首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.

Background

Endothelial cells (ECs) are continuously exposed to hemodynamic forces imparted by blood flow. While it is known that endothelial behavior can be influenced by cytokine activation or fluid shear, the combined effects of these two independent agonists have yet to be fully elucidated.

Methodology

We investigated EC response to long-term inflammatory cues under physiologically relevant shear conditions via E-selectin expression where monolayers of human umbilical vein ECs were simultaneously exposed to laminar fluid shear and interleukin-1ß (shear-cytokine activation) in a parallel plate flow chamber.

Results and Conclusion

Naïve ECs exposed to shear-cytokine activation display significantly higher E-selectin expression for up to 24 hr relative to ECs activated in static (static-cytokine). Peak E-selectin expression occurred after 8–12 hr of continuous shear-cytokine activation contrary to the commonly observed 4–6 hr peak expression in ECs exposed to static-cytokine activation. Cells with some history of high shear conditioning exhibited either high or muted E-selectin expression depending on the durations of the shear pre-conditioning and the ensuing shear-cytokine activation. Overall, the presented data suggest that a high laminar shear enhances acute EC response to interleukin-1ß in naïve or shear-conditioned ECs as may be found in the pathological setting of ischemia/reperfusion injury while conferring rapid E-selectin downregulation to protect against chronic inflammation.  相似文献   

2.
Summary— To analytically study the morphological responses of vascular endothelial cells (ECs) to fluid flow, we designed a parallel plate flow culture chamber in which cells were cultured under fluid shear stress ranging from 0.01 to 2.0 Pa for several days. Via a viewing window of the chamber, EC responses to known levels of fluid shear stress were monitored either by direct observations or by a video-enhanced time-lapse microscopy. Among the responses of cultured ECs to flow, morphological responses take from hours to days to be fully expressed, except for the fluid shear stress-dependent motility pattern change we reported earlier which could be detected within 30 min of flow changes. We report here that ECs exposed to more than 1.0 Pa of fluid shear shear stress have developed lamellipodia in the direction of flow in 10 min. This is the fastest structurally identifiable EC response to fluid shear stress. This was a reversible response. When the flow was stopped or reduced to the level which exerted less than 0.1 Pa of fluid shear stress, the biased lamellipodium development was lost within several minutes. The microtubule organizing center was located posterior to the nucleus in ECs under the influence of flow. However, this position was established only in ECs responding to fluid shear stress for longer than 1 h, indicating that positioning of the microtubule organizing center was not the reason for, but rather the result of, the biased lamellipodium response. Colcemid-treated ECs responded normally to flow, indicating that microtubules were not involved in both flow sensing and the flow-induced, biased lamellipodium development.  相似文献   

3.

Objective

Enhancing structural and functional integrity of mitochondria is an emerging therapeutic option against endothelial dysfunction. In this study, we sought to investigate the effect of fluid shear stress on mitochondrial biogenesis and mitochondrial respiratory function in endothelial cells (ECs) using in vitro and in vivo complementary studies.

Methods and Results

Human aortic- or umbilical vein-derived ECs were exposed to laminar shear stress (20 dyne/cm2) for various durations using a cone-and-plate shear apparatus. We observed significant increases in the expression of key genes related to mitochondrial biogenesis and mitochondrial quality control as well as mtDNA content and mitochondrial mass under the shear stress conditions. Mitochondrial respiratory function was enhanced when cells were intermittently exposed to laminar shear stress for 72 hrs. Also, shear-exposed cells showed diminished glycolysis and decreased mitochondrial membrane potential (ΔΨm). Likewise, in in vivo experiments, mice that were subjected to a voluntary wheel running exercise for 5 weeks showed significantly higher mitochondrial content determined by en face staining in the conduit (greater and lesser curvature of the aortic arch and thoracic aorta) and muscle feed (femoral artery) arteries compared to the sedentary control mice. Interestingly, however, the mitochondrial biogenesis was not observed in the mesenteric artery. This region-specific adaptation is likely due to the differential blood flow redistribution during exercise in the different vessel beds.

