首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ca2+-ATPase from rabbit sarcoplasmic reticulum has been isolated, purified, and reconstituted into lipid environments containing as primary components 1,2-dielaidoylphosphatidylcholine (DEPC) and acyl-chain perdeuterated 1,2-dimyristoylphosphatidylcholine (DMPC-d54). Differential scanning calorimetry (DSC) has been used to elucidate the phase behavior of this lipid pair while Fourier transform infrared spectroscopy (FT-IR) has been used to monitor the state of each lipid component in the presence of protein. The lipid mixture shows gel state miscibility over at least most of the composition range, a result in good accord with Van Dijck et al. (Biochim. Biophys. Acta 470, 58–69 (1977)), for the binary mixture with proteated DMPC. Acyl chain perdeuteration thus does not greatly alter the miscibility properties of the lipid pair. Reconstitution of Ca2+-ATPase with this lipid pair proceeds with moderate efficiency. Up to 80% of the endogenous lipid can be replaced depending on the lipid composition. Unusual composition-dependent protein-induced effects on lipid melting properties are noticed. At low levels of DMPC-d54, both the DEPC and DMPC-d54 components have their melting processes broadened and shifted to lower temperatures, compared with binary lipid mixtures of the same composition. This suggests that protein perturbs both lipids in similar fashion. At high levels of DMPC-d54, the DEPC component exhibits a highly cooperative melting process at temperatures close to that for pure DEPC. This strongly indicates that domains of DEPC are present (at least at low temperatures) in the bilayer, and that Ca2+-ATPase is excluded from these domains. The protein thus exhibits preferential interaction with the DMPC-d54 component. This work demonstrates the utility of FT-IR for identification of the molecular origin of particular domains in reasonably complex lipid mixtures. The relevance of this work to native membrane systems where lipid domains have been observed by several groups is discussed.  相似文献   

2.
Ca2+-ATPase from rabbit sarcoplasmic reticulum has been isolated, purified, and reconstituted into lipid environments containing as primary components 1,2-dielaidoylphosphatidylcholine (DEPC) and acyl-chain perdeuterated 1,2-dimyristoylphosphatidylcholine (DMPC-d54). Differential scanning calorimetry (DSC) has been used to elucidate the phase behavior of this lipid pair while Fourier transform infrared spectroscopy (FT-IR) has been used to monitor the state of each lipid component in the presence of protein. The lipid mixture shows gel state miscibility over at least most of the composition range, a result in good accord with Van Dijck et al. (Biochim. Biophys. Acta 470, 58-69 (1977)), for the binary mixture with proteated DMPC. Acyl chain perdeuteration thus does not greatly alter the miscibility properties of the lipid pair. Reconstitution of Ca2+-ATPase with this lipid pair proceeds with moderate efficiency. Up to 80% of the endogenous lipid can be replaced depending on the lipid composition. Unusual composition-dependent protein-induced effects on lipid melting properties are noticed. At low levels of DMPC-d54, both the DEPC and DMPC-d54 components have their melting processes broadened and shifted to lower temperatures, compared with binary lipid mixtures of the same composition. This suggests that protein perturbs both lipids in similar fashion. At high levels of DMPC-d54, the DEPC component exhibits a highly cooperative melting process at temperatures close to that for pure DEPC. This strongly indicates that domains of DEPC are present (at least at low temperatures) in the bilayer, and that Ca2+-ATPase is excluded from these domains. The protein thus exhibits preferential interaction with the DMPC-d54 component. This work demonstrates the utility of FT-IR for identification of the molecular origin of particular domains in reasonably complex lipid mixtures. The relevance of this work to native membrane systems where lipid domains have been observed by several groups is discussed.  相似文献   

3.
Fourier transform infrared spectroscopy has been applied to the study of the secondary structure of the Ca2+-ATPase of sarcoplasmic reticulum. An attempt is made to quantitatively assess the various secondary structures present. Values of 45% alpha-helix, 32% beta-sheet and 23% turns were obtained. A comparison is made of these results and those obtained using other techniques such as CD and Raman spectroscopy. The various assumptions inherent in the present procedure are discussed. The effect of various ligands, e.g. Ca2+, vanadate, ATP and phosphate, upon the structure were investigated. Upon binding these ligands no marked spectral changes were observed.  相似文献   

4.
In the Ca2+-ATPase of human red cells the rate of dephosphorylation of the phosphoenzyme is increased by ADP, provided Ca2+ is present. This effect suggests that phosphorylation of the Ca2+-ATPase is a reversible process.  相似文献   

