共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Khmaladze A Matz RL Epstein T Jasensky J Banaszak Holl MM Chen Z 《Journal of structural biology》2012,178(3):270-278
Cellular volume changes play important roles in many processes associated with the normal cell activity, as well as various diseases. Consequently, there is a considerable need to accurately measure volumes of both individual cells and cell populations as a function of time. In this study, we have monitored cell volume changes in real time during apoptosis using digital holographic microscopy. Cell volume changes were deduced from the measured phase change of light transmitted through cells. Our digital holographic experiments showed that after exposure to 1 μM staurosporine for 4 h, the volumes of KB cells were reduced by ~50-60%, which is consistent with previous results obtained using electronic cell sizing and atomic force microscopy. In comparison with other techniques, digital holographic microscopy is advantageous because it employs noninvasive detection, has high time resolution, real time measurement capability, and the ability to simultaneously investigate time-dependent volume changes of both individual cells and cell populations. 相似文献
4.
H E Kubitschek 《Journal of bacteriology》1990,172(1):94-101
Synchronous cultures of Escherichia coli 15-THU and WP2s, which were selected by velocity sedimentation from exponential-phase cultures growing in an acetate-minimal salts medium, were shifted to richer media at various times during the cell cycle by the addition of glucose or nutrient broth. Cell numbers and mean cell volumes were measured electronically. The duration of the division cycle of the shifted generation was not altered significantly by the addition of either nutrient. Growth rates, measured as rates of cell volume increase, were constant throughout the cycle in unshifted acetate control cultures. When glucose was added, growth rates also remained unchanged during the remainder of the cell cycle and then increased abruptly at or after cell division. When nutrient broth was added, growth rates remained unchanged from periods of 0.2 to 0.4 generations and then increased abruptly to their final values. In all cases, the cell volume increase was linear both before and after the growth rate transition. The strongest support for a linear cell volume increase during the cell cycle of E. coli in slowly growing acetate cultures, however, was obtained in unshifted cultures, in complete agreement with earlier observations of cell volumes at much more rapid growth rates. Although cell growth and division are under the control of the synthesizing machinery in the cell responsible for RNA and protein synthesis, the results indicate that growth is also regulated by membrane-associated transport systems. 相似文献
5.
6.
7.
A more complete understanding of calcium's role in cell division requires knowledge of the timing, magnitude, and duration of changes in cytoplasmic-free calcium, [Ca2+]i, associated with specific mitotic events. To define the temporal relationship of changes in [Ca2+]i to cellular and chromosomal movements, we have measured [Ca2+]i every 6-7 s in single-dividing Pt K2 cells using fura-2 and microspectrophotometry, coupling each calcium measurement with a bright-field observation. In the 12 min before discernable chromosome some separation, 90% of metaphase cells show at least one transient of increased [Ca2+]i, 72% show their last transient within 5 min, and a peak of activity is seen at 3 min before chromosome separation. The mean [Ca2+]i of the metaphase transients is 148 +/- 31 nM (61 transients in 35 cells) with an average duration of 21 +/- 14 s. The timing of these increases makes it unlikely that these transient increases in [Ca2+]i are acting directly to trigger the start of anaphase. However, it is possible that a transient rise in calcium during late metaphase is part of a more complex progression to anaphase. In addition to these transient changes, a gradual increase in [Ca2+]i was observed starting in late anaphase. Within the 2 min surrounding cytokinesis onset, 82% of cells show a transient increase in [Ca2+]i to 171 +/- 48 nM (53 transients in 32 cells). The close temporal correlation of these changes with cleavage is consistent with a more direct role for calcium in this event, possibly by activating the contractile system. To assess the specificity of these changes to the mitotic cycle, we examined calcium changes in interphase cells. Two-thirds of interphase cells show no transient increases in calcium with a mean [Ca2+]i of 100 +/- 18 nM (n = 12). However, one-third demonstrate dramatic and repeated transient increases in [Ca2+]i. The mean peak [Ca2+]i of these transients is 389 +/- 70 nM with an average duration of 77 s. The necessity of any of these transient changes in calcium for the completion of mitotic or interphase activities remains under investigation. 相似文献
8.