Conclusion

Taken together, our findings suggest that exercise enhances mitochondrial biogenesis in vascular endothelium through a shear stress-dependent mechanism. Our findings may suggest a novel mitochondrial pathway by which a chronic exercise may be beneficial for vascular function.  相似文献   

4.
p120-Catenin is known to play important roles in cell-cell adhesion stability by binding to cadherin and morphological changes of cells by regulating small RhoGTPase activities. Although the expression and binding states of p120-catenin are thought to dynamically change due to morphological adaptation of endothelial cells (ECs) to fluid shear stress, these dynamics remain to be explored. In the present study, we examined the time course of changes in p120-catenin expression and its binding to vascular endothelial (VE)-cadherin in ECs exposed to shear stress. Human umbilical vein ECs began to change their morphologies at 3-6 h, and became elongated and oriented to the direction of flow at 24 h after exposure to a shear stress of 1.5 Pa. Binding and co-localization of p120-catenin with VE-cadherin at the foci of cell-cell adhesions were retained in ECs during exposure to shear stress, indicating that VE-cadherin was stabilized in the plasma membrane. In contrast, cytoplasmic p120-catenin that was dissociated from VE-cadherin was transiently increased at 3-6 h after the flow onset. These results suggest that the transient increase of cytoplasmic p120-catenin may stimulate RhoGTPase activities and act as a switch for the morphological changes in ECs in response to shear stress.  相似文献   

5.
Cancer metastasis is a multistep process involving cell-cell interactions, but little is known about the adhesive interactions and signaling events during extravasation of tumor cells (TCs). In this study, cell adhesion molecule (CAM) expression was investigated using an in vitro assay, in which TCs were seeded onto an endothelial cell (ECs) monolayer and cocultured during 5 h. Flow cytometry, confocal microscopy as well as western blot analysis indicated that endothelial ICAM-1 (Inter Cellular Adhesion Molecule-1), VCAM-1 (Vascular Adhesion Molecule-1) and E-selectin were up-regulated after TC-EC coculture, whereas no change was observed for CAMs expression in tumor cells. This increased CAMs expression required tight contact between TCs and ECs. Incubation of ECs with the pyrrolidine-dithiocarbamate NFκB inhibitor prior to coculture, fully prevented coculture-induced expression of endothelial CAMs. Using specific blocking antibodies we showed an implication of ICAM-1 and VCAM-1 for TCs extravasation and VCAM-1 for adhesion. Moreover, fluid flow experiments revealed that high shear stress totally abolished coculture-induced as well as TNFα-induced CAMs over-expression. This study suggests that TCs could act as a potent inflammatory stimulus on ECs by inducing CAMs expression via NFκB activation, and that this action can be modulated by shear stress.  相似文献   

6.
Endothelial cells (ECs) respond to fluid shear stress. They reveal shear stress related morphological changes in both their cell shape and cytoskeletal organization. Little is known about the cytoskeletal organization of ECs in situ. We studied, together with the living ultrasound high resolution imaging system, the distribution of stress fibers (SFs), certain focal adhesion (FA) and signal transduction associated proteins in guinea pig aortic and venous ECs. Although SFs present in the basal portion of venous ECs ran along the direction of the blood flow, their size was smaller and their number was fewer than those of aortic ECs. Venous ECs were elongated to the direction of flow than in aortic ECs exposed over normal shear stress (SS). Since fluid SS in the vein is low, a sustained and uni-directional low SS over a long period might thus cause these structural features observed in venous ECs.  相似文献   

7.
Qazi H  Shi ZD  Tarbell JM 《PloS one》2011,6(5):e20348

Background

Glioma cells are exposed to elevated interstitial fluid flow during the onset of angiogenesis, at the tumor periphery while invading normal parenchyma, within white matter tracts, and during vascular normalization therapy. Glioma cell lines that have been exposed to fluid flow forces in vivo have much lower invasive potentials than in vitro cell motility assays without flow would indicate.

