首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The "primitive" sea urchin Eucidaris tribuloides resembles the advanced sea urchins (euechinoids) in many respects, yet some features of its biochemistry and morphogenesis are more similar to other echinoderms such as starfish or sea cucumbers. Two unique characteristics of the sperm chromatin of all known euechinoids are an extremely long average nucleosomal repeat length and the presence of two male germ-line-specific histone variants, Sp H1 and Sp H2B. Histone composition and nucleosomal repeat length of the sperm chromatin of Eucidaris were compared to those of several euechinoids and a starfish. Eucidaris sperm chromatin contained large H1 and H2B histone variants typical of euechinoids. The H1 was about nine amino acids smaller than Sp H1 of the advanced urchin Strongylocentrotus purpuratus. Its Sp H2B molecules were the same size as in the euechinoids. Peptide maps showed that N-terminal regions of Sp H1 and Sp H2B contained repeating basic amino acid motifs characteristic of euechinoids. The smaller size of Eucidaris H1 is accounted for by a smaller C-terminal region. The repeat length of Eucidaris sperm chromatin was slightly shorter than that of two euechinoids, but significantly larger than starfish, which lacks a large H2B. The Sp H2B gene of Eucidaris was expressed during spermatogenesis in the same cell types as for S. purpuratus. Thus Sp histone subtype expression and chromatin structure in this distantly related echinoid closely resemble the euechinoids. The presence of an Sp H2B and a very long repeat length appear to be characteristic of the echinoids only.  相似文献   

2.
H1 histones bind to DNA as they enter and exit the nucleosome. H1 histones have a tripartite structure consisting of a short N-terminal domain, a highly conserved central globular domain, and a lysine-and arginine-rich C-terminal domain. The C-terminal domain comprises approximately half of the total amino acid content of the protein, is essential for the formation of compact chromatin structures, and contains the majority of the amino acid variations that define the individual histone H1 family members. This region contains several cell cycle-regulated phosphorylation sites and is thought to function through a charge-neutralization process, neutralizing the DNA phosphate backbone to allow chromatin compaction. In this study, we use fluorescence microscopy and fluorescence recovery after photobleaching to define the behavior of the individual histone H1 subtypes in vivo. We find that there are dramatic differences in the binding affinity of the individual histone H1 subtypes in vivo and differences in their preference for euchromatin and heterochromatin. Further, we show that subtype-specific properties originate with the C terminus and that the differences in histone H1 binding are not consistent with the relatively small changes in the net charge of the C-terminal domains.  相似文献   

3.
We have used a combination of kinetic measurements and targeted mutations to show that the C-terminal domain is required for high-affinity binding of histone H1 to chromatin, and phosphorylations can disrupt binding by affecting the secondary structure of the C terminus. By measuring the fluorescence recovery after photo-bleaching profiles of green fluorescent protein-histone H1 proteins in living cells, we find that the deletion of the N terminus only modestly reduces binding affinity. Deletion of the C terminus, however, almost completely eliminates histone H1.1 binding. Specific mutations of the C-terminal domain identified Thr-152 and Ser-183 as novel regulatory switches that control the binding of histone H1.1 in vivo. It is remarkable that the single amino acid substitution of Thr-152 with glutamic acid was almost as effective as the truncation of the C terminus to amino acid 151 in destabilizing histone H1.1 binding in vivo. We found that modifications to the C terminus can affect histone H1 binding dramatically but have little or no influence on the charge distribution or the overall net charge of this domain. A comparison of individual point mutations and deletion mutants, when reviewed collectively, cannot be reconciled with simple charge-dependent mechanisms of C-terminal domain function of linker histones.  相似文献   

4.
5.
6.
The amino acid sequences of the two variants (H1a 121 residues and H1b 119 residues) of the sperm-specific histone H1 from the polychaete annelid Platynereis dumerilii have been completely established. Comparison of the sequences of these two variants shows one deletion of two residues in histone H1b and 22 substitents, of which most occur in the globular domain. The two variants differ highly in a sequence of nine residues adjacent to the conservative phenylalanine residue of histone H1 (64-72 in H1a, 62-70 in H1b) which makes H1a less hydrophobic than H1b. The small molecular size of Platynereis H1a and H1b is a unique feature among the histones H1 of which the size ranges between 189 residues (chicken erythrocyte H5) and 248 residues (sea urchin sperm H1). H1a and H1b have short N- and C-terminal basic domains but the size of the globular domain (approximately equal to 80 residues) is similar to that of other H1s. In the globular region the variant H1a exhibits a close relationship with somatic or sperm H1s whereas the variant H1b is more related to H5 histones.  相似文献   

