首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents a design for a novel bioreactor that uses alternating vacuum and positive pressure cycles to transfer acidic leach solution in and out of contact with finely ground sulfidic mine tailings. These tailings constitute an environmental problem that needs experimental data to support the development of management and control strategies. A conventional stirred tank bioreactor was used as a reference system. Both bioreactors were inoculated with mixed cultures of acidophilic iron and sulfur oxidizers. The rate of the bioleaching of tailings was 0.50 +/- 0.14 g Fe/L . day in the stirred tank bioreactor and 0.17 +/- 0.05 g Fe/L . day in the novel bioreactor. Microbial populations were identified in the two-bioreactor systems by analysis of 16S rRNA genes involving amplification, denaturing gradient gel electrophoresis (DGGE), cloning, and sequencing. The inoculum contained sulfur-oxidizing Acidithiobacillus caldus and Acidithiobacillus thiooxidans, iron oxidizers from the genera Leptospirillum and Ferroplasma, and a chemoorganotrophic Alicyclobacillus sp. During bioleaching of the tailings, the microbial populations in both bioreactors were similar to the inoculum culture, except that At. thiooxidans outgrew At. caldus. Sequences consistent with a Sulfobacillus sp. were amplified from both bioreactor samples although this bacterium was initially below the level of detection in the inoculum. After prolonged operation, Ferroplasma acidiphilum and an uncultured bacterium related to the CFB group were also detected in the novel bioreactor, whereas Sulfobacillus sp. was no longer detected. The novel bioreactor has potential uses in other areas of environmental biotechnology that involves periodic contact of liquids with solid substrates.  相似文献   

2.
Microorganisms were enumerated and isolated on selective solid media from a pilot-scale stirred-tank bioleaching operation in which a polymetallic sulfide concentrate was subjected to biologically accelerated oxidation at 45 degrees C. Four distinct prokaryotes were isolated: three bacteria (an Acidithiobacillus caldus-like organism, a thermophilic Leptospirillum sp., and a Sulfobacillus sp.) and one archaeon (a Ferroplasma-like isolate). The relative numbers of these prokaryotes changed in the three reactors sampled, and the Ferroplasma isolate became increasingly dominant as mineral oxidation progressed, eventually accounting for >99% of plate isolates in the third of three in-line reactors. The identities of the isolates were confirmed by analyses of their 16S rRNA genes, and some key physiological traits (e.g., oxidation of iron and/or sulfur and autotrophy or heterotrophy) were examined. More detailed studies were carried out with the Leptospirillum and Ferroplasma isolates. The data presented here represent the first quantitative study of the microorganisms in a metal leaching situation and confirm that mixed cultures of iron- and sulfur-oxidizing prokaryotic acidophiles catalyze the accelerated dissolution of sulfidic minerals in industrial tank bioleaching operations. The results show that indigenous acidophilic microbial populations change as mineral dissolution becomes more extensive.  相似文献   

3.
To compare oxidative dissolution rates of chalcopyrite by different consortia of moderately thermophilic acidophiles, various defined mixed cultures of three bacteria Acidithiobacillus caldus s2, Leptospirillum ferriphilum YSK, and Sulfobacillus sp. LN and one archaeon Ferroplasma thermophilum L1 were studied in batch shake flask cultures incubated at 45 °C. Chalcopyrite dissolution was determined by measuring variations of soluble copper, ferric iron, and pH. Microbial population dynamics involved in bioleaching process were monitored using real-time quantitative polymerase chain reaction (PCR) technology. The complex consortia containing both chemoautotrophic (L. ferriphilum and At. caldus) and chemomixotrophic (Sulfobacillus LN and F. thermophilum) moderate thermophiles were found to be the most efficient in all of those tested. Mutualistic interactions between physiologically distinct moderately thermophilic acidophiles, involving transformations of iron and sulfur and transfer of organic compound, were considered to play a critical role in promoting chalcopyrite dissolution. The real-time PCR assay was reliable to analyze population dynamics of moderate thermophiles in bioleaching systems, and the analysis results were consistent with physiological characteristics of these strains.  相似文献   

