首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-affinity, Na+-dependent synaptosomal amino acid uptake systems are strongly stimulated by proteins which are known to bind fatty acids, including the Mr 12 000 fatty acid binding protein (FABP) from liver. To explore the possibility that such a function might be served by fatty acid binding proteins intrinsic to brain, we examined the 105000g supernatant of brain for fatty acid binding. Observed binding was accounted for mainly by components excluded by Sephadex G-50, and to a small degree by the Mr 12 000 protein fraction (brain FABP fraction). The partially purified brain FABP fraction contained a protein immunologically identical with liver FABP as well as a FABP electrophoretically distinct from liver FABP. Brain FABP fraction markedly stimulated synaptosomal Na+-dependent, but not Na+-independent, amino acid uptake, and also completely reversed the inhibition of synaptosomal Na+-dependent amino acid uptake induced by oleic acid. Palmitic, stearic, and oleic acids were endogenously associated with the brain FABP fraction. These data are consistent with the hypothesis that Mr 12 000 soluble FABPs intrinsic to brain may act as regulators of synaptosomal Na+-dependent amino acid uptake by sequestering free fatty acids which inhibit this process.  相似文献   

2.
The subcellular localization and several biochemical activities of nonspecific lipid transfer protein (nsLTP) were investigated. A section of a castor bean cotyledon cell was labeled with anti-nsLTP serum followed by protein A-gold. Gold particles were more abundant in the glyoxysome matrix and the vessel cell wall than in other areas. Cell fractionation analysis of 6-day-old castor bean cotyledons by sucrose density gradient centrifugation demonstrated that 13% of nsLTP was distributed in the glyoxysomal fraction, identified on the basis of catalase as a marker, and 87% in the soluble fraction near the top of the gradient. The location of castor bean nsLTP in glyoxysomes was further confirmed by in vitro import experiments. The synthesized precursor of nsLTP (pro-nsLTP-C) was incorporated into intact castor bean glyoxysomes and processed to the mature form after import into the glyoxysomes, but it was not imported into canine pancreatic microsomes. Castor bean nsLTP-A was found to possess the ability to bind oleic acid and oleoyl-CoA by means of a method involving Lipidex 1000. The dissociation constants (Kd) for oleic acid and oleoyl-CoA binding to nsLTP-A were 4.8 and 5.0 microM, respectively. The saturated binding capacities (Bmax) for oleic acid and oleoyl-CoA per mol of nsLTP-A were 1.1 and 1.2 mol, respectively. When acyl-CoA oxidase activity was assayed in the glyoxysomal fraction, marked enhancement of the activity was observed in the presence of nsLTP. These results suggest the possibility that nsLTP regulates fatty acid beta-oxidation through the enhancement of acyl-CoA oxidase activity in glyoxysomes. The occurrence of castor bean nsLTP in the vessel wall was discussed.  相似文献   

3.
Bovine serum albumin or fatty-acid-binding protein rapidly lose oleic acid when incubated in the presence of dimyristoyl lecithin liposomes. The phenomenon is dependent on vesicle concentration and no measurable quantities of protein are found associated with liposomes. Upon gel filtration on Sepharose CL-2B of incubated mixtures of microsomes containing [1-14C] oleic acid and albumin or fatty-acid-binding protein, association of fatty acid with the soluble proteins could be demonstrated. Both albumin and fatty-acid-binding protein stimulated the transfer of oleic acid from rat liver microsomes to egg lecithin liposomes. These results indicate that albumin is more effective in the binding of oleic acid than fatty-acid-binding protein, which allows a selective oleic acid dissociation during its interaction with membranes.  相似文献   

4.
A delipidated soluble fraction prepared from a mitochondrial-lysosomal fraction of rabbit alveolar macrophages that catalyzes transacylation of lysophosphatidylglycerol to form bis(monoacylglycero)phosphate was also found to transfer oleic acid from [14C]dioleoyl phosphatidylcholine to form acylphosphatidylglycerol. The reaction was dependent on the presence of bis(monoacylglycero)phosphate and was maximal at a concentration of 44 microM when the ratio of fatty acid transferred to fatty acid released was 0.28. Addition of phosphatidylglycerol had only a small effect. Homogenates of rat liver also catalyzed the reaction and after subcellular fractionation the activity was localized to lysosomes. The lysosomal activity was solubilized by delipidation with butanol to give a preparation with a specific activity 2462 times that of the homogenate. Optimal activity of soluble preparations from both macrophages and liver was at pH 4.5, with little activity above 6.0. Release of free fatty acid was also stimulated under conditions of optimal acyl transfer. Both acyl transfer and release of fatty acid were inhibited by Ca2+, detergents, chlorpromazine, lysophosphatidylcholine, and oleic acid. When there was disproportional inhibition, acyl transfer was always more affected. These results suggest that sequential acylation of lysophosphatidylglycerol to form bis(monoacylglycero)phosphate and then acylphosphatidylglycerol constitute a mechanism in the lysosome for the transport and partition of fatty acids released by the lysosomal phospholipases.  相似文献   

