首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using degenerate polymerase chain reaction (PCR) and thermal asymmetric interlaced PCR, a 1,347-bp full-length complementary DNA fragment encompassing the gene man5A, which encodes a 429-amino acid β-mannanase with a calculated mass of 46.8 kDa, was cloned from acidophilic Bispora sp. MEY-1. The deduced amino acid sequence (catalytic domain) displayed highest identity (54.1%) with the Emericella nidulans endo-β-1,4-d-mannanase, a member of the glycoside hydrolase family 5. Recombinant MAN5A was overexpressed in Pichia pastoris, and its activity in the culture medium reached 500 U ml−1. The enzyme was acidophilic, with highest activity at pH 1.0–1.5, lower than any known mannanases, and optimal temperature for activity was 65°C. MAN5A had good pH adaptability, excellent thermal and pH stability, and high resistance to both pepsin and trypsin. The specific activity, K m, and V max for locust bean gum substrate was 3,373 U mg−1, 1.56 mg ml−1, and 6,587.6 μmol min−1 mg−1, respectively. The enzymatic activity was not significantly affected by ions such as Ca2+, Cr3+, Co2+, Zn2+, Na+, K+, and Mg2+ and enhanced by Ni2+, Fe3+, Mn2+ and Ag+. These favorable properties make MAN5A a potential candidate for use in various industrial applications.  相似文献   

2.
In this paper, we report for the first time the functional expression of lipase B from the yeast Candida antarctica (CalB) in the Escherichia coli cytoplasm. The enzyme possessing three disulfide bonds was functionally expressed in the strain Origami B. Expression under the control of a lac promoter yielded 2 U mg−1, whereas expression of a thioredoxin–CalB fusion protein yielded 17 U mg−1. The native enzyme was most efficiently expressed under control of the cspA promoter (11 U mg−1). Coexpression of different chaperones led to a strong increase in active protein formation (up to 61 U mg−1). A codon-optimized synthetic variant of calb did not show significant effects on functional protein yield. Functional CalB expression was not only achieved in shake flasks but also in microtiter plate scale. Therefore, this CalB expression system is suitable for high-throughput applications, including the screening of large gene libraries as those derived from directed evolution experiments.  相似文献   

3.
To investigate annual variation in soil respiration (R S) and its components [autotrophic (R A) and heterotrophic (R H)] in relation to seasonal changes in soil temperature (ST) and soil water content (SWC) in an Abies holophylla stand (stand A) and a Quercus-dominated stand (stand Q), we set up trenched plots and measured R S, ST and SWC for 2 years. The mean annual rate of R S was 436 mg CO2 m−2 h−1, ranging from 76 to 1,170 mg CO2 m−2 h−1, in stand A and 376 mg CO2 m−2 h−1, ranging from 82 to 1,133 mg CO2 m−2 h−1, in stand Q. A significant relationship between R S and its components and ST was observed over the 2 years in both stands, whereas a significant correlation between R A and SWC was detected only in stand Q. On average over the 2 years, R A accounted for approximately 34% (range 17–67%) and 31% (15–82%) of the variation in R S in stands A and Q, respectively. Our results suggested that vegetation type did not significantly affect the annual mean contributions of R A or R H, but did affect the pattern of seasonal change in the contribution of R A to R S.  相似文献   

4.
For the first time, the purification has been achieved of the type II polyhydroxyalkanoate (PHA) synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa applying N-terminal His6-tag fusions and metal chelate affinity chromatography. In vivo His6-tagged PHA synthase activity was confirmed by functional expression of the corresponding genes in Escherichia coli, and PHA synthase activity could also be measured in vitro with the enzymes. The specific enzyme activity of PHA synthases PhaC1 and PhaC2 was 0.039 U mg−1 and 0.035 U mg−1 protein, respectively. Kinetic studies showed a lag phase for both PHA synthases using (R,S)-3-hydroxydecanoyl-CoA as substrate. Specific enzyme activity was increased to 0.055 U mg−1 when the phasin GA24 from Ralstonia eutropha was added to the assay. CoA inhibited PHA synthase activity, and a K i of 85 μM was determined. A two-enzyme system was established, employing commercially available acyl-CoA synthetase and PHA synthase, which allowed the in vitro de novo PHA granule formation and the in vitro synthesis of poly(3-hydroxydecanoate) exhibiting a weight average molar mass of 9.8 × 104 g mol−1, and which occurred independently of pre-existing PHA granules. Received: 3 December 1999 / Revision received: 10 January 2000 / Accepted: 14 January 2000  相似文献   