4.
A range of autotrophic and heterotrophic enrichment cultures were established to determine the cultural bacterial diversity present in samples obtained from the acidic runoff of a chalcocite overburden heap and from laboratory-scale (1- to 4-liter) batch and continuous bioreactors which were being used for the commercial assessment of the bioleachability of zinc sulfide ore concentrates. Strains identified as Thiobacillus ferrooxidans, Thiobacillus thiooxidans, "Leptospirillum ferrooxidans," and Acidiphilium cryptum were isolated from both the natural site and the batch bioreactor, but only "L. ferrooxidans," a moderately thermophilic strain of T. thiooxidans, and a moderately thermophilic iron-oxidizing bacterium could be recovered from the continuous bioreactor running under steady-state conditions. Sequence analysis of the 16S rRNA genes of 33 representative strains revealed that all of the strains were closely related to strains which have been sequenced previously and also confirmed the phylogenetic diversity of bacteria present in bioleaching environments.  相似文献   

5.
An enrichment culture from a boreal sulfide mine environment containing a low-grade polymetallic ore was tested in column bioreactors for simulation of low temperature heap leaching. PCR-denaturing gradient gel electrophoresis and 16S rRNA gene sequencing revealed the enrichment culture contained an Acidithiobacillus ferrooxidans strain with high 16S rRNA gene similarity to the psychrotolerant strain SS3 and a mesophilic Leptospirillum ferrooxidans strain. As the mixed culture contained a strain that was within a clade with SS3, we used the SS3 pure culture to compare leaching rates with the At. ferrooxidans type strain in stirred tank reactors for mineral sulfide dissolution at various temperatures. The psychrotolerant strain SS3 catalyzed pyrite, pyrite/arsenopyrite, and chalcopyrite concentrate leaching. The rates were lower at 5 degrees C than at 30 degrees C, despite that all the available iron was in the oxidized form in the presence of At. ferrooxidans SS3. This suggests that although efficient At. ferrooxidans SS3 mediated biological oxidation of ferrous iron occurred, chemical oxidation of the sulfide minerals by ferric iron was rate limiting. In the column reactors, the leaching rates were much less affected by low temperatures than in the stirred tank reactors. A factor for the relatively high rates of mineral oxidation at 7 degrees C is that ferric iron remained in the soluble phase whereas, at 21 degrees C the ferric iron precipitated. Temperature gradient analysis of ferrous iron oxidation by this enrichment culture demonstrated two temperature optima for ferrous iron oxidation and that the mixed culture was capable of ferrous iron oxidation at 5 degrees C.  相似文献   

