首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
蛋白质酪氨酸磷酸化在抗失巢凋亡的癌细胞中的失调变化   总被引:2,自引:0,他引:2  
失巢凋亡是细胞与细胞外基质脱离发生的一种特定的凋亡方式 . 癌细胞抗失巢凋亡或失巢生存能力可以使之在转移过程中生存 . 业已发现癌细胞失巢生存与 PI3K-PKB/Akt 、 MAPK 这两条重要信号途径有关,但是 PI3K-PKB/Akt 、 MAPK 通路的上游酪氨酸激酶途径还不甚清楚 . 为此设计了一种基于 SH2-pTyr 特异性结合特性的功能性筛选方法,以期发现癌细胞失巢生存相关的酪氨酸磷酸化蛋白质,为最终明确酪氨酸激酶途径提供有力的实验依据 . 实验发现, MDCK 细胞悬浮培养后失巢凋亡,但癌细胞可以失巢生存 . 与这一现象相一致的是,悬浮培养后, MDCK 细胞中一系列 SH2 结合的酪氨酸磷酸化蛋白质水平急剧下降,而癌细胞中蛋白质酪氨酸磷酸化水平并不呈锚着依赖性 . 细胞悬浮培养后,随着培养时间的延长, MDCK 细胞中 Abl S SH2 结合的靶蛋白酪氨酸磷酸化水平逐渐降低,在 H460 肺癌细胞中经过短暂下降后升高, H1792 肺癌细胞随着培养时间的延长, Abl SH2 结合的靶蛋白酪氨酸磷酸化水平逐渐增加 . Fyn SH2 和 Crk SH2 结合的蛋白质分别为 FAK 和 p130Cas ,后者是重要的失巢生存信号 . 这些结果提示,酪氨酸磷酸化蛋白质可能赋予肺癌细胞失巢生存能力 . 结果也表明,功能性 SH2 筛查方法可以有效地发现肿瘤细胞中失巢生存相关的酪氨酸磷酸化蛋白质 .  相似文献   

2.
A new method for ultrathin grafting of pNIPAm on PDMS surfaces is introduced that employs plasma activation of the surface followed by thermal polymerization. This method is optimized for human primary SMC attachment and subsequent intact cell sheet detachment by lowering the temperature. The contractile gene expression of the cells showed that the contractile phenotype of the SMCs which is induced by aligning the cells through micropatterning is more preserved after thermoresponsive cell sheet detachment in contrast with enzymatic detachment. Given its simplicity and low cost, this thermoresponsive grafting method can be utilized for engineering patterned cell sheets for future bottom-up tissue engineering techniques.  相似文献   

3.
The piezoelectric sensor (quartz crystal microbalance, QCM) was used to monitor cell adhesion in real time. Two cell lines, rat epithelial cells (WB F344) and lung melanoma cells (B16F10) were used. The cells were adhered and grown on the gold surface of the sensor pre-coated with adsorbed layer of extracellular matrix proteins as vitronectin and laminin. The process of cell attachment and spreading on the gold surface was continuously monitored and displayed by changes of the resonant frequency Deltaf and resistance DeltaR values of the piezoelectric resonators. The initial phase of cell attachment and spreading induced a decrease of frequency and increase of resistance relating viscoelastic properties of the cell monolayer on the sensing surface. The steady-state of both shifts was achieved after a few hours. The presence and state of cells on the surface was confirmed by fluorescent microscopy. The obtained results demonstrate that the piezoelectric sensor is suitable for studies of the cell adhesion processes. Thus obtained cell-based biosensor has potential for identification and screening of biologically active drugs and other biomolecules affecting cellular shape and attachment.  相似文献   

4.
The processes of adhesion, spreading and proliferation of human mammary cancer cells MCF-7 on two Au electrodes with different surface roughness (R(f) and R(f)=3.2 or 1.1) were monitored and clearly identified with the quartz crystal microbalance (QCM) technique. Analyses of the QCM responses on the resonant frequency shifts (Deltaf(0)) vs. the motional resistance changes (DeltaR(1)) revealed a significant surface-stress effect in the involved courses, in addition to a viscodensity effect and a relatively small mass effect (especially at the smooth electrode). Experiments of fluorescence microscopy, cyclic voltammetry and electrochemical impedance spectroscopy were conducted to investigate the cell population on the electrode vs. the electrode-surface roughness. Simplified equations are deduced to quantitatively evaluate the surface stress, and a novel QCM method for dynamically measuring the surface stress on an electrode in cell-culture course is thus described. It was found that the smoother surface (R(f)=1.1) gave a higher surface stress during cell attachment and less cell population on it than the rougher surface (R(f)=3.2). In addition, real-time QCM monitoring showed on the same electrode the surface stress induced by hepatic normal cells being notably higher than that caused by hepatic cancer cells at cell-attachment stage, suggesting that the surface-stress measurement can exhibit the difference of adhesion-performance between the healthy and ill-behaved cells.  相似文献   