We measured dynamic changes in volume during contraction of live, intact frog skeletal muscle fibers through a high-speed, intensified, digital-imaging microscope. Optical cross-sections along the axis of resting cells were scanned and compared with sections during the plateau of isometric tetanic contractions. Contraction caused an increase in volume of the central third of a cell when axial force was maximum and constant and the central segment was stationary or lengthened slightly. But changes were unequal along a cell and not predicted by a cell's resting area or shape (circularity). Rapid local adjustments in the cytoskeletal evidently keep forces in equilibrium during contraction of living skeletal muscle. These results also show that optical signals may be distorted by nonuniform volume changes during contraction. 相似文献
9.
Abstract. The determination of guard cell lumen volume in relation to its geometric characteristic dimensions is presented. Stomatal movements can be divided into two stages: Spannungsphase and motorphase, with a transition point between them. During the Spannungsphase movement, the lumen volume increases as a result of the change in its geometric shape. At transition, the lumen volume is approximated by a portion of a circular tube with a rounded cross-section. The volume increase during the motorphase comes from three different sources: expansion by wall stretching, increasing inner cross-section of a guard cell by wall thinning, and polar expansion. The relationship between the aperture and the lumen volume is also established. The results set forth in this geometric model are essential to studies of the pressure interaction between a guard cell and its surrounding epidermal cells. 相似文献
10.
Regulation of trehalose metabolism in Saccharomyces cerevisiae mutants during temperature shifts 总被引:1,自引:0,他引:1
Temperature shifts from 23 degrees C to 36 degrees C resulted in trehalose accumulation in Saccharomyces independently of genetic lesions in the cAMP-protein kinase cascade. In parallel, trehalose 6-phosphate synthase activity increased about 3-fold in all strains; the increase could be inhibited by cycloheximide, suggesting that protein synthesis was required. Heat shock treatment after the temperature shift led to a drastic increase in trehalose activity, and deactivation of the biosynthetic enzyme with a consequent drop in trehalose. Up to now no definite correlation between acquisition of thermotolerance and trehalose accumulation has been made. 相似文献
11.
Kondratyev AA Ponard JG Munteanu A Rohr S Kucera JP 《American journal of physiology. Heart and circulatory physiology》2007,292(4):H1796-H1811
Slow conduction and unidirectional conduction block (UCB) are key mechanisms of reentry. Following abrupt changes in heart rate, dynamic changes of conduction velocity (CV) and structurally determined UCB may critically influence arrhythmogenesis. Using patterned cultures of neonatal rat ventricular myocytes grown on microelectrode arrays, we investigated the dynamics of CV in linear strands and the behavior of UCB in tissue expansions following an abrupt decrease in pacing cycle length (CL). Ionic mechanisms underlying rate-dependent conduction changes were investigated using the Pandit-Clark-Giles-Demir model. In linear strands, CV gradually decreased upon a reduction of CL from 500 ms to 230-300 ms. In contrast, at very short CLs (110-220 ms), CV first decreased before increasing again. The simulations suggested that the initial conduction slowing resulted from gradually increasing action potential duration (APD), decreasing diastolic intervals, and increasing postrepolarization refractoriness, which impaired Na(+) current (I(Na)) recovery. Only at very short CLs did APD subsequently shorten again due to increasing Na(+)/K(+) pump current secondary to intracellular Na(+) accumulation, which caused recovery of CV. Across tissue expansions, the degree of UCB gradually increased at CLs of 250-390 ms, whereas at CLs of 180-240 ms, it first increased and subsequently decreased. In the simulations, reduction of inward currents caused by increasing intracellular Na(+) and Ca(2+) concentrations contributed to UCB progression, which was reversed by increasing Na(+)/K(+) pump activity. In conclusion, CV and UCB follow intricate dynamics upon an abrupt decrease in CL that are determined by the interplay among I(Na) recovery, postrepolarization refractoriness, APD changes, ion accumulation, and Na(+)/K(+) pump function. 相似文献
12.