5.
In the Ca2+-ATPase of human red cells the rate of dephosphorylation of the phosphoenzyme is increased by ADP, provided Ca2+ is present. This effect suggests that phosphorylation of the Ca2+-ATPase is a reversible process.  相似文献   

6.
The calcium dependency of the Ca2+-pump ATPase of rat cardiac sarcolemma was investigated in the presence and absence of EGTA and EDTA in combination with two free Mg2+-ion concentrations. The results showed: that Mg2+-ions are not essential for the turnover of the Ca2+-pump ATPase; that the Ca2+-affinity is regulated by the concentration of the calcium-chelator complex present in the medium; that (Ca2+-Mg2+)-ATPase and Ca2+-ATPase are probably expressions of the same Ca2+-pump ATPase in the plasma membrane of the cell.  相似文献   

7.
A rat liver plasma membrane fraction showed an ATP-dependent uptake of Ca2+ which was released by the ionophore A23187. This activity represents a plasma membrane component and is not due to microsomal contamination. The Ca2+ transport displayed several properties which were different from those of the high-affinity Ca2+-ATPase previously observed in these membranes (Lotersztajn et al. (1981) J. Biol. Chem. 256, 11209-11215; Birch-Machin, M.A. and Dawson, A.P. (1986) Biochim. Biophys. Acta 855, 277-285). These observations have shown that Ca2+-ATPase does not require added Mg2+ whereas we have demonstrated that, in the same membrane preparation, Ca2+ uptake required millimolar concentrations of added Mg2+. The Ca2+-ATPase has a broad specificity for the nucleotides ATP, GTP, UTP and ITP while Ca2+ uptake remains specific for ATP. Ca2+ uptake also displayed different affinities for free Ca2+ and MgATP compared to Ca2+-ATPase activity, with apparent Km values of 0.25 microM Ca2+, 0.15 mM MgATP and 1.0 microM Ca2+, 4 microM MgATP respectively. The apparent maximum rate of Ca2+ uptake was about 150-fold less than Ca2+-ATPase activity. These features suggest that the high-affinity Ca2+-ATPase is not the enzymic expression of the ATP-dependent Ca2+ transport mechanism.  相似文献   

8.
Sarcoplasmic reticulum Ca2+-ATPase solubilized in monomeric form by nonionic detergent was reacted with CrATP in the presence of 45Ca2+. A Ca2+-occluded complex formed, which was stable during high performance liquid chromatography in the presence of excess non-radioactive Ca2+. The elution position corresponded to monomeric Ca2+-ATPase. It is concluded that a single Ca2+-ATPase polypeptide chain provides the full structural basis for Ca2+ occlusion.  相似文献   

9.
Ca2+-ATPase of human erythrocyte membranes, after being washed to remove Ca2+ after incubation with the ion, was found to be activated. Stimulation of the ATPase was related neither to fluidity change nor to cytoskeletal degradation of the membranes mediated by Ca2+. Activation of the transport enzyme was also unaffected by detergent treatment of the membrane, but was suppressed when leupeptin was included during incubation of the membranes with Ca2+. Stimulation of the ATPase by a membrane-associated Ca2+-dependent proteinase was thus suggested. Much less 138 kDa Ca2+-ATPase protein could be harvested from a Triton extract of membranes incubated with Ca2+ than without Ca2+. Activity of the activated enzyme could not be further elevated by exogenous calpain, even after treatment of the membranes with glycodeoxycholate. There was also an overlap in the effect of calmodulin and the Ca2+-mediated stimulation of membrane Ca2+-ATPase. While Km(ATP) of the stimulated ATPase remained unchanged, a significant drop in the free-Ca2+ concentration for half-maximal activation of the enzyme was observed.  相似文献   

10.
We have critically evaluated hydrodynamic data from 21 proteins whose molecular dimensions are known from X-ray crystallography. We present two useful equations relating the molecular weights and sedimentation coefficients of globular proteins. The hydrodynamic data combined with data for small molecules from the literature indicate that failure of the Stokes equation occurs only for molecular weights <850. Calculated hydration values for the 21 proteins have a mean value and standard deviation of 0.53 ± 0.26 g H2O/g protein. Furthermore, statistical arguments indicate that only 5.3% of the variance is due to experimental error. The mean value and especially the dispersion of values are in sharp contrast to the values 0.36 ± 0.04 obtained by others from nmr measurements on frozen protein solutions. Hydration values calculated from nmr measurements are closely correlated with the number of charged and polar amino acid residues. In contrast to this result, our analysis of the amino acid compositions of the four proteins with the lowest hydration and the four monomeric proteins with the highest shows that the range of values we observe cannot be accounted for on the basis of amino acid composition. In fact there appears to be a weak correlation between the number of apolar residues and hydrodynamic hydration. We therefore conclude that the dispersion must result from variations in fine details of the surface structures of individual proteins. We propose a model of hemispherical clathrate cages which if correct, would account for the differences in the data obtained by these two methods.  相似文献   

