands, completely eliminates CO binding. EXAFS spectroscopy is consistent with binding of a single CO ligand with a Cu-C distance of 1.82 +/- 0.03 A. The Cu-S(met) distance increases from 2.23 +/- 0. 02 A in the reduced unliganded enzyme to 2.33 +/- 0.01 A in the carbonylated enzyme, suggesting that the methionine-containing Cu(B) center is the site of CO binding. The binding of the peptide substrate N-Ac-tyr-val-gly perturbs the CO ligand environment, eliciting an IR band at 2062 cm(-)(1) in addition to the 2093 cm(-)(1) band. (13)CO isotopic substitution assigns both frequencies as C-O stretching bands. The CO:Cu binding stoichiometry and peptide/CO FTIR titrations indicate that the 2062 cm(-)(1) band is due to binding of CO at a second site, most likely at the Cu(A) center. This suggests that peptide binding may activate the Cu(A) center toward O(2) binding and reduction to superoxide. As a result of these findings, a new mechanism is proposed involving channeling of superoxide across the 11 A distance between the two copper centers.  相似文献   

14.
Myoglobin (Mb) is an ideal scaffold protein for rational protein design mimicking native enzymes. We recently designed a nitrite reductase (NiR) based on sperm whale Mb by introducing an additional distal histidine (Leu29 to His29 mutation) and generating a distal tyrosine (Phe43 to Tyr43 mutation) in the heme pocket, namely L29H/F43Y Mb, to mimic the active site of cytochrome cd (1) NiR from Ps. aeruginosa that contains two distal histidines and one distal tyrosine. The molecular modeling and dynamics simulation study herein revealed that L29H/F43Y Mb has the necessary structural features of native cytochrome cd (1) NiR and can provide comparable interactions with nitrite as in native NiRs, which provides rationality for the protein design and guides the protein engineering. Additionally, the present study provides an insight into the relatively low NiR activity of Mb in biological systems.  相似文献   

15.
The effect of solvent phase transitions on catalytic activity and structure of the active site of laccase produced by the Basidiomycetes Coriolus hirsutus 072 was studied. As shown by small-angle X-ray scattering, laccase exists in solution as a mixture of monomeric and aggregated particles in the percent ratio 85: 15. This ratio did not change on phase transitions. A complex nature of laccase activity dynamics during thawing and further heating to 20°C was shown. Spontaneous oxidation of T1 copper center in the temperature range 12–20°C was not observed. According to spectral data, the structure of laccase active sites including all copper centers of types T1, T2, and T3 changes during the phase transition.  相似文献   

16.
The homotrimeric copper-containing nitrite reductase (NiR) contains one type-1 and one type-2 copper center per monomer. Electrons enter through the type-1 site and are shuttled to the type-2 site where nitrite is reduced to nitric oxide. To investigate the catalytic mechanism of NiR the effects of pH and nitrite on the turnover rate in the presence of three different electron donors at saturating concentrations were measured. The activity of NiR was also measured electrochemically by exploiting direct electron transfer to the enzyme immobilized on a graphite rotating disk electrode. In all cases, the steady-state kinetics fitted excellently to a random-sequential mechanism in which electron transfer from the type-1 to the type-2 site is rate-limiting. At low [NO(-)(2)] reduction of the type-2 site precedes nitrite binding, at high [NO(-)(2)] the reverse occurs. Below pH 6.5, the catalytic activity diminished at higher nitrite concentrations, in agreement with electron transfer being slower to the nitrite-bound type-2 site than to the water-bound type-2 site. Above pH 6.5, substrate activation is observed, in agreement with electron transfer to the nitrite-bound type-2 site being faster than electron transfer to the hydroxyl-bound type-2 site. To study the effect of slower electron transfer between the type-1 and type-2 site, NiR M150T was used. It has a type-1 site with a 125-mV higher midpoint potential and a 0.3-eV higher reorganization energy leading to an approximately 50-fold slower intramolecular electron transfer to the type-2 site. The results confirm that NiR employs a random-sequential mechanism.  相似文献   

