首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In salmonid fishes, life-history changes may often be coupled to early individual growth trajectories. We identified quantitative trait loci (QTL) for body weight (BW), condition factor (K) and age at sexual maturation (MT) in two full-sib families of Arctic charr (Salvelinus alpinus) to ascertain if QTL for MT were confounded with BW QTL intervals. Three significant QTL for BW, three QTL for MT and one significant QTL for K were identified. A BW QTL with major effect was localized to linkage group 8 (AC-8) and explained more than 34% of the phenotypic variation. Markers on AC-8 have previously been identified as being associated with variation in fork length and BW in this species. Similarly, a major QTL (PEV = 23%) with an influence on the female MT was localized to AC-23. Some of these regions are homologous to those in the genomes of rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar), where similar QTL effects have been detected. Our results also suggest the conservation of MT QTL on the homeologous linkage group pair AC-3/24 in Arctic charr. We further identified chromosomal regions that harbor QTL for multiple traits. In particular, markers on AC-4, -20 and -36 had detectable QTL for all traits studied. Significant MT QTL detected on AC-23, -24, and -27 were autonomous of any BW QTL regions, suggesting that the regulation of MT may be more independent of BW control within this species than in other species of salmonids.  相似文献   

2.
The high commercial value from the aquaculture of salmonid fishes has prompted many studies into the genetic architecture of complex traits and the need to identify genomic regions that have repeatable associations with trait variation both within and among species. We searched for quantitative trait loci (QTL) for body weight (BW), condition factor (CF) and age of sexual maturation (MAT) in families of Arctic charr (Salvelinus alpinus) from an Icelandic breeding program. QTL with genome-wide significance were detected for each trait on multiple Arctic charr (AC) linkage groups (BW: AC-4, AC-20; CF: AC-7, AC-20, AC-23, AC-36; MAT: AC-13/34, AC-39). In addition to the genome-wide significant QTL for both BW and CF on AC-20, linkage groups AC-4, AC-7, AC-8, and AC-16 contain QTL for both BW and CF with chromosome-wide significance. These regions had effects (albeit weaker) on MAT with the exception of the region on AC-8. Comparisons with a North American cultured strain of Arctic charr, as well as North American populations of Atlantic salmon (Salmo salar), and rainbow trout (Oncorhynchus mykiss), reveal some conservation in QTL location and structure, particularly with respect to the joint associations of QTL influencing BW and CF. The detection of some differences in genetic architecture between the two aquaculture strains of Arctic charr may be reflective of the differential evolutionary histories experienced by these fishes, and illustrates the importance of including different strains to investigate genetic variation in a species where the intent is to use that variation in selective breeding programs.  相似文献   

3.
Body weight and length are economical important traits in aquaculture species influenced by quantitative trait loci (QTL) and environmental factors. In this study, a backcross (BC1) common carp family, with 86 progeny, was utilized to construct genetic map for preliminary QTL mapping. The genetic map was constructed with 366 markers, including 191 SNP from gene, coverage 50 linkage groups with an average marker distance of 18.5 cM. A total of fourteen QTLs associated with body weight (BW), body length (BL) and condition factor (K) were detected on ten linkage groups (LGs). Among these QTLs detected, three (qBW8, qBL8 and qK8) were associated with BW, BL and K respectively, were mapped on LG8. qBW8 and qK8 were identified on similar interval neared locus HLJ2394 explained 14.9 and 20.9 % of the phenotype variance, while qBL8 was identified on separate nearby locus HLJ571 with 30.8 % of phenotype variance. Two QTLs, qBW13 and qK13, related with BW and K separately, were found on LG13 at different locus with phenotype variance of 25.3 and 20.9 %. Other two QTLs, qBW19 and qBL19, associated to BW and BL were mapped on same region near SNP0626 on LG19, and explained 10.3 and 15.6 % of phenotype variance. While other seven QTLs related with BW and BL were located on different LGs. Confidential interval was ranged from 1.1 to 10 cM in the present study. These markers, with lower QTL interval, have great influence on the body weight and length. Therefore, these QTLs will be helpful to find out the genes related with specific trait.  相似文献   