6.
The evolution of microbial populations involved in simulated-heap leaching of a polymetallic black schist sulfide ore (from the recently-commissioned Talvivaara mine, Finland) was monitored in aerated packed bed column reactors over a period of 40 weeks. The influence of ore particle size (2-6.5 mm and 6.5-12 mm) on changes in composition of the bioleaching microflora and mineral leaching dynamics in columns was investigated and compared to fine-grain (<2 microm) ore that was bioprocessed in shake flask cultures. Both column reactors and shake flasks were inoculated with 24 different species and strains of mineral-oxidizing and other acidophilic micro-organisms, and maintained at 37 degrees C. Mineral oxidation was most rapid in shake flask cultures, with about 80% of both manganese and nickel and 68% of zinc being leached within 6 weeks, though relatively little of the copper present in the ore was solubilised. The microbial consortium that emerged from the original inoculum was relatively simple in shake flasks, and was dominated by the iron-oxidizing autotroph Leptospirillum ferriphilum, with smaller numbers of Acidimicrobium ferrooxidans, Acidithiobacillus caldus and Leptospirillum ferrooxidans. Both metal recovery and (for the most part) total numbers of prokaryotes were greater in the column reactor containing the medium-grain than that containing the coarse-grain ore. The bioleaching communities in the columns displayed temporal changes in composition and differed radically from those in shake flask cultures. While iron-oxidizing chemoautotrophic bacteria were always the most numerically dominant bacteria in the medium-grain column bioreactor, there were major shifts in the most abundant species present, with the type strain of Acidithiobacillus ferrooxidans dominating in the early phase of the experiment and other bacteria (At. ferrooxidans NO37 and L. ferriphilum) dominating from week 4 to week 40. With the coarse-grain column bioreactor, similar transitions in populations of iron-oxidizing chemoautotrophs were observed, though heterotrophic acidophiles were often the most abundant bacteria found in mineral leach liquors. Four bacteria not included in the mixed culture used to inoculate the columns were detected by biomolecular techniques and three of these (all Alicyclobacillus-like Firmicutes) were isolated as pure cultures. The fourth bacterium, identified from a clone library, was related to the Gram-positive sulfate reducer Desulfotomaculum salinum. All four were considered to have been present as endospores on the dried ore, which was not sterilized in the column bioreactors. Two of the Alicyclobacillus-like isolates were found, transiently, in large numbers in mineral leachates. The data support the hypothesis that temporal and spatial heterogeneity in mineral heaps create conditions that favour different mineral-oxidizing microflora, and that it is therefore important that sufficient microbial diversity is present in heaps to optimize metal extraction.  相似文献   

7.
采用黄铁矿、黄铜矿、硫酸亚铁和硫粉混合物作为主要能源物质在50°C条件下分别培养中度嗜热细菌混合物,研究其细菌多样性。提取细菌基因组总DNA,采用PCR结合限制性酶切片段多态性分析(RFLP)方法进行细菌16SrRNA基因的系统发育分析,比较不同能源条件下富集培养的混合细菌群落构成的差异。从3个培养物中共获得阳性克隆303个并进行RFLP分析,对29种不同酶切谱型的克隆插入序列进行测定和系统发育分析。大部分序列与已报道的浸矿微生物16SrRNA序列相似性较高(89.1%~99.7%),归属于硫化叶菌属的耐温氧化硫化杆菌(Sulfobacillus thermotolerans)和热氧化硫化杆菌(Sulfobacillus thermosulfidooxidans),嗜酸硫杆菌属的喜温硫杆菌(Acidithiobacillus caldus),钩端螺旋菌属的嗜铁钩端螺旋菌(Leptospirillumferriphilum)以及unculturedforest soil bacterium、uncultured proteobacterium。其中Acidithiobacillus caldus,Sulfobacillus thermotolerans,Leptospirillumferriphilum3种细菌为三类能源物质培养物中的优势细菌类群。L.ferriphilum在黄铁矿培养体系(53.8%)和硫酸亚铁和硫粉为能源的培养体系中(45.9%)中丰度最高;在以黄铜矿为能源物质的培养体系中,S.thermotolerans的比例大幅上升(70.1%)。关键词:中度嗜热细菌;生物多样性;生物浸矿;喜温硫杆菌(Acidithiobacillus caldus);耐温氧化硫化杆菌(Sulfobacillus thermotolerans);嗜铁钩端螺旋菌(Leptospirillumferriphilum)  相似文献   

8.
Liu Y  Yin H  Liang Y  Shen L  Liu Y  Fu X  Baba N  Zeng W  Qiu G  Liu X 《Bioresource technology》2011,102(20):9388-9394
A consortium of microorganisms from acid mine drainage samples was cultured in modified 9 K medium containing low-grade copper sulfide. The culture was maintained for sixty days and then transferred to fresh medium. This process was repeated three more times and a final consortium exhibiting a copper extraction rate of 89.3% was obtained. RFLP and microarrays analysis of 16S rRNA sequences retrieved from the consortia showed that Acidithiobacilluscaldus, Leptospirillumferriphilum, Sulfobacillus sp., Acidiphilium sp., and Sulfolobus spp. were represented in higher numbers in the consortia obtained in the copper-containing medium than in the original consortium. In contrast, a decrease in Acidithiobacillus ferrooxidans, Alicyclobacillus sp., Pseudomonas sp., and Sulfobacillus thermosulfidooxidans was observed. The abundance of genes related to sulfur metabolism from At. caldus and Sulfolobus spp., iron oxidation from Leptospirillum sp. and metal resistance from most of the detected microorganisms increased as the consortium was successively transferred into fresh medium.  相似文献   