Methodology/Principal Findings

A 3D Modified Boyden chamber (Darcy flow through collagen/cell suspension) model was designed to mimic the fluid dynamic microenvironment to study the effects of fluid shear stress on the migratory activity of glioma cells. Novel methods for gel compaction and isolation of chemotactic migration from flow stimulation were utilized for three glioma cell lines: U87, CNS-1, and U251. All physiologic levels of fluid shear stress suppressed the migratory activity of U87 and CNS-1 cell lines. U251 motility remained unaltered within the 3D interstitial flow model. Matrix Metalloproteinase (MMP) inhibition experiments and assays demonstrated that the glioma cells depended on MMP activity to invade, and suppression in motility correlated with downregulation of MMP-1 and MMP-2 levels. This was confirmed by RT-PCR and with the aid of MMP-1 and MMP-2 shRNA constructs.

Conclusions/Significance

Fluid shear stress in the tumor microenvironment may explain reduced glioma invasion through modulation of cell motility and MMP levels. The flow-induced migration trends were consistent with reported invasive potentials of implanted gliomas. The models developed for this study imply that flow-modulated motility involves mechanotransduction of fluid shear stress affecting MMP activation and expression. These models should be useful for the continued study of interstitial flow effects on processes that affect tumor progression.  相似文献   

8.
Remodeling of endothelial basement membrane is important in atherogenesis. Since little is known about the actual relationship between type IV collagen and matrix metalloprotease−2 (MMP-2) in endothelial cells (ECs) under shear stress by blood flow, we performed quantitative analysis for type IV collagen and MMP-2 in ECs under high shear stress. The mRNA of type IV collagen from ECs exposed to high shear stress (10 and 30 dyn/cm2) had a higher expression compared to ECs exposed to a static condition or low shear stress (3 dyn/cm2) (P < 0.01). 3H-proline uptake analysis and fluorography revealed a remarkable increase of type IV collagen under high shear stress (P < 0.01). In contrast, zymography revealed that exposing to high shear stress, however similar positivity was leveled in the intracellular MMP-2 in the control and high shear stress-exposed ECs, reduced the secretion of MMP-2 in ECs. The results of Northern blotting, gelatin zymography and monitoring the intracellular trafficking of GFP-labeled MMP-2 revealed that MMP-2 secretion by ECs was completely suppressed by high shear stress, but the intracellular mRNA expression, protein synthesis, and transport of MMP-2 were not affected. In conclusion, we suggest that high shear stress up-regulates type IV collagen synthesis and down-regulates MMP-2 secretion in ECs, which plays an important role in remodeling of the endothelial basement membrane and may suppress atherogenesis.  相似文献   

9.

Background

Although oxidative stress plays a major role in endothelial dysfunction (ED), the role of glutathione (GSH), of nuclear erythroid-related factor 2 (Nrf2) and of related antioxidant genes (ARE) are yet unknown. In this study we combined an in vivo with an in vitro model to assess whether cigarette smoking affects flow-mediated vasodilation (FMD), GSH concentrations and the Nrf2/ARE pathway in human umbilical vein endothelial cells (HUVECs).

Methods and Results

52 healthy subjects (26 non-smokers and 26 heavy smokers) were enrolled in this study. In smokers we demonstrated increased oxidative stress, i.e., reduced concentrations of GSH and increased concentrations of oxidation products of the phospholipid 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (oxPAPC) in serum and in peripheral blood mononuclear cells (PBMC), used as in vivo surrogates of endothelial cells. Moreover we showed impairment of FMD in smokers and a positive correlation with the concentration of GSH in PBMC of all subjects. In HUVECs exposed to smokers'' serum but not to non-smokers'' serum we found that oxidative stress increased, whereas nitric oxide and GSH concentrations decreased; interestingly the expression of Nrf2, of heme oxygenase-1 (HO-1) and of glutamate-cysteine ligase catalytic (GCLC) subunit, the rate-limiting step of synthesis of GSH, was decreased. To test the hypothesis that the increased oxidative stress in smokers may have a causal role in the repression of Nrf2/ARE pathway, we exposed HUVECs to increasing concentrations of oxPAPC and found that at the highest concentration (similar to that found in smokers'' serum) the expression of Nrf2/ARE pathway was reduced. The knockdown of Nrf2 was associated to a significant reduction of HO-1 and GCLC expression induced by oxPAPC in ECs.