5.
Formation of bis(monoacylglycero)phosphate (BMP) from lysophosphatidyl[U-14C]glycerol was studied in rabbit pulmonary alveolar macrophages. The majority of the activity was found in the particulate fraction (lysosome-enriched) sedimenting between 2000 and 12,000 rpm and it was maximal at pH 4.5. The activity in this fraction was stimulated by 2-mercaptoethanol and additional lipids from the fraction and inhibited by 5 mM CaCl2, 0.5 mM acyl-CoA, 1.0 mM chlorpromazine and by detergents, whereas chloroquine, cholesterol and butanol had no effect. The activity was retained by the particles after repeated freezing and thawing. After treatment with n-butanol, most of the activity was lost, but 84% could be recovered in the aqueous phase if the butanol-extracted lipids were added back giving an activity of 266 nmol/h per mg of protein. Lipids most effective in restoring activity were the total lipids extracted by butanol from the particulate fraction, fractions of the total lipids containing phospholipids and phosphatidylcholine from both native and commercial sources, with native BMP and commercial phosphatidylglycerol and sphingomyelin having a much smaller effect. The complexity of the lipid requirements was further indicated by the finding that addition of pure lipids to the total lipid extract reduced the efficacy of the latter. A direct transfer of [14C]oleic acid to BMP from labelled macrophage microsomal lipids was catalyzed by the soluble enzymes as was transfer from dioleoylphosphatidylcholine in the presence of lysophosphatidylglycerol. The particulate enzyme also catalyzed the transfer of [14C]oleic acid from 2-oleoylphosphatidylcholine to BMP in the presence of lysophosphatidylglycerol. These findings indicate that the transacylase involved in conversion of lysophosphatidylglycerol to BMP utilizes complex lipids other than phosphatidylinositol as acyl donors and has complex requirements for lipids as physicochemical activators. They further suggest that the transacylation might be catalyzed by lysosomal phospholipase A2.  相似文献   

6.
[14C] palmitic acid or [3H] retinyl esters incorporated in microsomal membranes were removed by a cytosolic fraction enriched in fatty acid binding protein. When mouse liver cytosol was fractionated by 70% ammonium sulphate, a precipitate and a soluble fraction were obtained. The soluble fraction containing the fatty acid binding protein was able to remove from microsomal membranes, [14C] palmitic acid or [3H] retinyl esters, whereas the precipitate fraction had no removal capacity. Retinoid analysis indicated that 70% ammonium sulphate soluble fraction was enriched in endogenous retinyl esters with regard to cytosol or 70% ammonium sulphate precipitate fraction.  相似文献   

7.
Oleic acid is incorporated into an insoluble fraction left over after lipid extraction in Scenedesmus acutus. This incorporation is extremely sensitive to the chloroacetamide herbicide, metazachlor (I50= ca 20 nM). Therefore, factors influencing the incorporation of radioactivity from oleic acid into this non-lipid fraction were investigated. S. acutus cells were cultivated under various conditions with or without inhibitors and [14C]-oleic acid was supplied to the algae; the lipids were extracted and the radioactivity incorporated in the remaining fraction monitored. The inhibition seemed specific for chloroacetamides and related classes since it was also observed with alachlor, dimethenamid and mefenacet (an oxyacetamide). In contrast, it could not be found with diuron, oryzalin, nor could it be observed with a non-herbicidal metazachlor derivative or iodoacetamide. Incorporation of oleic acid into that fraction required meta-bolically active cells and was stimulated by light. Other fatty acids (16:0, 18:2, and 18:3) were also incorporated into the non-lipid fraction but their incorporation was not inhibited by metazachlor. Among other components, the fraction contains proteins. However, a possible specific effect of chloroacetamides on the binding of oleic acid to proteins or on the in vitro activity of lipid transfer proteins could not be detected. Not much is known yet about mechanism and chemistry of oleic acid incorporation but this finding opens a new path for investigations towards the primary target of these herbicides.  相似文献   