9.
This study examined the microbial community in an acidic stream draining across the Yun-Fu pyrite mine (Guangdong, China), where extremely acidic mine water is a persistent feature due to the intensive surface mining activities. Analysis of terminal restriction fragment length polymorphism (TRFLP) of 16S rRNA gene sequences showed that microbial populations varied spatially and seasonally and correlated with geochemical and physical conditions. After the stream moves from underground to the surface, the microbial community in the acidic water rapidly evolves into a distinct community close to that in the downstream storage pond. Comparisons of TRFLP peaks with sequenced clone libraries indicated that bacteria related to the recently isolated iron-oxidizer Ferrovum myxofaciens dominated the acidophilic community throughout the year except for the samples collected in spring from the storage pond, where Ferroplasma acidiphilum -like archaea represented the most abundant group. Acidithiobacillus ferrooxidans -affiliated organisms increased along the acid stream and remained common over the year, whereas Leptospirillum ferrooxidans -like bacteria were negligible or even not detected in the analyzed samples. The data indicate that changes in environmental conditions are accompanied by significant shifts in community structure of the prokaryotic assemblages at this opencast mining site.  相似文献   

10.
A systematic study of the bioleaching of chalcopyrite (CuFeS 2 ) was conducted using axenic cultures of 11 species of acidophilic Bacteria and Archaea to obtain a direct comparison of the microbial chalcopyrite leaching capabilities of the different cultures and to determine the factors that affect Cu release. The characteristics of chalcopyrite leaching by the moderate thermophile Sulfobacillus thermosulfidooxidans , the mesophile Acidithiobacillus ferrooxidans , and the thermophile Acidianus brierleyi were used to elucidate the leaching process. Moderately thermophilic cultures of Sulfobacillus acidophilus, Acidimicrobium ferrooxidans , and Acidithiobacillus caldus were used to study the effects of different metabolic capabilities and relate those to leaching efficiency. The greatest rate of Cu solubilization from chalcopyrite was achieved at high temperatures (up to 70°C) at redox potentials below +550 mV (Ag/AgCl). The enhanced Cu solubilization observed at high temperatures resulted from accelerated chemical reaction rates, rather than from the rates at which individual acidophiles generated the mineral leaching reactants such as Fe 3+ .  相似文献   

11.
Considerably larger quantities of cyanide are required to solubilize gold following the bio-oxidation of gold-bearing ores compared with oxidation by physical-chemical processes. A possible cause of this excessive cyanide consumption is the presence of the enzyme rhodanese. Rhodanese activities were determined for the bacteria most commonly encountered in bio-oxidation tanks. Activities of between 6.4 and 8.2 micromol SCN min(-1) mg protein(-1) were obtained for crude enzyme extracts of Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Thiobacillus caldus, but no rhodanese activity was detected in Leptospirillum ferrooxidans. Rhodanese activities 2-2.5-fold higher were found in the total mixed cell mass from a bio-oxidation plant. T. ferrooxidans synthesized rhodanese irrespective of whether it was grown on iron or sulphur. With a PCR-based detection technique, only L. ferrooxidans and T. caldus cells were detected in the bio-oxidation tanks. As no rhodanese activity was associated with L. ferrooxidans, it was concluded that T. caldus was responsible for all of the rhodanese activity. Production of rhodanese by T. caldus in batch culture was growth phase-dependent and highest during early stationary phase. Although the sulphur-oxidizing bacteria were clearly able to convert cyanide to thiocyanate, it is unlikely that this rhodanese activity is responsible for the excessive cyanide wastage at the high pH values associated with the gold solubilization process.  相似文献   