Conclusions

In young smokers with ED a novel further consequence of increased oxidative stress is a repression of Nrf2/ARE pathway leading to GSH depletion.  相似文献   

10.
There is evidence that nitric oxide (NO), superoxide (O2), and their associated reactive nitrogen species (RNS) produced by vascular endothelial cells (ECs) in response to hemodynamic forces play a role in cell signaling. NO is known to impair mitochondrial respiration. We sought to determine whether exposure of human umbilical vein ECs (HUVECs) to steady laminar shear stress and the resultant NO production modulate electron transport chain (ETC) enzymatic activities. The activities of respiratory complexes I, II/III, and IV were dependent on the presence of serum and growth factor supplement in the medium. EC exposure to steady laminar shear stress (10 dyn/cm2) resulted in a gradual inhibition of each of the complexes starting as early as 5 min from the flow onset and lasting up to 16 h. Ramp flow resulted in inhibition of the complexes similar to that of step flow. When ECs were sheared in the presence of the NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 100 µM), the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO; 100 µM), or the peroxynitrite (ONOO) scavenger uric acid (UA; 50 µM), the flow-inhibitory effect on mitochondrial complexes was attenuated. In particular, L-NAME and UA abolished the flow effect on complex IV. Increased tyrosine nitration was observed in the mitochondria of sheared ECs, and UA blocked the shear-induced nitrotyrosine staining. In summary, shear stress induces mitochondrial RNS formation that inhibits the electron flux of the ETC at multiple sites. This may be a critical mechanism by which shear stress modulates EC signaling and function. oxidative stress; mitochondria; endothelium  相似文献   

11.
12.
Shear stress is one of mechanical constraints which are exerted by blood flow on endothelial cells (ECs). To adapt to shear stress, ECs align in the direction of flow through adherens junction (AJ) remodeling. However, mechanisms regulating ECs alignment under shear stress are poorly understood. The scaffold protein IQ domain GTPase activating protein 1 (IQGAP1) is a scaffold protein which couples cell signaling to the actin and microtubule cytoskeletons and is involved in cell migration and adhesion. IQGAP1 also plays a role in AJ organization in epithelial cells. In this study, we investigated the potential IQGAP1 involvement in the endothelial cells alignment under shear stress. Progenitor-derived endothelial cells (PDECs), transfected (or not) with IQGAP1 small interfering RNA, were exposed to a laminar shear stress (1.2 N/m2) and AJ proteins (VE-cadherin and β-catenin) and IQGAP1 were labeled by immunofluorescence. We show that IQGAP1 is essential for ECs alignment under shear stress. We studied the role of IQGAP1 in AJs remodeling of PDECs exposed to shear stress by studying cell localization and IQGAP1 interactions with VE-cadherin and β-catenin by immunofluorescence and Proximity Ligation Assays. In static conditions, IQGAP1 interacts with VE-cadherin but not with β-catenin at the cell membrane. Under shear stress, IQGAP1 lost its interaction from VE-cadherin to β-catenin. This “switch” was concomitant with the loss of β-catenin/VE-cadherin interaction at the cell membrane. This work shows that IQGAP1 is essential to ECs alignment under shear stress and that AJ remodeling represents one of the mechanisms involved. These results provide a new approach to understand ECs alignment under to shear stress.  相似文献   

13.
14.
Kosmider B  Messier EM  Chu HW  Mason RJ 《PloS one》2011,6(12):e26059

Background

Cigarette smoke (CS) is a highly complex mixture and many of its components are known carcinogens, mutagens, and other toxic substances. CS induces oxidative stress and cell death, and this cell toxicity plays a key role in the pathogenesis of several pulmonary diseases.