8.
Rat liver fatty acid binding protein (L-FABP) was efficiently expressed in Escherichia coli and purified to homogeneity. The cDNA encoding L-FABP was ligated into the pTrc99A expression vector and expressed by induction with isopropyl-beta-d-thiogalactopyranoside under the control of the P(trc) promoter. Following an 18 h induction period, L-FABP constituted approximately 3% of the cytosolic protein. The protein could be purified to electrophoretic homogeneity (silver-stained polyacrylamide gel detection) by ammonium sulfate fractionation (65% saturation) of the soluble bacterial lysate followed by the chromatographic sequence of anion-exchange-->hydrophobic interaction-->anion-exchange chromatography. The recombinant protein displayed an isoelectric point of 7.0 and cross-reactivity with rabbit anti-(human L-FABP) polyclonal antibody. The ligand binding properties of the delipidated L-FABP were examined by titration with the fluorescent probe 1-anilino-8-naphthalene sulfonic acid and isothermal titration calorimetric analysis of oleic acid binding. The purified rat L-FABP displayed a binding stoichiometry of 2:1 (ANS:L-FABP) with dissociation constants (K(d)) of 1.7 and 15.5 microM for the high and low affinity binding sites, respectively. The K(d) values determined by ITC for oleic acid binding were 0.155 and 4.04 microM with a binding stoichiometry of approximately 2 mol of fatty acid/mol of protein. These physicochemical and binding properties are in agreement with those of L-FABP isolated from rat liver tissue.  相似文献   

9.
A protein fraction from rat liver cytoplasm, precipitable at 50-95% saturation of ammonium sulphate, binds phosphatidic acid from mitochondrial and microsomal membranes. Protein-bound phosphatidic acid was eluted from Sephadex G-75 in fractions corresponding to a molecular weight of about 10 000. No such binding was observed with mitochondrial soluble proteins, either total or precipitated with ammonium sulphate between 50 and 95% saturation. The transfer of phosphatidic acid from microsomes to mitochondria was increased by liver cytoplasmic proteins precipitable at 50-95% saturation of ammonium sulphate but not with mitochondrial soluble proteins. This increase by cytoplasmic proteins was pronounced in 200 mM sucrose but was negligible in 100 mM KCI where the spontaneous transfer was quite high. Cytoplasmic proteins stimulated the synthesis of cardiolipin and phosphatidylglycerol in mitochondria deprived of the outer membrane but not in intact mitochondria when phosphatidic acid was supplied either by microsomes or liposomes. It is suggested that the transfer of phosphatidic acid from the outer to the inner mitochondrial membrane is not mediated by transfer proteins but occurs either by direct contact of the membranes or as free diffusion through the aqueous phase.  相似文献   

10.
The absorption of sulphobromophthalein changes upon addition of bovine serum albumin or fatty-acid-binding protein at pH 8.4. The sulphobromophthalein spectrum is changed most drastically after the addition of albumin than in the presence of fatty-acid-binding protein isolated from rat liver, suggesting as a first approximation that binding capacity of albumin is much higher than that of fatty-acid-binding protein. When both soluble proteins are saturated with oleic acid it is observed a decrease in the binding of sulphobromophthalein which suggests that the presence of fatty acids in those soluble proteins may affect the binding of other ligands.  相似文献   

11.
The sensitivity of soluble, 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) of human placenta to inactivation by fatty acids was examined. Exposure to the unsaturated fatty acids oleic, arachidonic, linoleic and linolenic acid resulted in the loss of activity. Methyl and ethyl esters of oleic acid, the saturated fatty acid, stearic acid and prostaglandins E2 and F2 alpha were without effect. Inactivation by oleic acid required the fatty acid at levels above its critical micelle concentration, 50 microM, as estimated by light-scattering. Steroid substrates and inhibitors did not protect against inactivation. NAD+, NADH, NADP+ and NADPH did protect. The concentrations of NADP+, 50 microM, and NAD, 1.5 mM, necessary for complete protection were significantly greater than their respective Michaelis constants, 0.16 microM and 15.2 microM. The data suggest that soluble 17 beta-HSD can bind to fatty acid micelles and that the binding site(s) on the enzyme are at or near pyridine nucleotide binding sites.  相似文献   

