首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 420 毫秒
1.
2.
Katahira R  Ashihara H 《Planta》2002,215(5):821-828
In order to obtain general metabolic profiles of pyrimidine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, the in situ metabolic fate of various (14)C-labelled precursors in disks from growing potato tubers was investigated. The activities of key enzymes in potato tuber extracts were also studied. The following results were obtained. Of the intermediates in de novo pyrimidine biosynthesis, [(14)C]carbamoylaspartate was converted to orotic acid and [2-(14)C]orotic acid was metabolized to nucleotides and RNA. UMP synthase, a bifunctional enzyme with activities of orotate phosphoribosyltransferase (EC 2.4.2.10) and orotidine 5'-monophosphate decarboxylase (EC 4.1.1.23), exhibited high activity. The rates of uptake of pyrimidine ribo- and deoxyribonucleosides by the disks were high, in the range 2.0-2.8 nmol (g FW)(-1) h(-1). The pyrimidine ribonucleosides, uridine and cytidine, were salvaged exclusively to nucleotides, by uridine/cytidine kinase (EC 2.7.1.48) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Cytidine was also salvaged after conversion to uridine by cytidine deaminase (EC 3.5.4.5) and the presence of this enzyme was demonstrated in cell-free tuber extracts. Deoxycytidine, a deoxyribonucleoside, was efficiently salvaged. Since deoxycytidine kinase (EC 2.7.1.74) activity was extremely low, non-specific nucleoside phosphotransferase (EC 2.7.1.77) probably participates in deoxycytidine salvage. Thymidine, which is another pyrimidine deoxyribonucleoside, was degraded and was not a good precursor for nucleotide synthesis. Virtually all the thymidine 5'-monophosphate synthesis from thymidine appeared to be catalyzed by phosphotransferase activity, since little thymidine kinase (EC 2.7.1.21) activity was detected. Of the pyrimidine bases, uracil, but not cytosine, was salvaged for nucleotide synthesis. Since uridine phosphorylase (EC 2.4.2.3) activity was not detected, uracil phosphoribosyltransferase (EC 2.4.2.9) seems to play the major role in uracil salvage. Uracil was degraded by the reductive pathway via beta-ureidopropionate, but cytosine was not degraded. The activities of the cytosine-metabolizing enzymes observed in other organisms, pyrimidine nucleoside phosphorylase (EC 2.4.2.2) and cytosine deaminase (EC 3.5.4.1), were not detected in potato tuber extracts. Operation of the de novo synthesis of deoxyribonucleotides via ribonucleotide reductase and of the salvage pathway of deoxycytidine was demonstrated via the incorporation of radioactivity from both [2-(14)C]cytidine and [2-(14)C]deoxycytidine into DNA. A novel pathway converting deoxycytidine to uracil nucleotides was found and deoxycytidine deaminase (EC 3.5.4.14), an enzyme that may participate in this pathway, was detected in the tuber extracts.  相似文献   

3.
AIMS: To investigate the regulation of de novo pyrimidine biosynthesis in the polyhydroxyalkanoate-producing bacterium Pseudomonas oleovorans at the level of enzyme synthesis and at the level of aspartate transcarbamoylase activity. METHODS AND RESULTS: The effect of pyrimidine supplementation on the pyrimidine biosynthetic pathway enzyme activities was analysed relative to carbon source. Two uracil auxotrophs of P. oleovorans were isolated that were deficient for aspartate transcarbamoylase or dihydroorotase activity. Pyrimidine limitation of these auxotrophs increased the de novo pathway activities to varying degrees depending on the pathway mutation and the carbon source utilized. At the level of aspartate transcarbamoylase activity, pyrophosphate and uridine ribonucleotides were found to be strongly inhibitory of the Ps. oleovorans enzyme. CONCLUSIONS: Pyrimidine biosynthesis is regulated in Ps. oleovorans. Taxonomically, the regulation of the pyrimidine biosynthetic pathway appeared dissimilar from previously studied Pseudomonas species. SIGNIFICANCE AND IMPACT OF THE STUDY: New insights regarding the regulation of nucleic acid metabolism are provided that could prove significant during the genetic manipulation of Ps. oleovorans to increase the synthesis of polyhydroxyalkanoates.  相似文献   