7.
A human H1 histone gene and its flanking sequences were isolated from a human gene library using a fragment of the duck H5 histone gene as a hybridization probe. The primary structure of this human H1 histone (as deduced from the nucleotide sequence of the gene) reveals a close homology of H1 and H5 histones and fits the three-domain organization of all members of the H1 histone family. Within this protein organization, the C-terminal domain of H1 differs from the arginine-rich H5 in its distribution of the basic amino acids: the C-terminal domain of the human H1 shows only one arginine and most of the H5 specific arginine positions show lysine instead.  相似文献   

8.
The complete primary structure of the major isoform (H1.1) of histone H1 from the nematode Caenorhabditis elegans was determined. The amino acid chain consists of 207 amino acids and has a blocked N-terminus. The nematode histone shows rather little sequence identity when compared with proteins of the H1 family derived from other organisms. However, the main characteristic features of H1 molecules have been well conserved: a tripartite domain structure consisting of a central hydrophobic core of about 80 residues, flanked by an N-terminal domain which is somewhat acidic at the very N-terminus, but very basic further on, and a long C-terminal domain very rich in lysine, alanine and proline. Several repeat structures, including a twice (with modification)-repeated and well-conserved phosphorylation site, can be recognized in this region. The presence of O-phosphoserine at these sites could not be demonstrated, however.  相似文献   

9.
The complete amino acid sequences of two variants of histone H2B of maize were deduced from the cDNAs isolated from a maize cDNA library. The two encoded proteins are 150 (H2B(1)) and 149 (H2B(2)) amino acids long and shows the classical organization of H2B histones. The hydrophobic C-terminal region is highly conserved as compared to that of the animal counterparts with only 21 changes (13 conservative) among the 90 residues. Between the N-terminal part and the C-terminal region we note the presence of a basic cluster (9 residues) characteristic of histones H2B. The N-terminal third is extended as compared to the animal consensus H2B and has the same size as the H2B histone of wheat. Up to 9 acidic residues and a five time repeated pentapeptide PA/KXE/KK are present in this region. Southern-blot hybrization showed that the H2B histones are encoded by a multigenic family like the other core histones (H3 and H4) of plants. The general expression pattern of these genes was not significantly different from that of the H3 and H4 genes neither in germinating seeds nor in different tissues of adult maize.  相似文献   

10.
We have investigated the micrococcal nuclease digestion of chromatin from the spermatozoa of the sea cucumber Holothuria tubulosa. This chromatin contains minor protein variants related to histone H1 with a high proportion of basic amino acids. One of these variants, protein phi 0, represents about 4% of the total histones. It is 78 amino acids long and its amino acid composition and sequence are related to the very basic C-terminal region of histone H1. The presence of these proteins induces an unusual digestion pattern. Oligonucleosomal particles which are soluble at 150 mM NaCl are depleted of protein phi 0 and they are also defective in histone H1. A low percentage of the insoluble material can be solubilized at lower NaCl concentrations (50 mM). These oligonucleosomal particles show a very peculiar protein content, since at early digestion times, they contain histone H1 and protein phi 0 exclusively. We conclude that these particles arise from a cooperative displacement of core histones by protein phi 0 and histone H1. These results show that minor changes in histone H1 complement can result in the formation of artifactual particles upon microccocal nuclease digestion. These observations may be of interest in other systems which contain H1 variants.  相似文献   

11.
Linker histone binding to nucleosomal arrays in vitro causes linker DNA to form an apposed stem motif, stabilizes extensively folded secondary chromatin structures, and promotes self-association of individual nucleosomal arrays into oligomeric tertiary chromatin structures. To determine the involvement of the linker histone C-terminal domain (CTD) in each of these functions, and to test the hypothesis that the functions of this highly basic domain are mediated by neutralization of linker DNA negative charge, four truncation mutants were created that incrementally removed stretches of 24 amino acids beginning at the extreme C terminus of the mouse H1(0) linker histone. Native and truncated H1(0) proteins were assembled onto biochemically defined nucleosomal arrays and characterized in the absence and presence of salts to probe primary, secondary, and tertiary chromatin structure. Results indicate that the ability of H1(0) to alter linker DNA conformation and stabilize condensed chromatin structures is localized to specific C-terminal subdomains, rather than being equally distributed throughout the entire CTD. We propose that the functions of the linker histone CTD in chromatin are linked to the characteristic intrinsic disorder of this domain.  相似文献   