12.
The phosphatidylcholine transfer protein (PC-TP) from bovine liver has a binding site for phosphatidylcholine (PC). Structural and molecular characteristics of this site were investigated by binding PC-analogues carrying photolabile, fluorescent and short-chain fatty acids. Analysis of the photolabeled PC/PC-TP adduct showed that the hydrophobic peptide segment Val171-Phe-Met-Tyr-Tyr-Phe-Asp177 is part of the lipid binding site for the 2-acyl chain. This site was further studied by binding PC carrying cis-parinaric acid at the sn-2-position. Time resolved fluorescence anisotropy measurements indicated that the 2-acyl chain was immobilized following the rotation of PC-TP. Similar experiments with PC carrying cis-parinaric acid at the sn-1-position demonstrated that the 1-acyl chain was immobilized as well but at a site distinctly different from that of the 2-acyl chain. Binding sites for the 1- and 2-acyl chain were then explored by use of PC-isomers carrying decanoic, lauric and myristic acid at the sn-1- (or sn-2-)-position and oleic acid at the sn-2- (or sn-1-)-position. Incubation with vesicles prepared of these PC-species indicated that binding to PC-TP diminished with decreasing acyl chain length but more so for species with short-chain fatty acids on the sn-2-position than on the sn-1-position. Transfer experiments confirmed that PC-TP discriminates between PC-isomers of apparently equal hydrophobicity favouring the transfer of these species carrying oleic acid at the sn-2-position.  相似文献   

13.
An angiotensin II-binding activity has been detected in the 100,000 x g supernatant fraction of rabbit liver. The total amount of binding activity in this fraction was substantially greater than that which could be solubilized from hepatic particles by treatment with digitonin. The crude soluble binding activity resembled the binding protein which had been purified from the particles in several respects. First, binding required the presence of p-chloromercuriphenylsulfonic acid and bound angiotensin II was released by dithiothreitol. Second, the molecular weight of the responsible protein cross-linked to radioiodinated angiotensin II was about 75,000 in the reduced, denatured state. Finally, guinea pig antiserum raised against the binding protein that had been purified from particles reacted identically with the soluble and solubilized activities.  相似文献   

14.
Human α-lactalbumin made lethal to tumor cells (HAMLET) and equine lysozyme with oleic acid (ELOA) are complexes consisting of protein and fatty acid that exhibit cytotoxic activities, drastically differing from the activity of their respective proteinaceous compounds. Since the discovery of HAMLET in the 1990s, a wealth of information has been accumulated, illuminating the structural, functional and therapeutic properties of protein complexes with oleic acid, which is summarized in this review. In vitro, both HAMLET and ELOA are produced by using ion-exchange columns preconditioned with oleic acid. However, the complex of human α-lactalbumin with oleic acid with the antitumor activity of HAMLET was found to be naturally present in the acidic fraction of human milk, where it was discovered by serendipity. Structural studies have shown that α-lactalbumin in HAMLET and lysozyme in ELOA are partially unfolded, 'molten-globule'-like, thereby rendering the complexes dynamic and in conformational exchange. HAMLET exists in the monomeric form, whereas ELOA mostly exists as oligomers and the fatty acid stoichiometry varies, with HAMLET holding an average of approximately five oleic acid molecules, whereas ELOA contains a considerably larger number (11- 48). Potent tumoricidal activity is found in both HAMLET and ELOA, and HAMLET has also shown strong potential as an antitumor drug in different in vivo animal models and clinical studies. The gain of new, beneficial function upon partial protein unfolding and fatty acid binding is a remarkable phenomenon, and may reflect a significant generic route of functional diversification of proteins via varying their conformational states and associated ligands.  相似文献   

15.
A specific fatty acid binding protein was isolated from Giardia lamblia, using an affinity column with butyric acid acting as a ligand in place of stearic acid. This method has proved to be more efficient than the one previously described using stearic acid as ligand. The purified fraction showed 8 electrophoretic bands of proteins, with molecular weights ranging between 8 and 80 kDa. This pattern is a consequence of the aggregation of a protein with a molecular weight of 8,215 Da, corresponding to the lower molecular weight band, the only one capable of binding to fatty acids. The labeled oleic acid bound to these purified proteins was replaced by a 100-fold greater concentration of taurocholate, glycocholate, deoxycholate, palmitic acid, and arachidonic acid, having a greater displacement of the bile salts than the free fatty acids.  相似文献   