5.
Screening of biochemical interactions becomes simpler, less expensive, and more accurate when labels, such as fluorescent dyes, radioactive markers, and colorimetric reactions, are not required to quantify detected material. SRU Biosystems has developed a biosensor technology that is manufactured on continuous sheets of plastic film and incorporated into standard microplates and microarray slides to enable label-free assays to be performed with high throughput, high sensitivity, and low cost per assay. The biosensor incorporates a narrow band guided-mode resonance reflectance filter, in which the reflected color is modulated by the attachment/detachment of biochemical material to the surface. The technology offers 4 orders of linear dynamic range and uniformity within a plate, with a coefficient of variation of 2.5%. Using conventional biochemical immobilization surface chemistries, a wide range of assay applications are enabled. Small molecule screening, cell proliferation/cytotoxicity, enzyme activity screening, protein-protein interaction, and cell membrane receptor expression are among the applications demonstrated.  相似文献   

6.
Electrochemical impedance spectroscopy was tested to monitor the cell attachment and the biofilm proliferation in order to identify characteristic events induced on the metal surface by Gram-negative (Pseudomonas aeruginosa PAO1) and Gram-positive (Bacillus subtilis) bacteria strains. Electrochemical impedance spectra of AISI 304 electrodes during cell attachment and initial biofilm growth for both strains were obtained. It can be observed that the resistance increases gradually with the culture time and decreases with the biofilm detachment. So, the applicability of electric cell-substrate impedance sensing (ECIS) for studying the attachment and spreading of cells on a metal surface has been demonstrated. The biofilm formation was also characterized by the use of scanning electron microscopy and confocal laser scanning microscopy and COMSTAT image analysis. The electrochemical results roughly agree with the microscope image observations. The ECIS technique used in this study was used for continuous real-time monitoring of the initial bacterial adhesion and the biofilm growth. It provides a simple and non-expensive electrochemical method for in vitro assessment of the presence of biofilms on metal surfaces.  相似文献   

7.
Nonwoven fibrous matrices have been widely used in cell and tissue cultures because their three-dimensional (3-D) structures with large surface areas and pore spaces can support high-density cell growth. Although cell adherence and growth on 2-D surfaces have been thoroughly investigated, very little is known for cells cultured in 3-D matrices. The effects of mixing intensity on cell seeding, adherence, and growth in fibrous matrices were thus investigated. Chinese Hamster Ovary and osteosarcoma cells were inoculated into nonwoven polyethylene terephthalate matrices by dynamic and static seeding methods, of which the former was found to be superior in seeding efficiency and cell distribution in the matrices. Dynamic seeding increased seeding efficiency from approximately 40% to more than 90%. When higher mixing intensities were applied, both cell attachment and detachment rates increased. Cell attachment was transport limited, as indicated by the increased attachment rate with increasing the mass transfer coefficient of the cells. Meanwhile, cell detachment from the 3-D matrix can be described by the Bell model. The effects of matrix pore size on cell adherence and proliferation were also investigated. In general, the smaller pore size is favorable to cell attachment and proliferation. Further analysis revealed that the interaction between mixing intensity and pore size played a vital role in hydrodynamic damage to cells, which was found to be significant when the Kolomogorov eddy size was smaller than the matrix pores. Increasing mixing intensity also increased oxygen transfer, decreased the lactate yield from glucose, and improved cell growth.  相似文献   