4.
A genetic linkage map of Salix (2n = 38), composed of 325 AFLP and 38 RFLP markers has been constructed. The map was based on a population ( n = 87) derived from a cross between the male hybrid clone "Bj?rn" ( Salix viminalis x Salix schwerinii) and the female clone "78183" ( S. viminalis). Three hundred fifty seven AFLPs corresponding to DNA polymorphisms heterozygous in one parent and null in the other were scored. A total of 87 RFLP probes, most (83) derived from the Populus genome, yielded 39 and 11 polymorphic loci segregating in a 1:1 and 1:2:1 ratio respectively. Two maps, one for each parent, were constructed according to the "two-way pseudo-testcross" mapping strategy. The S. viminalis x S. schwerinii map (2,404 cM) included 217 markers and formed 26 major linkage groups while S. viminalis (1,844 cM) consisted of 146 markers placed on 18 major groups. In addition, eight and 14 additional minor linkage groups composed of less than four markers (doubles and triplets) were obtained in the S. viminalis x S. schwerinii and the S. viminalis maps, respectively. Both maps provided 70-80% genome coverage with an average density of markers of 14 cM. To investigate possible homologies between the parental maps, 20 AFLPs and 11 RFLPs segregating in 3:1 or 1:2:1 ratios were included in the linkage analysis. Eight linkage groups homologous between the two maps were detected. The present genetic map was used to identify quantitative trait loci (QTLs) affecting growth-related traits. Eleven QTLs were identified; seven QTLs for height growth, one QTL for stem diameter, one QTL for the height: diameter ratio, one QTL for the number of vegetative buds during flowering time and one QTL for the number of shoots. The estimated magnitude of the QTL effect ranged from 14 to 22% of the total phenotypic variance. One QTL associated with height growth and one affecting the height: diameter ratio were overlapping in the same marker interval with the QTL affecting stem diameter. QTL stability over years was estimated for traits measured in multiple years. Generally, QTLs were only significant in a single year although two QTLs for height growth were close to reaching the significance level in 2 consecutive years.  相似文献   

5.
An F2 experimental population, developed from a broiler layer cross, was used in a genome scan of QTL for percentage of carcass, carcass parts, shank and head. Up to 649 F2 chickens from four paternal half‐sib families were genotyped with 128 genetic markers covering 22 linkage groups. Total map length was 2630 cM, covering approximately 63% of the genome. QTL interval mapping using regression methods was applied to line‐cross and half‐sib models. Under the line‐cross model, 12 genome‐wide significant QTL and 17 suggestive linkages for percentages of carcass parts, shank and head were mapped to 13 linkage groups (GGA1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 14, 18 and 27). Under the paternal half‐sib model, six genome‐wide significant QTL and 18 suggestive linkages for percentages of carcass parts, shank and head were detected on nine chicken linkage groups (GGA1, 2, 3, 4, 5, 12, 14, 15 and 27), seven of which seemed to corroborate positions revealed by the previous model. Overall, three novel QTL of importance to the broiler industry were mapped (one significant for shank% on GGA3 and two suggestive for carcass and breast percentages on GGA14 and drums and thighs percentage on GGA15). One novel QTL for wings% was mapped to GGA3, six novel QTL (GGA1, 3, 7, 8, 9 and 27) and suggestive linkages (GGA2, 4, and 5) were mapped for head%, and suggestive linkages were identified for back% on GGA2, 11 and 12. In addition, many of the QTL mapped in this study confirmed QTL previously reported in other populations.  相似文献   