16.
Our studies were conducted to explore the role of hepatic fatty acid-binding protein (L-FABP) in fatty acid transport to the nucleus. Purified rat L-FABP facilitated the specific interaction of [(3)H]oleic acid with the nuclei. L-FABP complexed with unlabeled oleic acid decreased the nuclear association of [(3)H]oleic acid:L-FABP; however, oleic acid-saturated bovine serum albumin (BSA) or fatty acid-free L-FABP did not. The peroxisome-proliferating agents LY171883, bezafibrate, and WY-14,643 were also effective competitors when complexed to L-FABP. Nuclease treatment did not affect the nuclear association of [(3)H]oleic acid:L-FABP; however, proteinase treatment of the nuclei abolished the binding. Nuclei incubated with fluorescein-conjugated L-FABP in the presence of oleic acid were highly fluorescent whereas no fluorescence was observed in reactions lacking oleic acid, suggesting that L-FABP itself was binding to the nuclei. The nuclear binding of FABP was concentration dependent, saturable, and competitive. LY189585, a ligand for L-FABP, also facilitated the nuclear binding of fluorescein-conjugated L-FABP, although it was less potent than oleic acid. A structural analog that does not bind L-FABP, LY163443, was relatively inactive in stimulating the nuclear binding. Potential interactions between L-FABP and nuclear proteins were analyzed by Far-Western blotting and identified a 33-kDa protein in the 500 mm NaCl extract of rat hepatocyte nuclei that bound strongly to biotinylated L-FABP. Oleic acid enhanced the interaction of L-FABP with the 33-kDa protein as well as other nuclear proteins.We propose that L-FABP is involved in communicating the state of fatty acid metabolism from the cytosol to the nucleus through an interaction with lipid mediators that are involved in nuclear signal transduction.  相似文献   

17.
The purpose of this study was to elucidate the mechanisms by which arachidonic acid activates guanylate cyclase from guinea pig lung. Guanylate cyclase activities in both homogenate and soluble fractions of lung were examined. Guanylate cyclase activity was determined by measuring formtion of [32-P] cyclic GMP from alpha-[32-P] GTP in the presence of Mn2+, a phosphodiesterase inhibitor and a suitable GTP regenerating system. Arachidonic acid, and to a slight extent dihomo-gamma-linolenic acid, activated guanylate cyclase in homogenate but not soluble fractions. Similarly, phospholipase A2 activated homogenate but not soluble guanylate cyclase. Methyl arachidonate, linolenic, linoleic and oleic acids did not activate guanylate cyclase in either fraction. High concentrations of indomethacin, meclofenamate and aspirin inhibited activation of homogenate guanylate cyclase by arachidonic acid and phospholipase A2, without altering basal enzyme activity. These data suggested that a product of cyclooxygenase activity, present in the microsomal fraction, may have accounted for the capacity of arachidonic acid to activate homogenate guanylate cyclase. This view was supported by the findings that addition of the microsomal fraction to be soluble fraction enabled arachidonic acid to activate soluble guanylate cyclase, an effect which was reduced with cycloooxygenase inhibitors. Lipoxygenase activated guanylate cyclase in homogenate and soluble fractions. Arachidonic acid potentiated the activation of soluble guanylate cyclase by lipoxygenase, and this effect was inhibited with nordihydroguairetic acid, 1-phenyl-3-pyrazolidone and hydroquinone, but not with high concentrations of indomethacin, meclofenamate or aspirin. These data suggest that arachidonic acid activates guinea pig lung guanylate cyclase indirectly, via two independent mechanisms, one involving the microsomal fraction and the other involving lipoxygenase.  相似文献   

18.
In the studies described here rat liver microsomes containing labeled palmitic, stearic, oleic or linoleic acids were incubated with fatty acid binding protein (FABP) and the rate of removal of14C-labeled fatty acids from the membrane by the soluble protein was measured using a model system. More unsaturated than saturated fatty acids were removed from native liver microsomes incubated with similar amounts of FABP. Thein vitro peroxidation of microsomal membranes mediated by ascorbate-Fe++, modified its fatty acid composition with a considerable decrease of the peroxidizability index. These changes in the microsomes facilitated the removal of oleic and linoeic acids by FABP, but the removal of palmitic and stearic acids was not modified. This effect is proposed to result from a perturbation of membrane structure following peroxidation with release of free fatty acids from susceptible domains.Abbreviations BSA bovine serum albumin - FABP fatty acid binding protein  相似文献   