5.
In this work, we characterized an ecto-ATPase activity in intact mycelial forms of Fonsecaea pedrosoi, the primary causative agent of chromoblastomycosis. In the presence of 1 mM EDTA, fungal cells hydrolyzed adenosine-5′-triphosphate (ATP) at a rate of 84.6 ± 11.3 nmol Pi h−1 mg−1 mycelial dry weight. The ecto-ATPase activity was increased at about five times (498.3 ± 27.6 nmol Pi h−1 mg−1) in the presence of 5 mM MgCl2, with values of V max and apparent K m for Mg-ATP2−corresponding to 541.9 ± 48.6 nmol Pi h−1 mg−1 cellular dry weight and 1.9 ± 0.2 mM, respectively. The Mg2+-stimulated ecto-ATPase activity was insensitive to inhibitors of intracellular ATPases such as vanadate (P-ATPases), bafilomycin A1 (V-ATPases), and oligomycin (F-ATPases). Inhibitors of acid phosphatases (molybdate, vanadate, and fluoride) or alkaline phosphatases (levamizole) had no effect on the ecto-ATPase activity. The surface of the Mg2+-stimulated ATPase in F. pedrosoi was confirmed by assays in which 4,4′-diisothiocyanostylbene-2,2′-disulfonic acid (DIDS), a membrane impermeant inhibitor, and suramin, an inhibitor of ecto-ATPase and antagonist of P2 purinoreceptors. Based on the differential expression of ecto-ATPases in the different morphological stages of F. pedrosoi, the putative role of this enzyme in fungal biology is discussed.  相似文献   

6.
A phytase with high activity at neutral pH and typical water temperatures (∼25°C) could effectively hydrolyze phytate in aquaculture. In this study, a phytase-producing strain, Pedobacter nyackensis MJ11 CGMCC 2503, was isolated from glacier soil, and the relevant gene, PhyP, was cloned using degenerate PCR and thermal asymmetric interlaced PCR. To our knowledge, this is the first report of detection of phytase activity and cloning of phytase gene from Pedobacter. PhyP belongs to beta-propeller phytase family and shares very low identity (∼28.5%) with Bacillus subtilis phytase. The purified recombinant enzyme (r-PhyP) from Escherichia coli displayed high specific activity for sodium phytate of 24.4 U mg−1. The optimum pH was 7.0, and the optimum temperature was 45°C. The K m, V max, and k cat values were 1.28 mM, 71.9 μmol min−1 mg−1, and 45.1 s−1, respectively. Compared with Bacillus phytases, r-PhyP had higher relative activity at 25°C (r-PhyP (>50%), B. subtilis phytase (<8%)) and hydrolyzed phytate from soybean with greater efficacy at neutral pH. These characteristics suggest that r-PhyP might be a good candidate for an aquatic feed additive in the aquaculture industry.  相似文献   

7.
Pectate lyase A (PelA) of Aspergillus nidulans was successfully expressed in Escherichia coli and effectively purified using a Ni2+-nitrilotriacetate-agarose column. Enzyme activity of the recombinant PelA could reach 360 U ml−1 medium. The expressed PelA exhibited its optimum level of activity over the range of pH 7.5–10 at 50°C. Mn2+, Ca2+, Fe2+, Mg2+ and Fe3+ ions stimulated the pectate lyase activity, but Cu2+ and Zn2+ inhibited it. The recombinant PelA had a V max of 77 μmol min−1 mg−1 and an apparent K m of 0.50 mg ml−1 for polygalacturonic acid. Low-esterified pectin was the optimum substrate for the PelA, whereas higher-esterified pectin was hardly cleaved by it. PelA efficiently macerated mung bean hypocotyls and potato tuber tissues into single cells.  相似文献   