Methodology/Principal Findings

We studied the effect of cigarette smoke extract (CSE) in human alveolar epithelial type I-like (ATI-like) cells. These are isolated type II cells that are differentiating toward the type I cell phenotype in vitro and have lost many type II cell markers and express type I cell markers. ATI-like cells were more sensitive to CSE than alveolar type II cells, which maintained their differentiated phenotype in vitro. We observed disruption of mitochondrial membrane potential, apoptosis and necrosis that were detected by double staining with acridine orange and ethidium bromide or Hoechst 33342 and propidium iodide and TUNEL assay after treatment with CSE. We also detected caspase 3 and caspase 7 activities and lipid peroxidation. CSE induced nuclear translocation of Nrf2 and increased expression of Nrf2, HO-1, Hsp70 and Fra1. Moreover, we found that Nrf2 knockdown sensitized ATI-like cells to CSE and Nrf2 overexpression provided protection against CSE-induced cell death. We also observed that two antioxidant compounds N-acetylcysteine and trolox protected ATI-like cells against injury by CSE.

Conclusions

Our study indicates that Nrf2 activation is a major factor in cellular defense of the human alveolar epithelium against CSE-induced toxicity and oxidative stress. Therefore, antioxidant agents that modulate Nrf2 would be expected to restore antioxidant and detoxifying enzymes and to prevent CS-related lung injury and perhaps lessen the development of emphysema.  相似文献   

15.
Vascular endothelial cells (ECs) distinguish among and respond differently to different types of fluid mechanical shear stress. Elucidating the mechanisms governing this differential responsiveness is the key to understanding why early atherosclerotic lesions localize preferentially in arterial regions exposed to low and/or oscillatory flow. An early and very rapid endothelial response to flow is the activation of flow-sensitive K+ and Cl channels that respectively hyperpolarize and depolarize the cell membrane and regulate several important endothelial responses to flow. We have used whole cell current- and voltage-clamp techniques to demonstrate that flow-sensitive hyperpolarizing and depolarizing currents respond differently to different types of shear stress in cultured bovine aortic ECs. A steady shear stress level of 10 dyn/cm2 activated both currents leading to rapid membrane hyperpolarization that was subsequently reversed to depolarization. In contrast, a steady shear stress of 1 dyn/cm2 only activated the hyperpolarizing current. A purely oscillatory shear stress of 0 ± 10 dyn/cm2 with an oscillation frequency of either 1 or 0.2 Hz activated the hyperpolarizing current but only minimally the depolarizing current, whereas a 5-Hz oscillation activated neither current. These results demonstrate for the first time that flow-activated ion currents exhibit different sensitivities to shear stress magnitude and oscillation frequency. We propose that flow-sensitive ion channels constitute components of an integrated mechanosensing system that, through the aggregate effect of ion channel activation on cell membrane potential, enables ECs to distinguish among different types of flow. ion channels; atherosclerosis; mechanotransduction  相似文献   

16.
Endothelial cells (ECs) are constantly exposed to shear stress, the action of which triggers signaling pathways and cellular responses. During inflammation, cytokines such as IL-6 increase in plasma. In this study, we examined the effects of steady flow on IL-6-induced endothelial responses. ECs exposed to IL-6 exhibited STAT3 activation via phosphorylation of Tyr705. However, when ECs were subjected to shear stress, shear force-dependent suppression of IL-6-induced STAT3 phosphorylation was observed. IL-6 treatment increased the phosphorylation of JAK2, an upstream activator of STAT3. Consistently, shear stress significantly reduced IL-6-induced JAK2 activation. Pretreatment of ECs with an inhibitor of MEK1 did not alter this suppression by shear stress, indicating that extracellular signal-regulated kinase (ERK1/2) was not involved. However, pretreatment of ECs with an endothelial nitric oxide synthase inhibitor (nitro-L-arginine methyl ester) attenuated this inhibitory effect of shear stress on STAT3 phosphorylation. Shear stress-treated ECs displayed decreased nuclear transmigration of STAT3 and reduced STAT3 binding to DNA. Intriguingly, ECs exposed to IL-6 entered the cell cycle, as evidenced by increasing G2/M phase, and shear stress to these ECs significantly reduced IL-6-induced cell cycle progression. STAT3-mediated IL-6-induced cell cycle was confirmed by the inhibition of the cell cycle in ECs infected with adenovirus carrying the inactive mutant of STAT3. Our study clearly shows that shear stress exerts its inhibitory regulation by suppressing the IL-6-induced JAK2/STAT3 signaling pathway and thus inhibits IL-6-induced EC proliferation. This shear force-dependent inhibition of IL-6-induced JAK2/STAT3 activation provides new insights into the vasoprotective effects of steady flow on ECs against cytokine-induced responses. shear stress; nitric oxide; cell cycle  相似文献   