6.
ABSTRACT: BACKGROUND: Quantitative trait locus (QTL) studies show that variation in salinity tolerance in Arctic charr and rainbow trout has a genetic basis, even though both these species have low to moderate salinity tolerance capacities. QTL were observed to localize to homologous linkage group segments within putative chromosomal regions possessing multiple candidate genes. We compared salinity tolerance QTL in rainbow trout and Arctic charr to those detected in a higher salinity tolerant species, Atlantic salmon. The highly derived karyotype of Atlantic salmon allows for the assessment of whether disparity in salinity tolerance in salmonids is associated with differences in genetic architecture. To facilitate these comparisons, we examined the genomic synteny patterns of key candidate genes in the other model teleost fishes that have experienced three whole-genome duplication (3R) events which preceded a fourth (4R) whole genome duplication event common to all salmonid species. RESULTS: Nine linkage groups contained chromosome-wide significant QTL (AS-2, -4p, -4q, -5, -9, -12p, -12q, -14q -17q, -22, and [MINUS SIGN]23), while a single genome-wide significant QTL was located on AS-4q. Salmonid genomes shared the greatest marker homology with the genome of three-spined stickleback. All linkage group arms in Atlantic salmon were syntenic with at least one stickleback chromosome, while 18 arms had multiple affinities. Arm fusions in Atlantic salmon were often between multiple regions bearing salinity tolerance QTL. Nine linkage groups in Arctic charr and six linkage group arms in rainbow trout currently have no synteny alignments with stickleback chromosomes, while eight rainbow trout linkage group arms were syntenic with multiple stickleback chromosomes. Rearrangements in the stickleback lineage involving fusions of ancestral arm segments could account for the 21 chromosome pairs observed in the stickleback karyotype. CONCLUSIONS: Salinity tolerance in salmonids from three genera is to some extent controlled by the same loci. Synteny between QTL in salmonids and candidate genes in stickleback suggests genetic variation at candidate gene loci could affect salinity tolerance in all three salmonids investigated. Candidate genes often occur in pairs on chromosomes, and synteny patterns indicate these pairs are generally conserved in 2R, 3R, and 4R genomes. Synteny maps also suggest that the Atlantic salmon genome contains three larger syntenic combinations of candidate genes that are not evident in any of the other 2R, 3R, or 4R genomes examined. These larger synteny tracts appear to have resulted from ancestral arm fusions that occurred in the Atlantic salmon ancestor. We hypothesize that the superior hypo-osmoregulatory efficiency that is characteristic of Atlantic salmon may be related to these clusters.  相似文献   

7.
To identify quantitative trait loci (QTL) influencing early maturation (EM) in rainbow trout (Oncorhynchus mykiss), a genome scan was performed using 100 microsatellite loci across 29 linkage groups. Six inter-strain paternal half-sib families using three inter-strain F(1) brothers (approximately 50 progeny in each family) derived from two strains that differ in the propensity for EM were used in the study. Alleles derived from both parental sources were observed to contribute to the expression of EM in the progeny of the brothers. Four genome-wide significant QTL regions (i.e., RT-8, -17, -24, and -30) were observed. EM QTL detected on RT-8 and -24 demonstrated significant and suggestive QTL effects in both male and female progeny. Furthermore, within both male and female full-sib groupings, QTL on RT-8 and -24 were detected in two or more of the five parents used. Significant genome-wide and several strong chromosome-wide QTL for EM localized to different regions in males and females, suggesting some sex-specific control. Namely, QTL detected on RT-13, -15, -21, and -30 were associated with EM only in females, and those on RT-3, -17, and -19 were associated with EM only in males. Within the QTL regions identified, a comparison of syntenic EST markers from the rainbow trout linkage map with the zebrafish (Danio rerio) genome identified several putative candidate genes that may influence EM.  相似文献   