19.
Dietary fatty acids (FAs) crossing the apical plasma membrane of small intestinal enterocytes are targeted to different metabolic pathways than serum FAs crossing the basolateral membrane. This apparent compartmentalization of FA metabolism in enterocytes was further investigated using a model human enterocyte-like intestinal cell line. [3H]Oleic acid bound to bovine serum albumin (BSA) was added to the apical or basolateral surfaces of confluent monolayers of Caco-2 cells growing on uncoated polycarbonate filters. In other experiments, [3H]oleic acid incorporated into micelles with taurocholate (+/- 2-monoacylglycerol) was added apically. Caco-2 cells absorbed oleic acid bound to BSA from both the apical and basolateral surfaces at the same rate. Oleic acid in micellar solution was absorbed more efficiently than oleic acid bound to BSA. Regardless of its site or mode of presentation, the majority of the incorporated oleic acid was found in triglycerides. Only a small fraction was subjected to beta-oxidation or esterification into phospholipids. Most of the incorporated oleic acid was still retained intracellularly at 24 h. The polarity of triglyceride secretion was influenced by the experimental conditions. Triglyceride secretion was not significantly polarized when oleic acid-BSA was presented apically. However, the ratio of basolateral to apical secretion at 24 h was 9:1 for oleic acid-BSA presented basolaterally. For oleic acid in taurocholate micelles there was a trend toward polarity of secretion to the apical media (apical to basolateral ratio = 2:1). The inclusion of 2-monoacylglycerol in oleic acid-taurocholate micelles did not augment triglyceride synthesis or secretion. These differences indicate that compartmentation of FA metabolism in Caco-2 cells is influenced by the site of FA presentation. Northern and Western blot hybridization studies indicated that the liver fatty acid-binding protein but not the intestinal fatty acid-binding protein gene is expressed in these cells. The absence of this latter 15 kDa protein indicates that it is not required by Caco-2 cells for the synthesis of triglycerides or for the polarized export of triglyceride. These studies indicate that the Caco-2 cell line will be a useful model system for studying the polarization of FA trafficking/metabolism in enterocytes and defining the role of intracellular fatty acid binding proteins in these processes.  相似文献   

20.
To clarify divergent views concerning the mechanism of fatty acid translocation across biomembranes this issue was now investigated in human erythrocytes. Translocation rates of exogenously inserted radioactive oleic acid across the membrane of native cells were derived from the time-dependent increase of the fraction of radioactivity becoming non-extractable by albumin. No accumulation of non-extractable unesterified oleic acid occurred. The rate of transfer was markedly suppressed by SH-reagents and by ATP-depletion. The suppression, however, resulted from a mere decrease of incorporation of oleic acid into phospholipids and was not accompanied by an increase of non-extractable unesterified oleic acid. These findings were reconcilable with the concept of a slow, possibly carrier-mediated fatty acid transfer as well as a very fast presumably, diffusional process not resolvable by the albumin extraction procedure. This ambiguity was resolved by using resealed ghosts, which are unable to incorporate oleic acid into phospholipids. In such ghosts all of the oleic acid inserted into the membrane remains extractable by albumin even after prolonged incubation. On the other hand, ghosts containing albumin accumulated non-extractable oleic acid. The rate of accumulation was beyond the time resolution of the albumin extraction procedure at 4 degrees C. Oleic acid uptake into albumin-containing ghosts became kinetically resolvable when the fatty acid was added as a complex with albumin. Correspondingly, time-resolvable release of oleic acid, originally complexed to internal albumin, into an albumin-containing medium was demonstrated at 4 degrees C. Rate and extent of these redistributions of oleic acid were dependent on the concentrations of internal and external albumin. This indicates limitation by the dissociation of oleic acid from albumin and not its translocation across the membrane. Translocation of oleic acid, which is probably a simple diffusive flip-flop process, must therefore occur with a half-time of less than 15 s. These findings raise doubts on the physiological role of presently discussed concepts of a carrier-mediated translocation of fatty acids across plasma membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号