12.
Aims:  To isolate Ferroplasma thermophilum L1T from a low pH environment and to understand its role in bioleaching of chalcopyrite.
Methods and Results:  Using serial dilution method, a moderately thermophilic and acidophilic ferrous iron-oxidizing archaeon, named L1T, was isolated from a chalcopyrite-leaching bioreactor. The morphological, biochemical and physiological characteristics of strain L1T and its role in bioleaching of chalcopyrite were studied. Strain L1T was a nonmotile coccus that lacked cell wall. Strain L1T had a temperature optimum of 45°C and the optimum pH for growth was 1·0. Strain L1T was capable of chemomixotrophic growth on ferrous iron and yeast extract. Results of fatty acid analysis, DNA–DNA hybridization, G+C content, and analysis based on 16S rRNA gene sequence indicated that strain L1T should be grouped in the genus Ferroplasma , and represented a new species, Ferroplasma thermophilum . Ferroplasma thermophilum in combination with Acidithiobacillus caldus and Leptospirillum ferriphilum could improve the copper dissolution in bioleaching of chalcopyrite.
Conclusions:  A novel extremely acidophilic, moderately thermophilic archaeon isolated from a bioleaching reactor has been identified as F. thermophilum that played an important role in bioleaching of chalcopyrite at low pH.
Significance and Impact of the Study:  This study contributes to understand the characteristics of F. thermophilum L1T and its role in bioleaching of sulfide ores.  相似文献   

13.
Abstract: Enrichment culture of hot spring water samples with pyrite as substrate has provided acidophiles with novel growth characteristics: with these bacteria, the range of conditions under which rapid microbial oxidation of mineral sulphides has been demonstrated has been extended. The upper temperature limit for bacterial mineral oxidation in reactors has been raised. The dissolution of pyrite occurred during growth of Sulfolobus -like thermophiles up to almost 90C. The most efficient extraction of copper from chalcopyrite occurred at 80–85C. With moderate thermophiles, rapid oxidation of minerals was obtained during autotrophic growth in the absence of supplemental CO2: a mixed enrichment culture was active in pyrite dissolution at 45–50C in reactors gassed only with air which contrasted with poor growth by well-studied moderate thermophiles in the absence of enhanced CO2 concentrations.  相似文献   

14.
 A moderately thermophilic mixed culture, MT, and the thermophilic Sulfolobus acidocaldarius strain BC were studied for their response to arsenic in a defined medium and also in media containing a pyrite and an arsenical pyrite flotation concentrate. In defined medium, the individual constituents of the MT culture exhibited a high tolerance to arsenite and arsenate compared to S. acidocaldarius strain BC. When grown on increasing concentrations of the pyrite flotation concentrate, both cultures had similar specific leaching rates over the various concentrations of the mineral substrate. In contrast, S. acidocaldarius strain BC exhibited a decreasing specific leaching rate when grown on the arsenical pyrite while the MT culture was not affected. In addition, arsenic added to cultures of S. acidocaldarius strain BC growing with pyrite as a growth substrate inhibited further growth, while added arsenic had no effect on the MT culture growing on the pyrite. These data indicate that the moderately thermophilic, arsenic-resistant MT culture was able to leach arsenical pyrite more efficiently than was the S. acidocaldarius strain BC culture at high concentrations of the mineral. This emphasizes the fact that proper culture selection is an important parameter when developing commercial processes involving arsenic-containing minerals. Received: 21 June 1995/Received revision: 25 August 1995/Accepted: 7 September 1995  相似文献   