8.
Phenotypic measurements of chicken egg character and production traits are restricted to mature females only. Marker assisted selection of immature chickens using quantitative trait loci (QTL) has the potential to accelerate the genetic improvement of these traits in the chicken population. The QTL for 12 traits (i.e. body weight (BW), six for egg character, three for egg shell colour and two for egg production) of chickens were identified. An F2 population comprising 265 female chickens obtained by crossing White Leghorn and Rhode Island Red breeds and genotyped for 123 microsatellite markers was used for detecting QTL. Ninety-six markers were mapped on 25 autosomal linkage groups, and 13 markers were mapped on one Z chromosomal linkage group. Eight previous unmapped markers were assigned to their respective chromosomes in this study. Significant QTL were detected for BW on chromosomes 4 and 27, egg weight on chromosome 4, the short length of egg on chromosome 4, and redness of egg shell colour (using the L*a*b* colour system) on chromosome 11. A significant QTL on the Z chromosome was linked with age at first egg. Significant QTL could account for 6-19% of the phenotypic variance in the F2 population.  相似文献   

9.
Backcross breeding with marker-assisted selection was used to construct an intervarietal set of part chromosome substitution lines in Brassica napus, formed from a cross between two winter varieties of oilseed rape: Tapidor and Victor. A total of 22 lines from this substitution library were examined over a 3-year period, in a total of nine field trials, for seed oil fatty acid composition and seed oil content. Trialing of the substitution lines gave evidence for the existence of 13 quantitative trait loci (QTL). All 13 QTL affected fatty acid composition of the seed, and were distributed among linkage groups 1, 3, 6, 7, 8, 11, 13, 14, 18, and 19. Seven of these QTL, on linkage groups 3, 6, 8, 13, 14, 18, and 19, also affected total seed oil content. The positions of these QTL are compared to those in the published literature and with respect to erucic acid QTL previously identified in a backcross population of the same cross. The substitution line approach gives increased precision and sensitivity for QTL mapping compared to other methods.  相似文献   

10.
Infectious pancreatic necrosis (IPN) is a viral disease currently presenting a major problem in the production of Atlantic salmon (Salmon salar). IPN can cause significant mortality to salmon fry within freshwater hatcheries and to smolts following transfer to seawater, although challenged populations show clear genetic variation in resistance. To determine whether this genetic variation includes loci of major effect, a genomewide quantitative trait loci (QTL) scan was performed within 10 full-sib families that had received a natural seawater IPN challenge. To utilize the large difference between Atlantic salmon male and female recombination rates, a two-stage mapping strategy was employed. Initially, a sire-based QTL analysis was used to detect linkage groups with significant effects on IPN resistance, using two to three microsatellite markers per linkage group. A dam-based analysis with additional markers was then used to confirm and position any detected QTL. Two genomewide significant QTL and one suggestive QTL were detected in the genome scan. The most significant QTL was mapped to linkage group 21 and was significant at the genomewide level in both the sire and the dam-based analyses. The identified QTL can be applied in marker-assisted selection programs to improve the resistance of salmon to IPN and reduce disease-related mortality.  相似文献   

11.
Interval mapping of quantitative trait loci (QTL) for 16 yield, agronomic and quality traits in potato was performed on a tetraploid full-sib family comprising 227 clones from a cross between processing clone 12601ab1 and table cultivar Stirling. Thirty-eight AFLP primer combinations and six SSRs provided 514 informative markers which formed a molecular marker map comprising 12 linkage groups (LGs) in 12601ab1 (nine with four homologous chromosomes) which were aligned with 12 in Stirling (11 with four homologous chromosomes), with four partial groups remaining in 12601ab1. Two LGs were identified unequivocally as chromosomes IV and V and eight others were tentatively assigned with chromosomes VII and X unidentified. All of the traits scored had moderately high heritabilities with 54–92% of the variation in clone means over 3 years and two replicates being due to genetic differences. A total of 39 QTLs were identified. A QTL for maturity was identified on chromosome V which explained 56% of the phenotypic variance, whereas the other QTLs individually explained between 5.4 and 16.5%. However, six QTLs were detected for after-cooking blackening and four for each of regularity of tuber shape, fry colour both after storage at 4 and 10°C and sprouting. Just two QTLs were found for each of yield, the two ‘overall’ scores, crop emergence, tuber size and common scab and just one QTL was detected for each of dry matter content, keeping quality, growth cracks and internal condition. The implications for practical potato breeding and for practical linkage and QTL analysis in autotetraploids are discussed.  相似文献   