17.
 Frozen solutions of the azurin mutant His117Gly in the presence of excess of methyl-substituted imidazoles have been investigated by electron spin-echo envelope modulation (ESEEM) spectroscopy at 9 GHz. The addition of imidazole is known to reconstitute a blue-copper site and variation of the non-protein bound ligand [N-methyl-, 2-methyl-, 4(5)-methylimidazole] has allowed the study of the copper-imidazole binding as a model for histidine binding in such sites. Quadrupole and hyperfine tensors of the remote nitrogen of the imidazoles have been determined. The quadrupole tensors indicate that the methyl-substituted imidazoles in the mutant adopt the same orientation relative to copper as the histidine-117 in the wild-type protein. Analysis of the hyperfine tensors in terms of spin densities reveals that the spin density on the remote nitrogen of the substituted imidazole has σ and a variable π character, depending on the position of the methyl group. For azurin the corresponding spin density is of virtually pure σ character. In conclusion, blue-copper sites show subtle variations as regards the histidine/imidazole centred part of the wavefunction of the unpaired electron. Received: 27 October 1998 / Accepted: 9 February 1999  相似文献   

18.
The axial interactions of Cu(2+) in type 1 copper proteins control the physical characteristics of the proteins. We tuned the geometries of a de novo designed blue copper protein with a four-helical bundle structure. The designed protein axially bound various ligands, such as chloride, phosphate, sulfate, acetate, azide, and imidazole, to Cu(2+), exhibiting a blue or green color. The UV-vis spectral bands were observed at approximately 600?nm and approximately 450?nm, with the A (~450)/A (~600) ratios between 0.14 and 1.58. The stronger axial interaction shifted the geometry of the type 1 copper site from trigonal planar geometry (blue copper) toward a tetrahedral-like geometry (green copper). Resonance Raman spectral analyses showed that the phosphate-bound type had the highest-strength Cu-S bond, similar to that of plastocyanin. The chloride-bound type exhibited features similar to those of stellacyanin and nitrite reductase, and the imidazole-bound type exhibited features similar to those of azurin M121E mutant.  相似文献   

19.
Nitrite reductase of Alcaligenes xylosoxidans contains three blue type 1 copper centers with a function in electron transfer and three catalytic type 2 copper centers. The mutation H139A, in which the solvent-exposed histidine ligand of the type 1 copper ion was changed to alanine, resulted in the formation of a colorless protein containing 4.4 Cu atoms per trimer. The enzyme was inactive with reduced azurin as the electron donor, and in contrast to the wild-type enzyme, no EPR features assignable to type 1 copper centers were observed. Instead, the EPR spectrum of the H139A enzyme, with parameters of g(1) = 2.347 and A(1) = 10 mT, was typical of type 2 copper centers. On the addition of nitrite, the EPR features developed spectral features with increased rhombicity, with g(1) = 2.29 and A(1) = 11 mT, arising from the type 2 catalytic site. As assessed by visible spectroscopy, ferricyanide (E degree = +430 mV) was unable to oxidize the H139A enzyme, and this required a 30-fold excess of K(2)IrCl(6) (E degree = +867 mV). Oxidation resulted in the EPR spectrum developing additional axial features with g(1) = 2.20 and A(1) = 9.5 mT, typical of type 1 copper centers. The oxidized enzyme after separation from the excess of K(2)IrCl(6) by gel filtration was a blue-green color with absorbance maxima at 618 and 420 nm. The instability of the protein prevented the precise determination of the midpoint potential, but these properties indicate that it is in the range 700-800 mV, an increase of at least approximately 470 mV compared with the native enzyme. This high potential, which is consistent with a trigonal planar geometry of the Cu ion, effectively prevents azurin-mediated electron transfer from the type 1 center to the catalytic type 2 Cu site. However, with dithionite as reductant, 20% of the activity of the wild-type enzyme was observed, indicating that the direct reduction of the catalytic site by dithionite can occur. When CuSO(4) was added to the crude extract before isolation of the enzyme, the Cu content of the purified H139A enzyme increased to 5.7 Cu atoms per trimer. The enzyme remained colorless, and the activity with dithionite as a donor was not significantly increased. The additional copper in such preparations was associated with an axial type 2 Cu EPR signal with g(1) = 2.226 and A(1) = 18 mT, and which were not changed by the addition of nitrite, consistent with the activity data.  相似文献   

20.
Two cyclic and branched peptides (PLA and AZU) were synthesized with the aim of reproducing the active site of the blue copper proteins plastocyanin and azurin. Both peptides, designed on the basis of the x-ray structures of Poplar plastocyanin and Alcaligenes denitrificans azurin. contain the same coordinating residues of the parent native proteins. The visible spectra of PLA in the presence of equimolar amount of Cu(II) strongly support the interaction between the peptide and copper(II) ion. The CD titration of AZU with the Hg(II) ion indicates for the formation of two species. [A ZUHg]+ and [A ZUHg2]3+ having binding constants (Keq) of 3.106 and 2–104M?1, respectively. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号