首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Trp-cage, an 18-20 residue miniprotein, has emerged as a primary test system for evaluating computational fold prediction and folding rate determination efforts. As it turns out, a number of stabilizing interactions in the Trp-cage folded state have a strong pH dependence; all prior Trp-cage mutants have been destabilized under carboxylate-protonating conditions. Notable among the pH dependent stabilizing interactions within the Trp-cage are: (1) an Asp as the helix N-cap, (2) an H-bonded Asp9/Arg16 salt bridge, (3) an interaction between the chain termini which are in close spatial proximity, and (4) additional side chain interactions with Asp9. In the present study, we have prepared Trp-cage species that are significantly more stable at pH 2.5 (rather than 7) and quantitated the contribution of each interaction listed above. The Trp-cage structure remains constant with the pH change. The study has also provided measures of the stabilizing contribution of indole ring shielding from surface exposure and the destabilizing effects of an ionized Asp at the C-terminus of an α-helix.  相似文献   

2.
In this study, multiple independent molecular dynamics (MD) simulations on Trp-cage folding were performed at 300, 325 and 375 K using generalized Born (GB) implicit solvent model. The orientational movement of the side-chain of Trp6 to form a hydrophobic core with 310-helix was observed. The breaking/formation of a salt bridge between Asp9 and Arg16 was proposed to be the prerequisite for Trp-cage folding/refolding. Our results demonstrate that the cooperation between the salt bridge and the Trp6 orientation leads to a stable tertiary structure of Trp-cage. Analyses on backbone concerted motions at different temperatures indicate that interactions between Trp6 and 310-helix & Pro18 and between Pro12 and Pro17 & Pro18 are weakened at 375 K but strengthened at lower temperatures, suggesting that they could be the potential driving force of hydrophobic collapse.  相似文献   

3.
Chatterjee C  Gerig JT 《Biopolymers》2007,87(2-3):115-123
It has been suggested that aggregation of fluorinated alcohols in water solutions is involved with the abilities of these alcohols to provoke conformational changes in peptides and proteins. The extent of fluoroalcohol aggregation depends on the degree of fluorination: hexafluoroisopropanol (HFIP) is more extensively aggregated than is TFE. We previously described a study of the interactions of HFIP with the peptide Trp-cage and provided evidence for the formation of long-lived complexes between this fluoroalcohol and the peptide. In the present work, we have examined the interactions of the less-fluorinated TFE with Trp-cage, in order to probe the role of fluoroalcohol aggregation in the phenomena observed. Intermolecular (1)H{(19)F} nuclear Overhauser effects arising from interactions of TFE with the hydrogens of the peptide in a solution containing 42% TFE were determined at sample temperatures from 5 to 45 degrees C. It is shown that the folded state of the peptide under these conditions is essentially the same as that observed in water and in 30% HFIP-water. The observed peptide-solvent NOEs indicate formation of complexes of Trp-cage with TFE that persist for times of the order of 1 ns. The interactions leading to complexes with TFE are somewhat weaker than those involved in complex formation with HFIP. There are no indications that the aggregation of fluoroalcohol is a necessary concomitant of the interactions of TFE or HFIP with Trp-cage. Rather, the stronger and more long-lived interactions of HFIP with Trp-cage appear to be primarily the result of the greater hydrogen-bonding ability and hydrophobicity of this fluoroalcohol.  相似文献   

4.
Mono-, di- and trisaccharide representing the reducing terminal of the core structure of N-glycans were incorporated into Leu-Lys-Asn-Gly-Gly-Pro hexapeptide that is a partial structure of the Trp-cage mini-protein by linear assembly. These studies provide evidence that the used combination of Fmoc and Boc strategy and mild conditions result in glycopeptides in high purity and reasonable yield.  相似文献   