8.
Immobilized cells of Delftia tsuruhatensis CCTCC M 205114 harboring R-amidase were applied in asymmetric hydrolysis of (R)-2, 2-dimethylcyclopropane carboxamide (R − 1) from racemic (R, S)-2, 2-dimethylcyclopropane carboxamide to accumulate (S)-2, 2-dimethylcyclopropane carboxamide (S − 1). Maximum R-amidase activity of 13.1 U/g wet cells (0.982 U/g beads) was obtained under conditions of 3% sodium alginate, 2.5% CaCl2, 15 h crosslinking and 2 mm bead size, which was 53.9% of that of free cells (24.3 U/g wet cells). In addition, characterization of the immobilized cells was examined. The optimum R − 1 hydrolysis conditions were identified as follows: substrate concentration 10 mM, pH 8.5, temperature 35°C and time course 40 min. Under optimum conditions, the maximum yield and enantiomeric excess of (R)-2, 2-dimethylcyclopropanecarboxylic acid were 49.5% and >99%, respectively. This afforded S − 1 with a yield >49% and an e.e. of 97.7%. With good operational stability and excellent enanotioselectivity, the immobilized cells could be potentially utilized in industrial production of S − 1.  相似文献   

9.
The present study describes a system for efficient plant regeneration via organogenesis and somatic embryogenesis of safflower (Carthamus tinctorius L.) cv. NARI-6 in fungal culture filtrates (FCF)-treated cultures. FCF was prepared by culturing Alternaria carthami fungal mycelia in selection medium for host-specific toxin production. Cotyledon explants cultured on callus induction medium with different levels of FCF (10–50%) produced embryogenic callus. In organogenesis, 42.2% microshoots formed directly from embryogenic callus tissues in plant regeneration medium with 40% FCF. Isolated embryogenic callus cultured on embryo induction medium containing 40% FCF induced 50.2% somatic embryogenesis. Embryo germination percentage was decreased from 64.5 to 28 in embryo maturation medium containing 40% FCF. However, nine plantlets from organogenesis and 24 plantlets from somatic embryogenesis were selected as FCF-tolerant. Alternaria carthami fungal spores (5 × 105 spores/ml) sprayed on the leaves of FCF-tolerant plants showed enhanced survival rate over control plants, which plants were more susceptible to fungal attack. The number of leaf spot lesions per leaf was decreased from 3.4 to 0.9 and their lesion length was also reduced from 2.9 to 0.7 mm in organogenic derived FCF-tolerant plants over control. In somatic embryo derived FCF-tolerant plants, the number of lesions was decreased from 3.1 to 0.4 and the lesion size was also reduced to 2.7–0.5 mm when compared to the control. This study also examined antioxidant enzyme activity in FCF-tolerant plants. Catalase (CAT) activity was slightly decreased whereas peroxidase (POD) activity was increased to a maximum of 42% (0.19 μmol min−1 mg−1 protein) from organogenesis and 47% (0.23 μmol min−1 mg−1 protein) from embryogenesis in FCF-tolerant plants. Superoxide dismutase (SOD) activity was also increased to 17% (149 U mg−1 protein) and 19.5% (145 U mg−1 protein) in FCF-tolerant plants derived from organogenesis and somatic embryogenesis when compared with control plants.  相似文献   

10.
A chitinase producing bacterium Enterobacter sp. NRG4, previously isolated in our laboratory, has been reported to have a wide range of applications such as anti-fungal activity, generation of fungal protoplasts and production of chitobiose and N-acetyl D-glucosamine from swollen chitin. In this paper, the gene coding for Enterobacter chitinase has been cloned and expressed in Escherichia coli BL21(DE3). The structural portion of the chitinase gene comprised of 1686 bp. The deduced amino acid sequence of chitinase has high degree of homology (99.0%) with chitinase from Serratia marcescens. The recombinant chitinase was purified to near homogeneity using His-Tag affinity chromatography. The purified recombinant chitinase had a specific activity of 2041.6 U mg−1. It exhibited similar properties pH and temperature optima of 5.5 and 45°C respectively as that of native chitinase. Using swollen chitin as a substrate, the Km, kcat and catalytic efficiency (kcat/Km) values of recombinant chitinase were found to be 1.27 mg ml−1, 0.69 s−1 and 0.54 s−1M−1 respectively. Like native chitinase, the recombinant chitinase produced medicinally important N-acetyl D-glucosamine and chitobiose from swollen chitin and also inhibited the growth of many fungi.  相似文献   