12.
13.
We applied a candidate gene mapping approach to an existing quantitative trait loci (QTL) data set for spawning date in rainbow trout (Oncorynchus mykiss) to ascertain whether these genes could potentially account for any observed QTL effects. Several genes were chosen for their known or suspected roles in reproduction, circadian, or circannual timing, including salmon-type gonadotropin-releasing hormone 3A and 3B (GnRH3A and GnRH3B), Clock, Period1, and arylalkylamine N-acetlytransferase-1 and -2 (AANAT-1 and AANAT-2). Genes were sequenced, and polymorphisms were identified in parents of two rainbow trout mapping families, one of which was used previously to detect spawn timing QTL. Interval mapping was used to identify associations between genetic markers and spawning date effects. Using a genetic map that was updated with 574 genetic markers (775 total), we found evidence for 11 significant or suggestive QTL regions. Most QTL were only localized within one of the parents; however, a strong QTL region was identified in both female and male parents on linkage group RT-8 that explained 20% and 50% of trait variance, respectively. The Clock gene mapped to this region. Period1 mapped to a region in the female parent associated with a marginal effect (P = .056) on spawn timing. Other candidate genes were not associated with significant QTL effects.  相似文献   

14.
Bean pyralid (BP; Lamprosema indicata Fabricius) is one of the major leaf-feeding insects that affect soybean crops in central and southern China. Four recombinant inbred line populations (KY, WT, XG and SX) were tested during 2004-2006 in Nanjing, China, to identify quantitative trait loci (QTL) for resistance to BP on the basis of data for rolled leaflet percentage under field infestation conditions. The mapping was performed using QTL Network V2.0 and checked with Windows QTL Cartographer V2.5 and IciMapping V2.2. The results showed that 81-92?% of the phenotypic variation was accounted for by additive QTL (27-43?%), epistatic QTL pairs (5-13?%), and collective unmapped minor QTL (38-58?%). In total, 17 QTL were detected on 11 linkage groups, of which two had additive effects, six had both additive and epistatic effects, and nine had only epistatic effects. Eight epistatic QTL pairs were observed, of which three pairs involved two QTL with additive effects, one involved one QTL with additive effect, and four involved no QTL with additive effects. Different genetic structures for BP resistance were found among the populations. Eight QTL (five additive and three epistatic pairs) were detected in KY, ten QTL (four additive and five epistatic pairs) were detected in WT, and only one additive QTL was detected in both the XG and the SX populations. BP12-1 and BP1-1 are major QTL, with the former accounting for 15, 31, and 50?% of the total genetic variation (including epistasis) in KY, WT, and XG, respectively, and the latter accounting for 13 and 32?% of the total genetic variation in KY and SX, respectively. The additive?×?year and epistasis?×?year interaction effects were negligible, indicating that the QTL were stable over the years. Because 41-68?% of the total genetic variation could not be accounted for by these QTL, the use of both identified QTL and unmapped minor QTL in breeding for BP resistance should be considered.  相似文献   

15.
A quantitative trait loci (QTL) study was undertaken to identify genome regions involved in the control of fearfulness in Japanese quail (Coturnix japonica). An F2 cross was made between two quail lines divergently selected over 29 generations on duration of tonic immobility (DTI), a catatonic-like state of reduced responsiveness to a stressful stimulation. A total of 1065 animals were measured for the logarithm of DTI (LOGTI), the number of inductions (NI) necessary to induce the immobility reaction, open-field behaviour including locomotor activity (MOVE), latency before first movement (LAT), number of jumps (JUMP), dejections (DEJ) and shouts (SHOUT), corticosterone level after a contention stress (LOGCORT) and body weight at 2 weeks of age (BW2). A total of 310 animals were included in a genome scan using selective genotyping with 248 AFLP markers. A total of 21 suggestive or genome-wide significant QTL were observed. Two highly significant QTL were identified on linkage group 1 (GL1), one for LOGTI and one for NI. In the vicinity of the QTL for LOGTI, a nearly significant QTL for SHOUT and a suggestive QTL for LAT were also identified. On GL3, genome-wide significant QTL were observed for JUMP and DEJ as well as suggestive QTL for LOGTI, MOVE, SHOUT and LAT. A significant QTL for BW2 was observed on GL2 and a nearly significant one on GL1. These results may be useful in the understanding of fearfulness in quail and related species provided that fearfulness has the same genetic basis.  相似文献   