11.
Chemotactic stimulation of Dictyostelium discoideum induces an uptake of Ca2+ by the cells followed by a release of Ca2+. In this study we investigated the mechanism of Ca2+ release and found that it was inhibited by La3+, Cd2+ and azide. Ca2+ release occurred in the absence of external Na+, indicating that an Na+/Ca2+ exchange was not involved. Plasma membranes contained high- and low-affinity ATPase activities. Apparent K0.5 values were 8 microM for the major Mg2+-ATPase and 1.1 microM for the high-affinity Ca2+-ATPase, respectively. The Mg2+-ATPase activity was inhibited by elevated concentrations of Ca2+, whereas both Ca2+-ATPases were active in the absence of added Mg2+. The activities of the Ca2+-ATPases were not modified by calmodulin. The high-affinity Ca2+-ATPase was competitively inhibited by La3+ and Cd2+; we suggest that this high-affinity enzyme mediates the release of Ca2+ from D. discoideum cells.  相似文献   

12.
The factors regulating Ca2+ transport by isolated sarcoplasmic reticulum (SR) vesicles have been studied using the fluorescent indicator Fluo-3 to monitor extravesicular free [Ca2+]. ATP, in the presence of 5 mM oxalate, which clamps intravesicular [Ca2+] at approximately 10 microM, induced a rapid decline in Fluo-3 fluorescence to reach a limiting steady state level. This corresponds to a residual medium [Ca2+] of 100 to 200 nM, and has been defined as [Ca2+]lim, whilst thermodynamic considerations predict a level of less than 1 nM. This value is similar to that measured in intact muscle with Ca2+ fluophores, where it is presumed that sarcoplasmic free [Ca2+] is a balance between pump and leaks. Fluorescence of Fluo-3 at [Ca2+]lim was decreased 70% to 80% by histidine, imidazole and cysteine. The K0.5 value for histidine was 3 mM, suggesting that residual [Ca2+]lim fluorescence is due to Zn2+. The level of Zn2+ in preparations of SR vesicles, measured by atomic absorption, was 0.47+/-0.04 nmol/mg, corresponding to 0.1 mol per mol Ca-ATPase. This is in agreement with findings of Papp et al. (Arch. Biochem. Biophys., 243 (1985) 254-263). Histidine, 20 mM, included in the buffer, gave a corrected value for [Ca2+]lim of 49+/-1.8 nM, which is still higher than predicted on thermodynamic grounds. A possible 'pump/leak' mechanism was tested by the effects of varying active Ca2+ transport 1 to 2 orders with temperature and pH. [Ca2+]lim remained relatively constant under these conditions. Alternate substrates acetyl phosphate and p-NPP gave similar [Ca2+]lim levels even though the latter substrate supported transport 500-fold slower than with ATP. In fact, [Ca2+]lim was lower with 10 mM p-NPP than with 5 mM ATP. The magnitude of passive efflux from Ca-oxalate loaded SR during the steady state of [Ca2+]lim was estimated by the unidirectional flux of 45Ca2+, and directly, following depletion of ATP, by measuring release of 40Ca2+, and was 0.02% of Vmax. Constant infusion of CaCl2 at [Ca2+]lim resulted in a new steady state, in which active transport into SR vesicles balances the infusion rate. Varying infusion rates allows determination of [Ca2+]-dependence of transport in the absence of chelating agents. Parameters of non-linear regression were Vmax=853 nmol/min per mg, K0.5(Ca)=279 nM, and nH(Ca)=1.89. Since conditions employed in this study are similar to those in the sarcoplasm of relaxed muscle, it is suggested that histidine, added to media in studies of intracellular Ca2+ transients, and in the relaxed state, will minimise contribution of Zn2+ to fluophore fluorescence, since it occurs at levels predicted in this study to cause significant overestimation of cytoplasmic free [Ca2+] in the relaxed state. Similar precautions may apply to non-muscle cells as well. This study also suggests that [Ca2+]lim in the resting state is a characteristic feature of Ca2+ pump function, rather than a balance between active transport and passive leakage pathways.  相似文献   