5.
We develop a coarse-grained protein model with a simplified amino acid interaction potential. Using this model, we perform discrete molecular dynamics folding simulations of a small 20-residue protein--Trp-cage--from a fully extended conformation. We demonstrate the ability of the Trp-cage model to consistently reach conformations within 2-angstroms backbone root-mean-square distance from the corresponding NMR structures. The minimum root-mean-square distance of Trp-cage conformations in simulations can be <1 angstroms. Our findings suggest that, at least in the case of Trp-cage, a detailed all-atom protein model with a molecular mechanics force field is not necessary to reach the native state of a protein. Our results also suggest that the success of folding Trp-cage in our simulations and in the reported all-atom molecular mechanics simulation studies may be mainly due to the special stabilizing features specific to this miniprotein.  相似文献   

6.
We are proposing an interresidue interaction energy map (IEM)--a new tool for protein structure analysis and protein bioinformatics. This approach employs the sum of pair-wise interaction energies of a particular residue as a measure of its structural importance. We will show that the IEM can serve as a means for identifying key residues responsible for the stability of a protein. Our method can be compared with the interresidue contact map but has the advantage of weighting the contacts by the stabilization energy content which they bring to the protein structure. For the theoretical adjustment of the proposed method, we chose the Trp-cage mini protein as a model system to compare a spectrum of computational methods ranging from the ab initio MP2 level through the DFT method to empirical force-field methods. The IEM method correctly identifies Tryptophane 6 as the key residue in the Trp-cage. The other residues with the highest stabilizing contributions correspond to the structurally important positions in the protein. We have further tested our method on the Trp2Cage miniprotein--a P12W mutant of the Trp-cage and on two proteins from the rubredoxin family that differ in their thermostability. Our method correctly identified the thermodynamically more stable variants in both cases and therefore can also be used as a tool for the relative measurement of protein stability. Finally, we will point out the important role played by dispersion energy, which contributes significantly to the total stabilization energy and whose role in aromatic pairs is clearly dominant. Surprisingly, the dispersion energy plays an even more important role in the interaction of prolines with aromatic systems.  相似文献   

7.
We simulate the folding/unfolding equilibrium of the 20-residue miniprotein Trp-cage. We use replica exchange molecular dynamics simulations of the AMBER94 atomic detail model of the protein explicitly solvated by water, starting from a completely unfolded configuration. We employ a total of 40 replicas, covering the temperature range between 280 and 538 K. Individual simulation lengths of 100 ns sum up to a total simulation time of about 4 micros. Without any bias, we observe the folding of the protein into the native state with an unfolding-transition temperature of about 440 K. The native state is characterized by a distribution of root mean square distances (RMSD) from the NMR data that peaks at 1.8A, and is as low as 0.4A. We show that equilibration times of about 40 ns are required to yield convergence. A folded configuration in the entire extended ensemble is found to have a lifetime of about 31 ns. In a clamp-like motion, the Trp-cage opens up during thermal denaturation. In line with fluorescence quenching experiments, the Trp-residue sidechain gets hydrated when the protein opens up, roughly doubling the number of water molecules in the first solvation shell. We find the helical propensity of the helical domain of Trp-cage rather well preserved even at very high temperatures. In the folded state, we can identify states with one and two buried internal water molecules interconnecting parts of the Trp-cage molecule by hydrogen bonds. The loss of hydrogen bonds of these buried water molecules in the folded state with increasing temperature is likely to destabilize the folded state at elevated temperatures.  相似文献   

8.
A novel computational procedure for modeling possible locally driven folding pathways by stepwise elongations of the peptide chain was successfully applied to TC5b, a 20-residue miniprotein. Systematic exploration of the possible locally driven pathways showed that the Trp-cage structure of TC5b could be obtained by stepwise elongation starting from the noncentral local nucleation centers preexisting in the unfolded state of TC5b. The probable locally driven folding pathway starts with folding of alpha-helical fragment 4-9, followed by formation of the proper three-dimensional structure of fragment 4-12, and then 4-18. Accordingly, the Trp-cage-forming interactions emerge successively, first Trp(6)-Pro(12), then Trp(6)-Pro(18), and then Trp(6)-Tyr(3). The Trp-cage-like structures of TC5b found in this study by independent energy calculations are in excellent agreement with the NMR experimental data. The same procedure rationalizes the incomplete Trp-cage formation observed for two analogs of TC5b. Generally, the success of this novel approach is encouraging and provides some justification for the use of computational simulations of locally driven protein folding.  相似文献   