15.
The species composition of the microbial association involved in industrial tank biooxidation of the concentrate of refractory pyrrhotite-containing pyrite-arsenopyrite gold-arsenic ore of the Olympiadinskoe deposit at 39°C was studied by cultural and molecular biological techniques. Pure microbial cultures were isolated, their physiological characteristics were investigated, and their taxonomic position was determined by 16S rRNA gene sequencing. The library of 16S rRNA gene clones obtained from the total DNA isolated from the biomass of the pulp of industrial reactors was analyzed. The diversity of microorganisms revealed by cultural techniques in the association of acidophilic chemolithotrophs (Acidithiobacillus ferrooxidans, Leptospirillum ferriphilum, Sulfobacillus thermosulfidooxidans, Ferroplasma acidiphilum, Alicyclobacillus tolerans, and Acidiphilium cryptum) was higher than the diversity of the 16S rDNA clone library (At. ferrooxidans, L. ferriphilum, and F. acidiphilum). The combination of microbiological and molecular biological techniques for the investigation of the biodiversity in natural and anthropogenic microbial communities promotes detection of new phylogenetic microbial groups in these communities.  相似文献   

16.
Biogeochemical cycling of iron and sulphur in leaching environments   总被引:2,自引:0,他引:2  
Abstract: Bacterial dissimilatory reduction of iron and sulphur in extremely acidic environments is described. Evidence for reduction at two disused mine sites is presented, within stratified 'acid streamers' growths and in sediments from an acid mine drainage stream. A high proportion (approx. 40%) of mesophilic heterotrophic acidophiles were found to be capable of reducing ferric iron (soluble and insoluble forms) under microaerophilic and anoxic conditions. Mixed cultures of Thiobacillus ferrooxidans and Acidiphilium -like isolate SJH displayed cycling of iron in shake flask and fermenter cultures. Oxido-reduction of iron in mixed cultures was determined by oxygen concentration and availability of organic substrates. Some moderately thermophilic iron-oxidis- ing bacteria were also shown to be capable of reducing ferric iron under conditions of limiting oxygen when grown in glycerol/yeast extract or elemental sulphur media. Cycling of iron was observed in pure cultures of these acidophiles. Sulphate-reducing bacteria isolated from acid streamers could be grown in acidified glycerol/yeast extract media (as low as pH 2.9), but not in media used conventionally for their laboratory culture. An endospore-forming, non-motile rod resembling Desulfotomaculum has been isolated. This bacterium has a wide pH spectrum, and appears to be acid-tolerant rather than acidophilic.  相似文献   

17.
The geochemical dynamics and composition of microbial communities within a low-temperature (≈ 8.5°C), long-abandoned (> 90 years) underground pyrite mine (Cae Coch, located in north Wales) were investigated. Surface water percolating through fractures in the residual pyrite ore body that forms the roof of the mine becomes extremely acidic and iron-enriched due to microbially accelerated oxidative dissolution of the sulfide mineral. Water droplets on the mine roof were found to host a very limited diversity of exclusively autotrophic microorganisms, dominated by the recently described psychrotolerant iron/sulfur-oxidizing acidophile Acidithiobacillus ferrivorans, and smaller numbers of iron-oxidizing Leptospirillum ferrooxidans. In contrast, flowing water within the mine chamber was colonized with vast macroscopic microbial growths, in the form of acid streamers and microbial stalactites, where the dominant microorganisms were Betaproteobacteria (autotrophic iron oxidizers such as 'Ferrovum myxofaciens' and a bacterium related to Gallionella ferruginea). An isolated pool within the mine showed some similarity (although greater biodiversity) to the roof droplets, and was the only site where archaea were relatively abundant. Bacteria not previously associated with extremely acidic, metal-rich environments (a Sphingomonas sp. and Ralstonia pickettii) were found within the abandoned mine. Data supported the hypothesis that the Cae Coch ecosystem is underpinned by acidophilic, mostly autotrophic, bacteria that use ferrous iron present in the pyrite ore body as their source of energy, with a limited role for sulfur-based autotrophy. Results of this study highlight the importance of novel bacterial species (At. ferrivorans and acidophilic iron-oxidizing Betaproteobacteria) in mediating mineral oxidation and redox transformations of iron in acidic, low-temperature environments.  相似文献   