17.
18.

Background

Hydrocephalus is a medical condition consisting of an abnormal accumulation of cerebrospinal fluid within the brain. A catheter is inserted in one of the brain ventricles and then connected to an external valve to drain the excess of cerebrospinal fluid. The main drawback of this technique is that, over time, the ventricular catheter ends up getting blocked by the cells and macromolecules present in the cerebrospinal fluid. A crucial factor influencing this obstruction is a non-uniform flow pattern through the catheter, since it facilitates adhesion of suspended particles to the walls. In this paper we focus on the effects that tilted holes as well as conical holes have on the flow distribution and shear stress.

Methods

We have carried out 3D computational simulations to study the effect of the hole geometry on the cerebrospinal fluid flow through ventricular catheters. All the simulations were done with the OpenFOAM® toolbox. In particular, three different groups of models were investigated by varying (i) the tilt angles of the holes, (ii) the inner and outer diameters of the holes, and (iii) the distances between the so-called hole segments.

Results

The replacement of cylindrical holes by conical holes was found to have a strong influence on the flow distribution and to lower slightly the shear stress. Tilted holes did not involve flow distribution changes when the hole segments are sufficiently separated, but the mean shear stress was certainly reduced.

Conclusions

The authors present new results about the behavior of the fluid flow through ventricular catheters. These results complete earlier work on this topic by adding the influence of the hole geometry. The overall objective pursued by this research is to provide guidelines to improve existing commercially available ventricular catheters.
  相似文献   

19.
Vascular endothelial cells (ECs) are constantly subjected to blood flow-induced shear stress and the influences of neighboring smooth muscle cells (SMCs). In the present study, a coculture flow system was developed to study the effect of shear stress on EC-SMC interactions. ECs and SMCs were separated by a porous membrane with only the EC side subjected to the flow condition. When ECs were exposed to a shear stress of 12 dynes/cm2 for 24 h, the cocultured SMCs tended to orient perpendicularly to the flow direction. This perpendicular orientation of the cocultured SMCs to flow direction was not observed when ECs were exposed to a shear stress of 2 dynes/cm2. Under the static condition, long and parallel actin bundles were observed in the central regions of the cocultured SMCs, whereas the actin filaments localized mainly at the periphery of the cocultured ECs. After 24 h of flow application, the cocultured ECs displayed very long, well-organized, parallel actin stress fibers aligned with the flow direction in the central regions of the cells. Immunostaining of platelet endothelial cell adhesion molecule-1 confirmed the elongation and alignment of the cocultured ECs with the flow direction. Coculture with SMCs under static condition induced EC gene expressions of growth-related oncogene-alpha and monocyte chemotactic protein-1, and shear stress was found to abolish these SMC-induced gene expressions. Our results suggest that shear stress may serve as a down-regulator for the pathophysiologically relevant gene expression in ECs cocultured with SMCs.  相似文献   

20.

Background  

In vitro mechanotransduction studies are designed to elucidate cell behavior in response to a well-defined mechanical signal that is imparted to cultured cells, e.g. through fluid flow. Typically, flow rates are calculated based on a parallel plate flow assumption, to achieve a targeted cellular shear stress. This study evaluates the performance of specific flow/perfusion chambers in imparting the targeted stress at the cellular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号