8.
9.
 恶性肿瘤细胞或粘着于基膜以及在一定的基质上增殖对于肿瘤的浸润转移至关重要。层粘连蛋白(1aminin,LN)是基膜所特有的非胶原糖蛋白。我们研究了LN在肿瘤细胞粘着、铺展及增殖中的作用。通过测定粘着细胞所释放的LDH活性定量分析细胞粘着率。LN可显著增加体外培养的小鼠S180-V肉瘤及B16-MBK黑色素瘤细胞在玻璃及Ⅳ型胶原基质上粘着及铺展。纤维粘连蛋白(fibronectin,FN)亦有类似作用。而非糖蛋白(牛血清清蛋白)或其他糖蛋白(鸡卵清清蛋白或免疫球蛋白)均无类似作用。此外,LN或FN抗体可分别抑制细胞粘着于LN或FN。这些结果表明LN或FN促细胞粘着作用是专一性的。扫描电镜观察表明,粘着在LN敷盖的玻璃表面的瘤细胞呈多突扁平形、膜皱襞及微绒毛十分稀少,而粘着在裸露的玻璃表面者为球形,膜皱襞及微绒毛甚多。再者,~3H-TdR向粘着于LN基质上的瘤细胞群的参入量显著高于粘着在裸露玻璃面者。  相似文献   

10.
The cover image illustrates the working principle of the coupled external cavity photonic crystal (PC) enhanced fluorescence. The resonantly reflected laser wavelength from the PC provides feedback to the diode. The cavity then lases at the resonant wavelength of the PC. Addition of biomolecules to the surface of the PC shifts the resonant reflected wavelength, which in turns changes the lasing wavelength of the PC. This configuration tunes the lasing wavelength of the cavity to the resonant wavelength of the PC, thus eliminating the need to adjust the incident angle of the detection instrument when the PC is altered by surface chemistry layers or by capture molecules. This scheme leads to ~10 increase in the electromagnetic enhancement factor compared to ordinary photonic crystal enhanced fluorescence. Using this method we achieve ~105 improvement in the limit of detection of a fluorophore‐tagged protein compared to its detection on an unpatterned glass substrate. (Picture: A. Pokhriyal et al., pp. 331–339 in this issue)  相似文献   

11.
Human ovarian tumors metastasize by direct extension into the peritoneal cavity leading to tumor cell implantation onto peritoneal surfaces. Successful formation of peritoneal implants is dependent on the ability of ascitic tumor cells to infiltrate the mesothelium, and become firmly adherent to the underlying extracellular matrix (ECM). In order to investigate this process in more detail, an in vitro model system was developed employing human mesothelial cells grown on ECM-coated culture dishes. The ability of human ovarian carcinoma cells derived from ascitic fluid to attach to the mesothelial cell monolayer grown on ECM, ECM alone or plastic was quantitated with the use of 51Cr radio-labelled tumor cells. Tumor cells exhibited a more rapid and firmer attachment to ECM than to the mesothelial cells or to plastic. Using agitation to stimulate peritoneal fluid dynamics and shear forces in vivo, tumor cell arrest was found to be limited to the ECM, but it occurred at a slower rate than it did without agitation. Tumor cell attachment was also restricted to areas of exposed ECM in wounded mesothelium as assessed by phase-contrast microscopy. Morphologic alterations of the mesothelium induced by tumor cells were observed with the use of scanning electron microscopy (SEM) and immunohistochemical staining which included disruption of intercellular junctions leading to retraction of mesothelial cells, exposure of underlying ECM, subsequent attachment and proliferation on ECM. This model system would appear to be useful for elucidating mechanisms of ovarian tumor cell adhesion and proliferation, and for assessing various therapeutic modalities for their ability to block tumor cell implantation, invasion and growth on peritoneal surfaces.  相似文献   

12.
Most normal cells require adhesion to extracellular matrix for survival, but the molecular mechanisms that link cell surface adhesion events to the intracellular apoptotic machinery are not understood. Bcl-2 family proteins regulate apoptosis induced by a variety of cellular insults through acting on internal membranes. A pro-apoptotic Bcl-2 family protein, Bax, is largely present in the cytosol of many cells, but redistributes to mitochondria after treatment with apoptosis-inducing drugs. Using mammary epithelial cells as a model for adhesion-regulated survival, we show that detachment from extracellular matrix induced a rapid translocation of Bax to mitochondria concurrent with a conformational change resulting in the exposure of its BH3 domain. Bax translocation and BH3 epitope exposure were reversible and occurred before caspase activation and apoptosis. Pp125FAK regulated the conformation of the Bax BH3 epitope, and PI 3-kinase and pp60src prevented apoptosis induced by defective pp125FAK signaling. Our results provide a mechanistic connection between integrin-mediated adhesion and apoptosis, through the kinase-regulated subcellular distribution of Bax.  相似文献   