18.
Bioleaching is an economical method for the recovery of metals that requires low investment and operation costs. Furthermore, it is generally more environmentally friendly than many physicochemical metal extraction processes. The bioleaching of chalcopyrite in shake flasks was investigated with pure and mixed cultures of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Acidithiobacillus caldus, and Leptospirillum ferriphilum. The mixed cultures containing both iron- and sulfur-oxidizing bacteria were more efficient than the pure culture alone. The presence of sulfur-oxidizing bacteria positively increased the dissolution rate and the percentage recovery of copper from chalcopyrite. Mixed cultures consisting of moderately thermophilic L. ferriphilum and A. caldus leached chalcopyrite more effectively than mesophilic A. ferrooxidans pure and mixed cultures. The decrease of the chalcopyrite dissolution rate in leaching systems containing A. ferrooxidans after 12–16 days coincided with the formation of jarosite precipitation as a passivation layer on the mineral surface during bioleaching. Low pH significantly reduces jarosite formation in pure and mixed cultures of L. ferriphilum and A. caldus.  相似文献   

19.
Moderately thermophilic, iron-oxidizing acidophiles were enriched from coal collected from an open-cut mine in Collie, Western Australia. Iron-oxidizers were enriched in fluidized-bed reactors (FBR) at 60 degrees C and 70 degrees C; and iron-oxidation rates were determined. Ferrous iron oxidation by the microbiota in the original coal material was inhibited above 63;C. In addition to four iron-oxidizers, closely related to Sulfobacillus spp that had been earlier isolated from the 60 degrees C FBR, one heterotroph closely related to Alicyclobacillus spp was isolated. The Alicyclobacillus sp. isolated from the Collie coal mine tolerated a lower pH than known Alicyclobacillus spp and therefore may represent a new species. The optimum temperature for growth of the iron-oxidizing strains was approximately 50 degrees C and their maximum temperatures were approximately 60 degrees C. The FBR was adjusted to operate at 50 degrees C and was inoculated with all of the isolated iron-oxidizing strains. At 60 degrees C, an iron-oxidation rate of 0.5 g Fe(2+) l(-1) x h(-1) was obtained. At 50 degrees C, the iron-oxidation rate was only 0.3 g Fe(2+) l(-1) x h(-1). These rates compare favourably with the iron-oxidation rate of Acidianus brierleyi in shake-flasks, but are considerably lower than mesophilic iron-oxidation rates.  相似文献   

20.
A biflagellated protozoan was isolated from an acidic drainage stream located inside a disused pyrite mine. The stream contained copious amounts of acid streamer bacterial growths, and the flagellate was observed in situ apparently grazing the streamer bacteria. The protozoan was obligately acidophilic, growing between pH 1.8 and 4.5, but not at pH 1.6 or 5.0, with optimum growth between pH 3 and 4. It was highly sensitive to copper, molybdenum, silver, and uranium, but tolerated ferrous and ferric iron up to 50 and 25 mM, respectively. In the laboratory, the protozoan was found to graze a range of acidophilic bacteria, including the chemolithotrophs Thiobacillus ferrooxidans, Leptospirillum ferrooxidans, and the heterotroph Acidiphilium cryptum. Thiobacillus thiooxidans and Thiobacillus acidophilus were not grazed. Filamentous growth of certain acidophiles afforded some protection against being grazed by the flagellate. In mixed cultures of T. ferrooxidans and L. ferrooxidans, the protozoan isolate displayed preferential grazing of the former. The possibility of using acidophilic protozoa as a means of controlling bacteria responsible for the production of acid mine drainage is discussed.Offprint requests to: Dr. D. B. Johnson.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号