9.
Protein folding is an important and yet challenging topic in current molecular biology. In this work, the folding dynamics and mechanisms of the Trp-cage mini-protein were studied with molecular dynamics simulations, in the absence and presence of water solvents. The important intermediates during the Trp-cage folding were determined by gradually decreasing the simulation temperature. The folding transition temperature was identified to be approximately 400 K, and the folding pathway was decomposed into six steps: UI 1I 2I 3I 4F 1F 2, where U, I and F represent the unfolded, intermediate and folded states, respectively. The finding that the two helical subunits are successively formed is consistent with the experimental observations, and the Asp9/Arg16 salt bridge forms at the final stage and does not play a significant role during folding kinetics. The presence of water solvents induces hydrophobic collapse as the whole cage comparatively closes. Within aqueous solutions, the Trp-cage folding begins to contract into the meta-stable state, and by traversing the transition state it arrives at the native-like structure, which resembles the experimental structure closely.  相似文献   

10.
11.
Water dynamics clue to key residues in protein folding   总被引:1,自引:0,他引:1  
A computational method independent of experimental protein structure information is proposed to recognize key residues in protein folding, from the study of hydration water dynamics. Based on all-atom molecular dynamics simulation, two key residues are recognized with distinct water dynamical behavior in a folding process of the Trp-cage protein. The identified key residues are shown to play an essential role in both 3D structure and hydrophobic-induced collapse. With observations on hydration water dynamics around key residues, a dynamical pathway of folding can be interpreted.  相似文献   

12.
Small proteins provide convenient models for computational studies of protein folding and stability, which are usually compared with experimental data. Until recently, the unfolding of Trp-cage was considered to be a two-state process. However, no direct experimental evidence for this has been presented, and in some cases, the contrary has been suggested. To elucidate a detailed unfolding mechanism, we studied the thermodynamics of unfolding of Trp-cage by differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy. The observation that at low temperatures only approximately 90-95% of Trp-cage exists in the native conformation presented an analytical challenge. Nevertheless, it was found that the DSC and CD data can be fitted simultaneously to the same set of thermodynamic parameters. The major uncertainty in such a global fit is the heat capacity change upon unfolding, DeltaCp. This can be circumvented by obtaining DeltaCp directly from the difference between heat capacity functions of the native and unfolded states. Using such an analysis it is shown that Trp-cage unfolding can be represented by a two-state model with the following thermodynamic parameters: Tm = 43.9 +/- 0.8 degrees C, DeltaH(Tm) = 56 +/- 2 kJ/mol, DeltaCp = 0.3 +/- 0.1 kJ/(mol.K). Using these thermodynamic parameters it is estimated that Trp-cage is marginally stable at 25 degrees C, DeltaG(25 degrees C) = 3.2 +/- 0.2 kJ/mol, which is only 30% more than the thermal fluctuation energy at this temperature.  相似文献   

13.
Trp-cage is a designed 20-residue polypeptide that, in spite of its size, shares several features with larger globular proteins. Although the system has been intensively investigated experimentally and theoretically, its folding mechanism is not yet fully understood. Indeed, some experiments suggest a two-state behavior, while others point to the presence of intermediates. In this work we show that the results of a bias-exchange metadynamics simulation can be used for constructing a detailed thermodynamic and kinetic model of the system. The model, although constructed from a biased simulation, has a quality similar to those extracted from the analysis of long unbiased molecular dynamics trajectories. This is demonstrated by a careful benchmark of the approach on a smaller system, the solvated Ace-Ala3-Nme peptide. For the Trp-cage folding, the model predicts that the relaxation time of 3100 ns observed experimentally is due to the presence of a compact molten globule-like conformation. This state has an occupancy of only 3% at 300 K, but acts as a kinetic trap. Instead, non-compact structures relax to the folded state on the sub-microsecond timescale. The model also predicts the presence of a state at of 4.4 Å from the NMR structure in which the Trp strongly interacts with Pro12. This state can explain the abnormal temperature dependence of the and chemical shifts. The structures of the two most stable misfolded intermediates are in agreement with NMR experiments on the unfolded protein. Our work shows that, using biased molecular dynamics trajectories, it is possible to construct a model describing in detail the Trp-cage folding kinetics and thermodynamics in agreement with experimental data.  相似文献   