Cell shape changes during gastrulation in Drosophila 总被引:13,自引:0,他引:13
The first morphogenetic movement during Drosophila development is the invagination of the mesoderm, an event that folds a one-layered epithelium into a multilayered structure. In this paper, we describe the shape changes and behaviour of the cells participating in this process and show how mutations that change cell fate affect this behaviour. We divide the formation of the mesodermal germ layer into two phases. During the first phase, the ventral epithelium folds into a tube by a series of concerted cell shape changes (ventral furrow formation). Based on the behaviour of cells in this phase, we conclude that the prospective mesoderm is not a homogeneous cell population, but consists of two subpopulations. Each subpopulation goes through a distinctive sequence of specific cell shape changes which together mediate the invagination of the ventral furrow. In the second phase, the invaginated tube of mesoderm loses its epithelial character, the mesoderm cells disperse, divide and then spread out along the ectoderm to form a single cell layer. To test how ventral furrow formation depends on cell fates in the mesoderm and in neighbouring cells we alter these fates genetically using maternal and zygotic mutations. These experiments show that some of the aspects of cell behaviour specific for ventral furrow cells are part of an autonomous differentiation programme. The force driving the invagination is generated within the region of the ventral furrow, with the lateral and dorsal cell populations contributing little or none of the force. Two known zygotic genes that are required for the formation of the mesoderm, twist and snail, are expressed in ventral furrow cells, and the correct execution of cell shape changes in the mesoderm depends on both. Finally, we show that the region where the ventral furrow forms is determined by the expression of mesoderm-specific genes, and not by mechanical or other epigenetic properties of the egg. 相似文献
13.
Fibroblasts from 5 1/2-day-old chick embryos go through a sequential series of changes when exposed to a constant electromagnetic field (EMF) of 10 V/cm. These changes include rounding up, becoming bipolar in shape, assuming a cylindrical profile, elongating perpendicular to the EMF, and migrating to the cathode. These morphological changes are associated with changes of the cell surface, which include the formation of filopodia and extensive sheet-like contacts on the cathodic cell surface, the retraction of processes and the formation of focal contacts on the anodic cell surface. 相似文献
14.
15.
16.
17.
R M Zucker N C Wu A Mitrani M Silverman 《The journal of histochemistry and cytochemistry》1979,27(1):413-416
Friend leukemia cells (GM86, clone 745) were induced to differentiate with dimethyl sulfoxide or butyric acid. The kinetics of induction were measured by cell growth, cell volume distributions, and [3H]thymidine incorporation. From the volume distributions, it was found that the rate of induction was both agent sensitive and concentration dependent. The changes in volume distributions occurred approximately 4 hr earlier with dimethyl sulfoxide induction relative to butyric acid induction. However, the changes with the butyric acid induction were more dependent on concentration. A decrease in labeling indices during the 12- to 20-hr time period was correlated to a decrease in mean cell volume and an increase in the proportion of G1 cells. After the 20-hr time period of induction, an increase in labeling indices and in the percentage of large cells was observed. The data suggest that a transient block of cells in G1 occurred between 12 to 20 hr, and that the early differentiation involved a volume decrease which was related to a redistribution of cell cycle stages. The study was also shown that the changes of cell volume are a rapid monitor to determine the early events of the differentiation process. 相似文献
18.