11.
12.
Formate oxidase was found in cell-free extracts of Debaryomyces vanrijiae MH201, a soil isolate. After purification by column chromatography, the preparation showed a protein band corresponding to a molecular mass (MM) of 64 kDa on sodium dodecyl sulfate–polyacrylamide gel electrophoresis. The MM, estimated by a gel filtration, was 99 kDa. The preparation showed two and three bands on isoelectric focusing under denaturing and native conditions, respectively. These results suggest that the preparation contained three isoforms, each of which might be composed of αα, αβ, and ββ subunits with apparently similar MM. The preparation acted on formate with K m and V max values of 11.7 mM and 262 μmol min−1 mg−1, respectively, at pH 4.5 and 25°C, but showed no evidence of activity on the other compounds tested. The optimum pH and temperature were pH 4.0 and 35°C, respectively. The preparation showed activities of 85% of the initial activity after storage at pH 6.0 and 4°C for 8 weeks. When 10 mM formaldehyde was reacted with 2.0 U ml−1 of the enzyme preparation at pH 5.5 and room temperature in the presence of 2.0 U ml−1 of a microbial aldehyde oxidase and 100 U ml−1 of catalase for 180 min, neither of formate nor formaldehyde was detected, suggesting that the reaction involved the quantitative conversion of formaldehyde to carbon dioxide.  相似文献   

13.
Trehalose synthase (TSII) from Corynebacterium nitrilophilus NRC was successively purified by ammonium sulphate precipitation, ion exchange chromatography on DEAE-cellulose and gel filtration chromatography on Sephadex G-100 columns. The specific activity of the trehalose synthase was increased ~200-fold, from 0.14 U mg−1 protein to 28.3 U mg−1 protein. TSII was found to be a monomeric protein with a molecular weight of 67–69 kDa. Characterization of the enzyme exhibited optimum pH and temperature were 7.5 and 35°C, respectively. The purified enzyme was stable from pH 6.6 to 7.8 and able to prolong its thermal stability up to 35°C. The enzyme activity was inhibited strongly by Zn2+, Hg2+ and Cu2+ and moderately by Ba2+, Fe2+, Pb2+ and Ni2+. Other metal ions Ca2+, Mg2+, Co2+, Mn2+ and EDTA had almost no effect.  相似文献   

14.
We examined the expression of human cyclooxygenase-1 (COX-1) in Drososphila melanogaster S2 (S2) cells transformed with cDNAs encoding β1,4-galactosyltransferase (GalT) and Galβ1,4-GlcNAc α2,6-sialyltransferase (ST). Southern blot analysis indicated that multiple copies of the glycosyltransferases genes were integrated into the S2 cell genome. A lectin blot analysis also indicated that recombinant COX-1 from S2COX-1/GalT-ST cells contained the glycan residues of β1,4-linked galactose and α2,6-linked sialic acid. The specific peroxidase activity of recombinant sialylated COX-1 from S2COX-1/GalT-ST cells was 41,250 U mg−1, indicating an increase of approximately 22% compared with a non-sialylated control (33,850 U mg−1) from S2COX-1 cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Artemisinin production by hairy roots of Artemisia annua L. was increased 6-fold to 1.8 μg mg−1 dry wt over 6 days by adding 150 mg chitosan l−1. The increase was dose-dependent. Similar treatment of hairy roots with methyl jasmonate (0.2 mM) or yeast extract (2 mg ml−1) increased artemisinin production to 1.5 and 0.9 μg mg−1 dry wt, respectively.  相似文献   

16.
Tong P  Hong Y  Xiao Y  Zhang M  Tu X  Cui T 《Biotechnology letters》2007,29(2):295-301
A new basidiomycete, Trametes sp. 420, produced laccase at 6,810 U l−1 (268 mg, 25.4 U mg−1 protein for guaiacol) in glucose medium and 7,870 U l−1 (310 mg) in cellobiose medium with induction by 0.5 mM Cu2+ and 6 mM o-toluidine. Laccase isozyme E (LacE) was the sole laccase in the fermentation products. It was stable at pH 5–9 and below 70°C over 30 min. The K m values of LacE for four substrates (guaiacol ABTS, 2,6-dimethoxyphenol and syringaldazine) varied from 5 to 245 μM. The activity of LacE was strongly inhibited by NaN3 but not by EDTA or dimethylsulfoxide. LacE at 0.5 U l−1 could decolorize industrial dyes. The open reading frame of the lacE gene was 2,130 bp and was interrupted by 10 introns. It displayed a high homology to laccases from other fungi. Pingui Tong and Yuzhi Hong contributed equally to the study  相似文献   