14.
15.
Many biologically interesting functions such as allosteric switching or protein-ligand binding are determined by the kinetics and mechanisms of transitions between various conformational substates of the native basin of globular proteins. To advance our understanding of these processes, we constructed a two-dimensional free energy surface (FES) of the native basin of a small globular protein, Trp-cage. The corresponding order parameters were defined using two native substructures of Trp-cage. These calculations were based on extensive explicit water all-atom molecular dynamics simulations. Using the obtained two-dimensional FES, we studied the transition kinetics between two Trp-cage conformations, finding that switching process shows a borderline behavior between diffusive and weakly-activated dynamics. The transition is well-characterized kinetically as a biexponential process. We also introduced a new one-dimensional reaction coordinate for the conformational transition, finding reasonable qualitative agreement with the two-dimensional kinetics results. We investigated the distribution of all the 38 native nuclear magnetic resonance structures on the obtained FES, analyzing interactions that stabilize specific low-energy conformations. Finally, we constructed a FES for the same system but with simple dielectric model of water instead of explicit water, finding that the results were surprisingly similar in a small region centered on the native conformations. The dissimilarities between the explicit and implicit model on the larger-scale point to the important role of water in mediating interactions between amino acid residues.  相似文献   

16.
Hudson FM  Andersen NH 《Biopolymers》2004,76(4):298-308
Exenatide, synthetic exendin-4, is the first member of the incretin mimetic class of potential therapeutic agents. It has been the subject of extensive clinical trials in people with Type 2 diabetes. Results to date indicate that exenatide decreases postmeal blood glucose concentrations and that this effect is associated with weight loss. Prior NMR studies of exendin-4 utilized 30% trifluoroethanol because this medium affords sharp, high-resolution NMR spectra. These studies defined its three-dimensional structure in this medium. The NMR-derived ensemble included a novel tertiary structure motif that has subsequently been optimized, yielding water-soluble Trp-cage miniproteins. Prior to the present study, the structuring propensities (and aggregation/association state) of exendin-4 in strictly aqueous media had not been established. Studies of exendin-4 and N-terminally truncated analogs of exendin have established that the structuring propensities of these species are highly medium dependent. This study extends knowledge of the medium dependence of exendin structure to DMSO-water mixtures and to aqueous media mimicking the formulation conditions for this investigational drug. Exenatide retains a substantial helical propensity from residues 9-27 even in 98% DMSO. The addition of water leads to the appearance of NMR diagnostics of the Trp-cage formation. In strictly aqueous media (pH 4-4.4), exenatide is monomeric only at <10 microM peptide concentrations. Under these conditions the Trp cage is partially formed. NMR and CD data indicate that higher concentrations lead to helix bundle formation and that the helix/helix interactions involve residues 11-26. Both the N- and C-termini of the helix bundle state display rapid segmental motion.  相似文献   

17.
Gai and co-workers [Bunagan, M. R., et al. (2006) J. Phys. Chem. B 110, 3759-3763] reported computational design studies suggesting that a D9E mutation would stabilize the Trp-cage. Experimental studies for this mutation were reported in 2008 [Hudaky, P., et al. (2008) Biochemistry 47, 1007-1016]; the authors suggested that [D9E]-TC5b presented a more compact and melting resistant structure because of the "optimal distance between the two sides of the molecule". Nonetheless, the authors reported essentially the same circular dichroism (CD) melting temperature, 38 ± 0.3 °C, for TC5b and its [D9E] mutant. In this study, a more stable Trp-cage, DAYAQ WLKDG GPSSG RPPPS, was examined by nuclear magnetic resonance and CD with the following mutations: [D9E], [D9R,R16E], [R16O], [D9E,R16O], [R16K], and [D9E,R16K]. Of these, the [D9E] mutant displayed the smallest acidification-induced change in the apparent T(m). In analogy to the prior study, the CD melts of TC10b and its [D9E] mutant were, however, very similar; all of the other mutations were significantly fold destabilizing by all measures. A detailed analysis indicates that the original D9-R16 salt bridge is optimal with regard to fold cooperativity and fold stabilization. Evidence of salt bridge formation is also provided for a swapped pair, the [D9R,R16E] mutant. Model systems reveal that an ionized aspartate at the C-terminus of a helix significantly decreases intrinsic helicity, a requirement for Trp-cage fold stability. The CD evidence that was cited as supporting increased fold stability for [D9E]-TC5b at higher temperatures appears to be a reflection of increased helix stability in both the folded and unfolded states rather than a more favorable salt bridge. Our study also provides evidence of other Trp-cage stabilizing roles of the R16 side chain.  相似文献   