OKSANA P. ANDRUSHCHYSHYN KEVIN P. WILSON D. DUDLEY WILLIAMS 《Global Change Biology》2009,15(10):2518-2538
The ciliates living in a shallow groundwater system in southern Ontario, Canada were subjected to an in situ temperature manipulation over 14 months. Ciliates were collected from the bed surface of a small springbrook and from interstitial water collected at five depths beneath its surface. Mean temperature elevations established at each depth (?20, ?40, ?60, ?80, and ?100 cm) between the experiment's control and treatment blocks were 1.9, 3.5, 3.9, 3.8, and 3.6 °C, respectively, and were based on global warming projections for the region. In total, 160 species of ciliate belonging to 85 genera were identified. Overall, the treatment block had a higher density (6510±342 cells L?1; ±1 SE) than the control (5797±237 cells L?1), but densities were both vertically and longitudinally variable. Control densities decreased with depth, whereas treatment densities were more equal among depths. Total species richness showed no significant difference between blocks when combining all sampling dates and depths, although species composition changed. The ciliate community was dominated by small (15–50 μm), followed by medium (50–200 μm), and only a few large‐sized (>200 μm) species. Small ciliates contributed 82–97% of the total density. Small ciliates also contributed more to the treatment (94%) than the control block (88%). The most common ciliate feeding groups were bacterivores, omnivores, predators, and algae‐diatom feeders, with bacterivores being most dominant (83–99% of the total numbers collected). Ordination analyses revealed that ciliate distribution was strongly correlated with groundwater temperature, although dissolved oxygen level, concentrations of ammonia and nitrate, and depth also appeared to be influential. Peak densities of many species occurred in either the control or treatment blocks, but not in both. The benefits of using ciliates as a proxy for higher, much longer‐lived, eukaryotes in climate change studies are discussed. 相似文献
19.
Johansen LB Norsk P 《Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology》1995,2(1):P64-P65
Results of previous investigations on the effects of simulated microgravity (thermoneutral (34.5 degrees C) head-out water immersion, WI) have indicated that plasma volume (PV) increases initially and thereafter decreases to attain values below the pre-immersion level. In these cases, changes in hematocrit (Hct) and hemoglobin concentration (Hgb) were used as indicators of relative changes in PV. In order to test whether changes in Hct and Hgb are accurate measures of changes in PV during simulated microgravity, direct measurements of PV were performed with a modified Evans blue dye dilution technique before, during, and after a 12 h WI experiment. Furthermore, PV was determined with the same technique before, during, and after acute 6 degrees head-down tilt (HDT). Changes in PV were then compared with changes calculated from changes in Hct and Hgb. 相似文献
20.
Stewart JM Montgomery LD 《American journal of physiology. Heart and circulatory physiology》2005,288(2):H752-H758
The Valsalva maneuver is frequently used to test autonomic function. Previous work demonstrated that the blood pressure decrease during the Valsalva maneuver relates to thoracic hypovolemia, which may preclude pressure recovery during phase II, even with normal resting peripheral vasoconstriction. We hypothesized that increased regional blood volume, specifically splanchnic hypervolemia, accounts for the degree of thoracic hypovolemia during the Valsalva maneuver. We studied 17 healthy volunteers aged 15-22 yr. All had normal blood volumes by dye dilution. Subjects also had normal vascular resistance while supine as well as normal vasoconstrictor responses during 35 degrees upright tilt. We assessed changes in estimated splanchnic, pelvic-thigh, and lower leg blood volume, along with thoracic blood volume shifts, by impedance plethysmography before and during the Valsalva maneuver performed in the supine position. Early increases in splanchnic blood volume dominated the regional vascular changes during the Valsalva maneuver. The increase in splanchnic blood volume correlated well (r2 = 0.65, P < 0.00001) with the decrease in thoracic blood volume, there was less correlation of the increase in pelvic blood volume (r2 = 0.21, P < 0.03), and there was no correlation of the increase in leg blood volume (r2 = 0.001, P = 0.9). There was no relation of thoracic hypovolemia with blood volume or peripheral resistance in supine or upright positions. Thoracic hypovolemia during the Valsalva maneuver is closely related to splanchnic hyperemia and weakly related to regional changes in blood volume elsewhere. Changes in baseline splanchnic vascular properties may account for variability in thoracic blood volume changes during the Valsalva maneuver. 相似文献