17.
The changes in foliar concentrations of volatile terpenes in response to water stress, fertilization and temperature were analyzed in Pinus halepensis and Quercus ilex. The most abundant terpenes found in both species were α-pinene and Δ3-carene. β-Pinene and myrcene were also abundant in both species. P. halepensis concentrations were much greater than those of Q. ilex in agreement with the lack of storage in the latter species (15205.60 ± 1140.04 vs. 0.54 ± 0.08 μg g−1 [d.m.]). The drought treatment (reduction to 1/3 of full watering) significantly increased the total terpene concentrations in both species (54% in P. halepensis and 119% in Q. ilex). The fertilization treatment (addition of either 250 kg N ha−1 or 250 kg P ha−1 or both) had no significant effects on terpene foliar concentrations. The terpene concentrations increased from 0.25 μg g−1 [d.m.] at 30°C to 0.70 μg g−1 [d.m.] at 40°C in Q. ilex (the non-storing species) and from 2,240 μg g−1 [d.m.] at 30°C to 15,621 μg g−1 [d.m.] at 40°C in P. halepensis (the storing species). Both species presented negative relationship between terpene concentrations and relative water contents (RWC). The results of this study show that higher terpene concentrations can be expected in the warmer and drier conditions predicted for the next decades in the Mediterranean region.  相似文献   

18.
Aplanospores ofHaematococcus pluvialis MUR 145 contained 0.7% carotenoids (dry wt. basis) consisting of β,β-carotene (5% of total carotenoid), echinenone (4%), canthaxanthin (4%), (3S,3′S)-astaxanthin diester (34%), (3S,3′S)-astaxanthin monoester (46%), (3S,3′S)-astaxanthin (1%) and (3R,3′R,6′R)-lutein (6%). The astaxanthin esters were examined by TLC and HPLC and VIS,1H NMR and mass spectra recorded. Their chirality was determined by the camphanate method (Vecchi & Müller, 1979) after anaerobic hydrolysis. The tough cell wall of the aplanospores required enzymatic treatment prior to pigment extraction. The potential use of this microalga as a feed ingredient in aquaculture is discussed briefly.  相似文献   

19.
Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria   总被引:4,自引:0,他引:4  
Mitochondria isolated from the roots of barley (Hordeum vulgare L.) and rice (Oryza sativa L.) seedlings were capable of oxidizing external NADH and NADPH anaerobically in the presence of nitrite. The reaction was linked to ATP synthesis and nitric oxide (NO) was a measurable product. The rates of NADH and NADPH oxidation were in the range of 12–16 nmol min−1 mg−1 protein for both species. The anaerobic ATP synthesis rate was 7–9 nmol min−1 mg−1 protein for barley and 15–17 nmol min−1 mg−1 protein for rice. The rates are of the same order of magnitude as glycolytic ATP production during anoxia and about 3–5% of the aerobic mitochondrial ATP synthesis rate. NADH/NADPH oxidation and ATP synthesis were sensitive to the mitochondrial inhibitors myxothiazol, oligomycin, diphenyleneiodonium and insensitive to rotenone and antimycin A. The uncoupler FCCP completely eliminated ATP production. Succinate was also capable of driving ATP synthesis. We conclude that plant mitochondria, under anaerobic conditions, have a capacity to use nitrite as an electron acceptor to oxidize cytosolic NADH/NADPH and generate ATP.  相似文献   

20.
Xylose reductase (XR) is the enzyme that catalyzes the first step of xylose metabolism. Although XRs from various yeasts have been characterized, little is known about this enzyme in Debaryomyces hansenii. In the present study, response surface analysis was used to determine the optimal conditions for D. hansenii UFV-170 XR activity. The influence of pH and temperature, ranging from 4.0 to 8.0 and from 25 to 55°C, respectively, was evaluated by a 22 central composite design face-centered. The F-test (ANOVA) and the Student’s t test were performed to evaluate the statistical significance of the model and the regression coefficients, respectively. The NADPH-dependent XR activity varied from 0.502 to 2.53 U mL−1, corresponding to 0.07–0.352 U mg−1, whereas the NADH-dependent one was almost negligible. The model predicted with satisfactory correlation (R 2 = 0.940) maximum volumetric activity of 2.27 U mL−1 and specific activity of 0.300 U mg−1 at pH 5.3 and 39°C, which were fairly confirmed by additional tests performed under these conditions. The enzyme proved very stable at low temperature (4°C), keeping its activity almost entirely after 360 min, which corresponded to the half-time at 39°C. On the other hand, at temperatures ≥50°C it was lost almost completely after only 20 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号