13.
The Ca2+-ATPase (ATP phosphohydrolase, EC 3.6.1.3) in human erythrocyte membranes, which is part of the Ca2+ pump, can be activated by binding of calmodulin. Rate constants (k1) for association of calmodulin and enzyme, which depends on the Ca2+ concentration, have been determined by the aid of an enzyme model. k1 increased from 0.25 . 10(6) to 17.3 . 10(6) M-1 . min-1 (70 times) when the free Ca2+ concentration was raised from 0.7 to 20 microM. The binding of calmodulin to the Ca2+-ATPase is reversible. The rate constants (k-1) for dissociation of enzyme-calmodulin complex decreased from 6.0 to 0.044 min-1 (135 times) when the free Ca2+ concentration was increased from 0.1 to 2-20 microM. The apparent dissociation constant Kd = k-1/k1 accordingly increased from 2.5 nM to 25 microM (or higher) when the Ca2+ concentration was reduced from 20 to 0.1 microM. Therefore, at 10(-7) M free Ca2+ most of the Ca2+-pump enzyme will not bind calmodulin. For the intact cell the time dependences of activation and deactivation of the Ca2+-pump enzyme have been estimated from the rate constants above. The results suggest that the Ca2+ pump is well suited to maintain a cytosolic concentration of 10(-7) M free Ca2+ (or lower) in the unstimulated cell and, when the cell is stimulated, to allow transient Ca2+ signals up to approx. 10(-5) M in the cytosol.  相似文献   

14.
A current state of researches on mechanisms of ion homeostasis regulation in the specific conditions of the uncontrolled malignant tumor growth (mainly in carcinomas) concerning the contribution of Na+,K+-ATPase, plasma membrane and sarco(endo)plasmic reticulum Ca2+-ATPases has been reviewed. Particular attention has been focused on the molecular and biochemical links providing the redistribution of the transporting ATPases isozyme pattern for the regulatory requirements of the cell signaling pathways at stable proliferation and viability in malignancy.  相似文献   

15.
Infrared spectroscopy has been used to map substrate-protein interactions: the conformational changes of the sarcoplasmic reticulum Ca(2+)-ATPase upon nucleotide binding and ATPase phosphorylation were monitored using the substrate ATP and ATP analogues (2'-deoxy-ATP, 3'-deoxy-ATP, and inosine 5'-triphosphate), which were modified at specific functional groups of the substrate. Modifications to the 2'-OH, the 3'-OH, and the amino group of adenine reduce the extent of binding-induced conformational change of the ATPase, with particularly strong effects observed for the latter two. This demonstrates the structural sensitivity of the nucleotide-ATPase complex to individual interactions between nucleotide and ATPase. All groups studied are important for binding and interactions of a given ligand group with the ATPase depend on interactions of other ligand groups. Phosphorylation of the ATPase was observed for ITP and 2'-deoxy-ATP, but not for 3'-deoxy-ATP. There is no direct link between the extent of conformational change upon nucleotide binding and the rate of phosphorylation showing that the full extent of the ATP-induced conformational change is not mandatory for phosphorylation. As observed for the nucleotide-ATPase complex, the conformation of the first phosphorylated ATPase intermediate E1PCa(2) also depends on the nucleotide, indicating that ATPase states have a less uniform conformation than previously anticipated.  相似文献   

16.
The rats were irradiated in the doses 1, 5, 4, 7 and 10 Gr and on the 1, 8, 15, 22 and 30 day after the irradiation activity of Ca(2+)-ATPase and Mg(2+)-ATPase and peroxidation lipids in the thymocytes was determined. It was found that postradiation changes in activity of Mg(2+)-ATPase were characterized by a higher sensitivity to the processes of lipids peroxidation as compared to Ca(2+)-ATPase.  相似文献   