13.
Cell behaviours such as proliferation and attachment can be affected by the length of pre-incubation period of the scaffolds in the culture medium for long term. The aim of this study was to investigate the long term pre-incubation of 3D silk fibroin scaffolds in complete culture medium on cell attachment and proliferation. After the preparation of silk fibroin scaffolds by the technique of freeze drying, the scaffolds were pre-incubated in complete culture medium for 2 d, 6 d or 10 d before apical papilla stem cells (SCAP) seeding. Modifications of the scaffold surface and wettability were examined by FE-SEM and water contact angle, respectively. Results showed a decrease both in roughness and water contact angle as pre-incubation time increases. DNA measurement after 18 h and 10 d cell seeding showed a significant increase of DNA concentration which represents better attachment and proliferation with pre-incubation time increase. Qualitative examination, live&dead assay or H&E staining method after 30 h and 10 d cell seeding respectively, indicated that pre-incubation of scaffolds has time dependent effect on cell proliferation and attachment. This suggests that improvement of cell attachment and proliferation may be mediated by differences in the amount of wettability (decreased water contact angle) after exposure of scaffold to culture medium for long term which, in turn, causes more protein adsorption in the surface of silk fibroin scaffold (decreased roughness).  相似文献   

14.
A thickness shear-mode acoustic wave device, operated in a flow-through format, was used to detect the binding of ions or peptides to surface-attached calmodulin. On-line surface attachment of the protein was achieved by immobilisation of the biotinylated molecule via a neutravidin-biotin linkage onto the surface of the gold electrode of the detector. The interaction between calmodulin, and calcium and magnesium ions induced an increase in resonant frequency and a decrease in motional resistance, which were reversible on washing with buffer. Interestingly, the changes in resonant frequency and motional resistance induced by the binding were opposite to the normal operation of the detector. The response was interpreted as a decrease in surface coupling (partial slip at the liquid/solid interface) instigated by exposure of hydrophobic domains on the protein, and an increase in the thickness, and hence effective wavelength, of the acoustic device, corresponding to an increase in the length of calmodulin by 1.5 A. This result is consistent with the literature value of 4 A. In addition, the interaction of the protein with peptide together with calcium ions was detected successfully, despite the relatively low molecular mass of the 2-kDa peptide. These results confirm the potential of acoustic wave physics for the detection of changes in the conformational chemistry of monolayer of biochemical macromolecules at the solid/liquid interface.  相似文献   

15.
The protumorigenic functions for autophagy are largely attributed to its ability to promote cancer cell survival in response to diverse stresses. Here we demonstrate an unexpected connection between autophagy and glucose metabolism that facilitates adhesion-independent transformation driven by a strong oncogenic insult-mutationally active Ras. In cells ectopically expressing oncogenic H-Ras as well as human cancer cell lines harboring endogenous K-Ras mutations, autophagy is induced following extracellular matrix detachment. Inhibiting autophagy due to the genetic deletion or RNA interference-mediated depletion of multiple autophagy regulators attenuates Ras-mediated adhesion-independent transformation and proliferation as well as reduces glycolytic capacity. Furthermore, in contrast to autophagy-competent cells, both proliferation and transformation in autophagy-deficient cells expressing oncogenic Ras are insensitive to reductions in glucose availability. Overall, increased glycolysis in autophagy-competent cells facilitates Ras-mediated adhesion-independent transformation, suggesting a unique mechanism by which autophagy may promote Ras-driven tumor growth in specific metabolic contexts.  相似文献   

16.
《Biophysical journal》2020,118(7):1552-1563
Tumor cells express a unique cell surface glycocalyx with upregulation of sulfated glycosaminoglycans and charged glycoproteins. Little is known about how electromagnetic fields interact with this layer, particularly with regard to harnessing unique properties for therapeutic benefit. We applied a pulsed 20-millitesla (mT) magnetic field with rate of rise (dB/dt) in the msec range to cultured tumor cells to assess whether this affects membrane integrity as measured using cytolytic assays. A 10-min exposure of A549 human lung cancer cells to sequential 50- and 385-Hz oscillating magnetic fields was sufficient to induce intracellular protease release, suggesting altered membrane integrity after the field exposure. Heparinase treatment, which digests anionic sulfated glycan polymers, before exposure rendered cells insensitive to this effect. We further examined a non-neoplastic human primary cell line (lung lymphatic endothelial cells) as a typical normal host cell from the lung cancer microenvironment and found no effect of field exposure on membrane integrity. The field exposure was also sufficient to alter proliferation of tumor cells in culture, but not that of normal lymphatic cells. Pulsed magnetic field exposure of human breast cancer cells that express a sialic-acid rich glycocalyx also induced protease release, and this was partially abrogated by sialidase pretreatment, which removes cell surface anionic sialic acid. Scanning electron microscopy showed that field exposure may induce unique membrane “rippling” along with nanoscale pores on A549 cells. These effects were caused by a short exposure to pulsed 20-mT magnetic fields, and future work may examine greater magnitude effects. The proof of concept herein points to a mechanistic basis for possible applications of pulsed magnetic fields in novel anticancer strategies.  相似文献   