16.
甜瓜苦味物质严重影响其口感和品质。本研究利用不苦的薄皮甜瓜品系C69和苦的薄皮甜瓜品系C14构建了一个包含100个单株的F2群体。首先利用2b-RAD测序构建一个遗传连锁图谱。其次,结合群体的苦味性状进行全基因组的QTL定位和关联分析。然后,利用2b-RAD测序特有的技术优势进行群体的获得与缺失变异(PAV)的挖掘。最后,利用亲本的重测序信息确定控制苦味性状的关键基因。结果发现,F1的果实表现出强烈的苦味,F2群体中苦与不苦的单株分别为81个和19个,符合3∶1的分离比(χ^2=1.92,P=0.1659),表型表明所用甜瓜材料的苦味主要是由一个显性的基因位点控制。利用477个SNP标记构建一张包含10个连锁群的连锁图谱,总长为337.79 cM,标记间平均间隔0.71 cM。全基因组QTL定位在8号连锁群(对应9号染色体),检测到一个解释表型变异为20%的甜瓜苦味QTL。全基因组关联分析检测到7个SNPs与苦味性状相关,全部位于9号染色体苦味QTL的基因组区域。通过PAV分型分析仅发现一个特有的大片段缺失(21707702~21743072 bp),位于QTL区域,且在所有的不苦株系中存在,而苦的株系中不存在。基于两个亲本材料的深度重测序信息,发现这个PAV的区域更大,约为62 Kb,共涉及到9个连续的基因(MELO3C005601、MELO3C005602、MELO3C005603、MELO3C005604、MELO3C005605、MELO3C005606、MELO3C005607、MELO3C005608和MELO3C005609),其中5个是细胞色素P450基因。构建的系统发育树表明,这5个细胞色素P450基因与参与葫芦素C/B/E合成的细胞色素P450基因簇CYP81Q58、CYP81Q59和CYP712D8在一个进化枝,可能行使类似的功能,为潜在的类似于黄瓜葫芦素C合成的基因簇的一部分。前人通过比较基因组学研究获得的2个控制葫芦素B合成的bHLH转录因子CmBr(MELO3C005610)和CmBt(MELO3C005611)同在9号染色体,与本研究检测到的PAV紧密挨在一起。我们的研究结果为后续不苦甜瓜的育种提供了新的理论支撑和分子辅助育种目标。  相似文献   

17.
Wang CM  Lo LC  Feng F  Zhu ZY  Yue GH 《Animal genetics》2008,39(1):34-39
Quantitative trait loci (QTL) affecting growth traits have previously been mapped in linkage groups (LG) 2, 3 and 23 of Barramundi ( Lates carcalifer ), but these QTL have not been verified in different genetic backgrounds and environments. Here, we report the identification and verification of QTL for growth traits on LG2, 3, 10 and 23 in F1 families constructed using brooders from the Singapore Marine Aquaculture Center (MAC) and from wild stocks collected in Thailand (THAI). The previously detected QTL for body weight and length linked to marker Lca371 on LG2 were confirmed in both the MAC and THAI families, whereas other QTL previously mapped to LG3 and 23 were only detected in one of the two families. QTL for body weight and length were identified in the MAC family, but not in the THAI family, in a region where the insulin-like growth factor 2 ( IGF2 ) and tyrosine hydroxylase 1 ( TH1 ) genes are located on LG10. Significant epistatic interactions were identified between markers Lca287 on LG2 and IGF2 on LG10 for growth trait QTL in the MAC family, but not in the THAI family. Effects of the IGF2 , TH1 and parvalbumin 1 candidate genes were family-specific. Our results indicate that some but not all QTL are family-specific in Barramundi.  相似文献   