12.
B W Swinkels  R Evers    P Borst 《The EMBO journal》1988,7(4):1159-1165
To determine how microbody proteins enter microbodies, we have previously compared the genes for the cytosolic and glycosomal (microbody) phosphoglycerate kinases (PGKs) of Trypanosoma brucei and found the microbody enzyme to differ from other PGKs and the cytosolic form in two respects: a high net positive charge and a C-terminal extension of 20 amino acids (Osinga et al., 1985). Here we present the comparison of the genes for the cytosolic and glycosomal PGKs of Crithidia fasciculata, another kinetoplastid organism. The amino acid sequences of the two Crithidia isoenzymes are virtually identical, except for a C-terminal extension of 38 amino acids. We conclude that this extension must direct the glycosomal PGK to the glycosome. The extensions of the Crithidia and Trypanosoma enzymes are both rich in small hydrophobic and hydroxyl amino acids.  相似文献   

13.
Peptide sequencing of the complement system regulatory protein, factor H, permitted the synthesis of a mixed sequence oligonucleotide probe. Human liver cDNA libraries were screened and factor H-specific clones selected. No full-length clone was obtained, but the largest available clone, R2a, was found to encode the C-terminal 657 amino acids of factor H. The derived amino acid sequence consists of 10 contiguous internally homologous segments, each about 60 amino acids long. Sequences homologous to these are found in several other complement and non-complement proteins. Such sequences are likely to represent a particular type of tertiary structure subunit.  相似文献   

14.
We investigated the interaction of six 18-residue peptides derived from amphipathic helical segments of globular proteins with model membranes. The net charge of the peptides at neutral pH varies from −1 to +6. Circular dichroism spectra indicate that peptides with a high net positive charge tend to fold into a helical conformation in the presence of negatively charged lipid vesicles. In helical conformation, their average hydrophobic moment and hydrophobicity would render them surface-active. The composition of amino acids on the polar face of the helix in the peptides is considerably different. The peptides show variations in their ability to permeabilise zwitterionic and anionic lipid vesicles. Whereas increased net positive charge favours greater permeabilisation, the distribution of charged residues in the polar face also plays a role in determining membrane activity. The distribution of amino acids in the polar face of the helix in the peptides that were investigated do not fall into the canonical classes described. Amphipathic helices, which are part of proteins, with a pattern of amino acid distribution different from those observed in class L, A and others, could help in providing newer insights into peptide-membrane interactions.  相似文献   

15.
A cDNA encoding a putative RNA and/or DNA helicase has been isolated from Arabidopsis thaliana cDNA libraries. The cloned cDNA is 5166 bases long, and its largest open reading frame encodes 1538 amino acids. The central region of the predicted protein is homologous to a group of nucleic acid helicases from the DEAD/H family. However, the N- and C-terminal regions of the Arabidopsis cDNA product are distinct from these animal DEIH proteins. We have found that the C-terminal region contains three characteristic sequences: (i) two DNA-binding segments that form a probe helix (PH) involved in DNA recognition; (ii) an SV40-type nuclear localization signal; and (iii) 11 novel tandem-repeat sequences each consisting of about 28 amino acids. We have designated this cDNA as NIH (nuclear DEIH-boxhelicase). Functional character-ization of a recombinant fusion product containing the repeated region indicates that NIH may form homodimers, and that this is the active form in solution. Based on this information and the observation that the sequence homology is limited to the DEAH regions, we conclude that the biological roles of the plant helicase NIH differ from those of the animal DEIH family.  相似文献   

16.
The JmjC-containing lysine demethylase, KDM4D, demethylates di-and tri-methylation of histone H3 on lysine 9 (H3K9me3). How KDM4D is recruited to chromatin and recognizes its histone substrates remains unknown. Here, we show that KDM4D binds RNA independently of its demethylase activity. We mapped two non-canonical RNA binding domains: the first is within the N-terminal spanning amino acids 115 to 236, and the second is within the C-terminal spanning amino acids 348 to 523 of KDM4D. We also demonstrate that RNA interactions with KDM4D N-terminal region are critical for its association with chromatin and subsequently for demethylating H3K9me3 in cells. This study implicates, for the first time, RNA molecules in regulating the levels of H3K9 methylation by affecting KDM4D association with chromatin.  相似文献   