17.
Distribution of three isoenzymes of brain enolase (2-phospho-D-glycerate hydro-lyase, EC 4.2.1.11) (alpha alpha, alpha gamma and gamma gamma forms) in clonal cell lines of neuroblastoma (NS20Y and N18TG-2), glioma (C6BU-1), and hybrid cells NG108-15, NCB20, Nbr10A, Nbr20A, N4G-B-a and N4G-C-a) was examined with a sensitive enzyme immunoassay system, that uses a rabbit antibody to rat brain enolase alpha alpha or gamma gamma. All cell lines tested were found to possess the enolase which contains gamma subunit (a neuron-specific protein), although the alpha alpha enolase (non-neuronal enolase) was the dominant from in these cells. A clonal rat glioma (C6BU-1) cell contained about 40, 1 and 0.07 microgram/mg protein of alpha alpha, alpha gamma and gamma gamma enolases, respectively, at the confluent stage. Inclusion of 1 mM dibutyryl cyclic AMP or 10 micrometers prostaglandin E1 plus 1 mM theophylline in the culture medium of a hybrid cell (NG108-15, mouse neuroblastoma x rat glioma) resulted in a more than 2-fold increase in the concentrations of alpha gamma and gamma gamma in the cell within a few days, with little change in the alpha alpha enolase concentration. A similar increase in the concentration of gamma subunit by the nucleotide (but not by prostaglandin E1 plus theophylline) was also observed in the glioma cell (C6BU-1) line. The results suggest that the gamma subunit or the neuron-specific protein can be regulated in NG108-15 and C6BU-1 cells in a cyclic AMP-dependent fashion.  相似文献   

18.
Sarcoplasmic reticulum vesicles of rabbit skeletal muscle accumulate Ca2+ at the expense of ATP hydrolysis. The heat released during the hydrolysis of each ATP molecule varies depending on whether or not a Ca2+ gradient is formed across the vesicle membrane. After Ca2+ accumulation, a part of the Ca2+-ATPase activity is not coupled with Ca2+ transport (Yu, X., and Inesi, G. (1995) J. Biol. Chem. 270, 4361-4367). I now show that both the heat produced during substrate hydrolysis and the uncoupled ATPase activity vary depending on the ADP/ATP ratio in the medium. With a low ratio, the Ca2+ transport is exothermic, and the formation of the gradient increases the amount of heat produced during the hydrolysis of each ATP molecule cleaved. With a high ADP/ATP ratio, the Ca2+ transport is endothermic, and formation of a gradient increased the amount of heat absorbed from the medium. Heat is absorbed from the medium when the Ca2+ efflux is coupled with the synthesis of ATP (5.7 kcal/mol of ATP). When there is no ATP synthesis, the Ca2+ efflux is exothermic (14-16 kcal/Ca2+ mol). It is concluded that in the presence of a low ADP concentration the uncoupled ATPase activity is the dominant route of heat production. With a high ADP/ATP ratio, the uncoupled ATPase activity is abolished, and the Ca2+ transport is endothermic. The possible correlation of these findings with thermogenesis and anoxia is discussed.  相似文献   

19.
V Marchi  A Sorin  Y Wei  R Rao 《FEBS letters》1999,454(3):181-186
We have analyzed Ca2+ transport activity in defined subcellular fractions of an isogenic set of wild-type and mutant yeast. The results, together with measurements of polypeptide expression levels and promoter::reporter gene activity, show that the Golgi Ca2+-ATPase, Pmr1, is the major Ca2+ pump under normal growth conditions. In the absence of Pmr1, we show a massive, calcineurin-dependent compensatory induction of the vacuolar Ca2+-ATPase, Pmc1. In addition, H+/Ca2+ exchange activity, that may be distinct from the vacuolar exchanger Vcx1, is also increased.  相似文献   

20.
The atomic structure of sarcoplasmic reticulum Ca(2+)-ATPase, in a Ca(2+)-bound conformation, has recently been elucidated (Toyoshima, C., Nakasako, M., Nomura, H. & Ogawa, H. (2000) Nature 405, 647-655). Important steps for further understanding the mechanism of ion pumps will be the atomic structural characterization of different key conformational intermediates of the transport cycle, including phosphorylated intermediates. Following our previous report (Champeil, P., Henao, F., Lacapère, J.-J. & McIntosh, D. B. (2000) J. Biol. Chem. 276, 5795-5803), we show here that it is possible to prepare a phosphorylated form of sarcoplasmic reticulum Ca(2+)-ATPase (labeled with fluorescein isothiocyanate) with a week-long stability both in membranes and in mixed lipid-detergent micelles. We show that this phosphorylated fluorescein isothiocyanate-ATPase can form two-dimensional arrays in membranes, similar to those that were used previously to reconstruct from cryoelectron microscopy images the three-dimensional structure of Ca(2+)-free unphosphorylated ATPase. The results also provide hope that crystals of phosphorylated Ca(2+)-ATPase suitable for x-ray crystallography will be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号