18.
Electron-donating O-benzylated glycosylamine mono-, di- and trisaccharide representing the reducing terminal of the core structure of N-glycans were incorporated, in anomerically pure from into Leu–Lys–Asn–Gly-Gly–Pro hexapeptide that is a partial structure of the Trp-cage mini-protein by convergent assembly. According to our results acylation of electron-donating O-benzylated glycosylamine with peptide acid under the proposed new reaction conditions led to the formation of glycopeptide in good yield and in anomerically pure form for the first time. This convergent approach allows the synthesis of a series of glycopeptides containing different oligosaccharides without the need to resynthesize the peptide for each individual case.  相似文献   

19.
Schug A  Wenzel W 《Biophysical journal》2006,90(12):4273-4280
We have investigated an evolutionary algorithm for de novo all-atom folding of the bacterial ribosomal protein L20. We report results of two simulations that converge to near-native conformations of this 60-amino-acid, four-helix protein. We observe a steady increase of "native content" in both simulated ensembles and a large number of near-native conformations in their final populations. We argue that these structures represent a significant fraction of the low-energy metastable conformations, which characterize the folding funnel of this protein. These data validate our all-atom free-energy force field PFF01 for tertiary structure prediction of a previously inaccessible structural family of proteins. We also compare folding simulations of the evolutionary algorithm with the basin-hopping technique for the Trp-cage protein. We find that the evolutionary algorithm generates a dynamic memory in the simulated population, which leads to faster overall convergence.  相似文献   

20.
Glucagon-like peptide-1 (GLP-1) and exendin-4 (Ex4) are homologous peptides with established potential for treatment of type 2 diabetes. They bind and activate the pancreatic GLP-1 receptor (GLP-1R) with similar affinity and potency and thereby promote insulin secretion in a glucose-dependent manner. GLP-1R belongs to family B of the seven transmembrane G-protein coupled receptors. The N-terminal extracellular domain (nGLP-1R) is a ligand binding domain with differential affinity for Ex4 and GLP-1: low affinity for GLP-1 and high affinity for exendin-4. The superior affinity of nGLP-1R for Ex4 was previously explained by an additional interaction between nGLP-1R and the C-terminal Trp-cage of Ex4. In this study we have combined biophysical and pharmacological approaches thus relating structural properties of the ligands in solution to their relative binding affinity for nGLP-1R. We used both a tracer competition assay and ligand-induced thermal stabilization of nGLP-1R to measure the relative affinity of full length, truncated, and chimeric ligands for soluble refolded nGLP-1R. The ligands in solution and the conformational consequences of ligand binding to nGLP-1R were characterized by circular dichroism and fluorescence spectroscopy. We found a correlation between the helical content of the free ligands and their relative binding affinity for nGLP-1R, supporting the hypothesis that the ligands are helical at least in the segment that binds to nGLP-1R. The Trp-cage of Ex4 was not necessary to maintain a superior helicity of Ex4 compared to GLP-1. The results suggest that the differential affinity of nGLP-1R is explained almost entirely by divergent residues in the central part of the ligands: Leu10-Gly30 of Ex4 and Val16-Arg36 of GLP-1. In view of our results it appears that the Trp-cage plays only a minor role for the interaction between Ex4 and nGLP-1R and for the differential affinity of nGLP-1R for GLP-1 and Ex4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号