17.
Nucleotide sequence and expression of a maize H1 histone cDNA.   总被引:2,自引:2,他引:0       下载免费PDF全文
The first complete amino acid sequence of a H1 histone of a monocotyledonous plant was deduced from a cDNA isolated from a maize library. The encoded H1 protein is 245 amino acid-long and shows the classical tripartite organization of this class of histones. The central globular region of 76 residues shows 60% sequence homology with H1 proteins from dicots but only 20% with the animal H1 proteins. However, several of the amino acids considered as being important in the structure of the nucleosome are conserved between this protein and its animal counterparts. The N-terminal region contains an equal number of acidic and basic residues which appears as a general feature of plant H1 proteins. The 124 residue long and highly basic C-terminal region contains a 7-fold repeated element KA/PKXA/PAKA/PK. Southern-blot hybridization showed that the H1 protein is encoded by a small multigene family. Highly homologous H1 gene families were also detected in the genomes of several more or less closely related plant species. The general expression pattern of these genes was not significantly different from that of these genes encoding the core-histones neither during germination nor in the different tissues of adult maize.  相似文献   

18.
Most thionins of higher plants are toxic to various bacteria, fungi, and animal and plant cells. The only known exception is the seed-specific thionin, crambin, of the crucifer Crambe abyssinica. Crambin has no net charge, is very hydrophobic and exhibits no toxicity. In the present work, the organization of the crambin precursor polypeptide was deduced from cDNA sequences. The precursor shows a domain structure similar to that of the preproprotein of other thionins, which contains a signal peptide, a thionin domain and a C-terminal amino acid extension. Unlike the thionin precursors studied thus far, both the thionin domain and the C-terminal amino acid extension of the crambin precursor have no net charge and are hydrophobic, thus facilitating their interaction, by analogy to that proposed for the corresponding domains of other thionin precursors that have positive and negative charges. The existence of a large number of novel and highly variable thionin variants in Crambe abyssinica has been deduced from cDNA sequences that were amplified by the polymerase chain reaction (PCR) from RNA of seeds, leaves and cotyledons. While the deduced amino acid sequences of the thionin domains of most of these thionin precursor molecules are highly divergent, the two other domains are conserved. Most of the predicted thionin variants are positively charged. The presence of positively charged residues in the thionin domains consistently correlates with the presence of a negatively charged residue in the C-terminal amino acid extension of the various thionin precursors. The different thionin variants are encoded by distinct sets of genes and are expressed in an organ-specific manner.  相似文献   

19.
Most thionins of higher plants are toxic to various bacteria, fungi, and animal and plant cells. The only known exception is the seed-specific thionin, crambin, of the crucifer Crambe abyssinica. Crambin has no net charge, is very hydrophobic and exhibits no toxicity. In the present work, the organization of the crambin precursor polypeptide was deduced from cDNA sequences. The precursor shows a domain structure similar to that of the preproprotein of other thionins, which contains a signal peptide, a thionin domain and a C-terminal amino acid extension. Unlike the thionin precursors studied thus far, both the thionin domain and the C-terminal amino acid extension of the crambin precursor have no net charge and are hydrophobic, thus facilitating their interaction, by analogy to that proposed for the corresponding domains of other thionin precursors that have positive and negative charges. The existence of a large number of novel and highly variable thionin variants in Crambe abyssinica has been deduced from cDNA sequences that were amplified by the polymerase chain reaction (PCR) from RNA of seeds, leaves and cotyledons. While the deduced amino acid sequences of the thionin domains of most of these thionin precursor molecules are highly divergent, the two other domains are conserved. Most of the predicted thionin variants are positively charged. The presence of positively charged residues in the thionin domains consistently correlates with the presence of a negatively charged residue in the C-terminal amino acid extension of the various thionin precursors. The different thionin variants are encoded by distinct sets of genes and are expressed in an organ-specific manner.  相似文献   

20.
M Nomoto  N Imai  H Saiga  T Matsui    T Mita 《Nucleic acids research》1987,15(14):5681-5697
Two histone H2B gene clones were isolated from macronuclei of Tetrahymena thermophila. Nucleotide sequences of the two clones were highly homologous within the coding region but not in the noncoding region. Comparison of the deduced amino acid sequences between the two clones showed three differences in a total of 121 amino acids. Each of the two clones contained a TAA triplet within the coding region, which appeared to code for a glutamine residue. To demonstrate the existence of histone mRNA containing UAA triplet, nuclease P1 protection mapping using total cellular RNA and nucleotide sequencing of primer extension products were carried out. The results clearly indicated that two cloned histone H2B genes were transcribed, giving rise to the major histone H2B mRNAs with a UAA triplet sequence in frame. The tentative 5'- and 3'-ends of histone H2B mRNAs were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号