18.
Genes implicated in consumption of a bitter compound, sucrose octaacetate (SOA), were investigated using a full genomic scanning strategy. For a 0.1 mM concentration, two QTL reached 5.8 and 6.5 lod scores on chromosomes 2 (77 cM) and 11 (14 cM), respectively. For a 1 mM concentration, the Soa linkage on chromosome 6 (58 cM, lod score 9.4) was replicated, and another QTL was found on chromosome 19 (15 cM, lod score 3.2). Candidacy of previously identified genes in the close vicinity of the peak of the QTL was examined.  相似文献   

19.
ABSTRACT: BACKGROUND: Common bean (Phaseolus vulgaris L.) is the most important grain legume for human diet worldwide and the angular leaf spot (ALS) is one of the most devastating diseases of this crop, leading to yield losses as high as 80%. In an attempt to breed resistant cultivars, it is important to first understand the inheritance mode of resistance and to develop tools that could be used in assisted breeding. Therefore, the aim of this study was to identify quantitative trait loci (QTL) controlling resistance to ALS under natural infection conditions in the field and under inoculated conditions in the greenhouse. RESULTS: QTL analyses were made using phenotypic data from 346 recombinant inbreed lines from the IAC-UNA x CAL 143 cross, gathered in three experiments, two of which were conducted in the field in different seasons and one in the greenhouse. Joint composite interval mapping analysis of QTL x environment interaction was performed. In all, seven QTLs were mapped on five linkage groups. Most of them, with the exception of two, were significant in all experiments. Among these, ALS10.1DG,UC presented major effects (R2 between 16% - 22%). This QTL was found linked to the GATS11b marker of linkage group B10, which was consistently amplified across a set of common bean lines and was associated with the resistance. Four new QTLs were identified. Between them the ALS5.2 showed an important effect (9.4%) under inoculated conditions in the greenhouse. ALS4.2 was another major QTL, under natural infection in the field, explaining 10.8% of the variability for resistance reaction. The other QTLs showed minor effects on resistance. CONCLUSIONS: The results indicated a quantitative inheritance pattern of ALS resistance in the common bean line CAL 143. QTL x environment interactions were observed. Moreover, the major QTL identified on linkage group B10 could be important for bean breeding, as it was stable in all the environments. Thereby, the GATS11b marker is a potential tool for marker assisted selection for ALS resistance.  相似文献   

20.
Quantitative trait loci (QTL) affecting clinical mastitis (CM) and somatic cell score (SCS) were mapped on bovine chromosome 11. The mapping population consisted of 14 grandsire families belonging to three Nordic red cattle breeds: Finnish Ayrshire (FA), Swedish Red and White (SRB) and Danish Red. The families had previously been shown to segregate for udder health QTL. A total of 524 progeny tested bulls were included in the analysis. A linkage map including 33 microsatellite and five SNP markers was constructed. We performed combined linkage disequilibrium and linkage analysis (LDLA) using the whole data set. Further analyses were performed for FA and SRB separately to study the origin of the identified QTL/haplotype and to examine if it was common in both populations. Finally, different two-trait models were fitted. These postulated either a pleiotropic QTL affecting both traits; two linked QTL, each affecting one trait; or one QTL affecting a single trait. A QTL affecting CM was fine-mapped. In FA, a haplotype having a strong association with a high negative effect on mastitis resistance was identified. The mapping precision of an earlier detected SCS-QTL was not improved by the LDLA analysis because of lack of linkage disequilibrium between the markers used and the QTL in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号