17.
18.
Mechanically stimulating cell-seeded scaffolds by flow-perfusion is one approach utilized for developing clinically applicable bone graft substitutes. A key challenge is determining the magnitude of stimuli to apply that enhances cell differentiation but minimizes cell detachment from the scaffold. In this study, we employed a combined computational modeling and experimental approach to examine how the scaffold mean pore size influences cell attachment morphology and subsequently impacts upon cell deformation and detachment when subjected to fluid-flow. Cell detachment from osteoblast-seeded collagen-GAG scaffolds was evaluated experimentally across a range of scaffold pore sizes subjected to different flow rates and exposure times in a perfusion bioreactor. Cell detachment was found to be proportional to flow rate and inversely proportional to pore size. Using this data, a theoretical model was derived that accurately predicted cell detachment as a function of mean shear stress, mean pore size, and time. Computational modeling of cell deformation in response to fluid flow showed the percentage of cells exceeding a critical threshold of deformation correlated with cell detachment experimentally and the majority of these cells were of a bridging morphology (cells stretched across pores). These findings will help researchers optimize the mean pore size of scaffolds and perfusion bioreactor operating conditions to manage cell detachment when mechanically simulating cells via flow perfusion.  相似文献   

19.
The physiological and physicochemical bases for the effect of 5, 10, 50, or 100 micrograms of Cd and Zn ml-1 on the attachment and detachment interactions of Pseudomonas fluorescens H2 with glass substrata were determined. Attachment and detachment varied with the type and concentration of metal and the time at which cells were exposed to the metal. The largely inhibitory effect of the metals on bacterial motility and physiological activity did not directly influence attachment. The amount of Cd or Zn accumulated by the cells increased with metal concentration and was greater for free than for attached cells. The hydrophobicity and negative and positive charges of the bacterial surfaces (measured by hydrophobic and electrostatic interaction chromatography) were increased by cell exposure to the metals, particularly after Cd treatment. Cells exposed to Cd prior to attachment showed increased adhesion. Zinc-treated cells did not. There was a positive correlation between adhesion and Cd concentration in the attachment solution. No such relationship existed for Zn. P. fluorescens H2 exposed to Cd prior to attachment desorbed similarly to untreated controls. Zinc pretreatment resulted in decreased desorption. Cells attached in 5 or 10 micrograms of Cd or Zn ml-1 detached less than those attached in 50 or 100 micrograms of Cd or Zn ml-1. The presence of Cd or Zn during detachment had little effect on desorption. The dominant influence of Cd and Zn on attachment and detachment appears to be through modification of the bacterial surface. In natural ecosystems, heavy metals may influence the distribution of bacteria between the solid and liquid phases.  相似文献   

20.
Ion channels control the electrical properties of neurons and other excitable cell types by selectively allowing ions to flow through the plasma membrane1. To regulate neuronal excitability, the biophysical properties of ion channels are modified by signaling proteins and molecules, which often bind to the channels themselves to form a heteromeric channel complex2,3. Traditional assays examining the interaction between channels and regulatory proteins require exogenous labels that can potentially alter the protein''s behavior and decrease the physiological relevance of the target, while providing little information on the time course of interactions in living cells. Optical biosensors, such as the X-BODY Biosciences BIND Scanner system, use a novel label-free technology, resonance wavelength grating (RWG) optical biosensors, to detect changes in resonant reflected light near the biosensor. This assay allows the detection of the relative change in mass within the bottom portion of living cells adherent to the biosensor surface resulting from ligand induced changes in cell adhesion and spreading, toxicity, proliferation, and changes in protein-protein interactions near the plasma membrane. RWG optical biosensors have been used to detect changes in mass near the plasma membrane of cells following activation of G protein-coupled receptors (GPCRs), receptor tyrosine kinases, and other cell surface receptors. Ligand-induced changes in ion channel-protein interactions can also be studied using this assay. In this paper, we will describe the experimental procedure used to detect the modulation of Slack-B sodium-activated potassium (KNa) channels by GPCRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号