4.
Regulation of pyrimidine nucleotide biosynthesis in Pseudomonas synxantha ATCC 9890 was investigated and the pyrimidine biosynthetic pathway enzyme activities were affected by pyrimidine supplementation in cells grown on glucose or succinate as a carbon source. In pyrimidine-grown ATCC 9890 cells, the activities of four de novo enzymes could be depressed which indicated possible repression of enzyme synthesis. To learn whether the pathway was repressible, pyrimidine limitation experiments were conducted using an orotate phosphoribosyltransferase (pyrE) mutant strain identified in this study. Compared to excess uracil growth conditions for the succinate-grown mutant strain cells, pyrimidine limitation of this strain caused dihydroorotase activity to increase about 3-fold while dihydroorotate dehydrogenase and orotidine 5'-monophosphate decarboxylase activities rose about 2-fold. Regulation of de novo pathway enzyme synthesis by pyrimidines appeared to be occurring. At the level of enzyme activity, aspartate transcarbamoylase activity in P. synxantha ATCC 9890 was strongly inhibited in vitro by pyrophosphate, UTP, ADP, ATP, CTP and GTP under saturating substrate concentrations.  相似文献   

5.
The synthesis of cytosine deaminase in Salmonella typhimurium is repressed by pyrimidines. This repression is mediated by both a uridine and a cytidine compound, indicating a distinct difference in the regulation of synthesis of cytosine deaminase from the regulation of the de novo pyrimidine pathway enzymes. A salvage role for the enzyme in pyrimidine metabolism is postulated.  相似文献   

6.
7.
8.
Changes in the pattern of pyrimidine nucleotide metabolism were investigated in Pinus radiata cotyledons cultured under shoot-forming (SF; +N(6)-benzyladenine) and non-shoot-forming (NSF, -N(6)-benzyladenine) conditions, as well as in cotyledons unresponsive (OLD) to N(6)-benzyladenine. This was carried out by following the metabolic fate of externally supplied (14)C-labeled orotic acid, intermediate of the de novo pathway, and (14)C-labeled uridine and uracil, substrates of the salvage pathway. Nucleic acid synthesis was also investigated by following the metabolic fate of (14)C-labeled thymidine during shoot bud formation and development. The de novo synthesis of pyrimidine nucleotides was operative under both SF and NSF conditions, and the activity of orotate phosphoribosyltransferase (OPRT), a key enzyme of the de novo pathway, was higher in SF tissue. Utilization of both uridine and uracil for nucleotide and nucleic acid synthesis clearly indicated that the salvage pathway of pyrimidine metabolism is also operative during shoot organogenesis. In general, uridine was a better substrate for the synthesis of salvage products than uracil, possibly due to the higher activity of uridine kinase (UK), compared to uracil phosphoribosyltransferase (UPRT). Incorporation of uridine into the nucleic acid fraction of OLD cotyledons was lower than that observed for their responsive (day 0) counterparts. Similarly, uracil utilization for nucleic acid synthesis was lower in NSF cotyledons, compared to that observed for SF tissue after 10 days in culture. This difference was ascribed to higher UPRT activity measured in the latter. Thus, there was an apparent difference in the utilization of nucleotides derived from uracil and uridine for nucleotide synthesis. The increased ability to produce pyrimidine nucleotides via the salvage pathway during shoot bud formation may be required in support of nucleic acid synthesis occurring during the process. Studies on thymidine metabolism confirmed this notion.  相似文献   

9.
AIMS: To study the regulation of de novo pyrimidine biosynthesis in the pathogenic bacterium Pseudomonas reptilivora ATCC 14836. METHODS AND RESULTS: The pyrimidine biosynthetic pathway enzymes were assayed in extracts of Ps. reptilivora ATCC 14836 cells and of cells from an auxotroph lacking aspartate transcarbamoylase activity. Pyrimidine biosynthetic pathway enzyme activities in ATCC 14836 were influenced by the addition of pyrimidine bases to the culture medium with orotic acid addition inducing dihydroorotase activity. Pyrimidine starvation of the transcarbamoylase mutant strain increased its de novo enzyme activities suggesting that the de novo pathway was also subject to repression by a pyrimidine-related compound. Aspartate transcarbamoylase activity in ATCC 14836 was inhibited in vitro by pyrophosphate and ATP. CONCLUSIONS: Regulation of pyrimidine biosynthesis in Ps. reptilivora was observed at the level of enzyme synthesis and at the level of activity for aspartate transcarbamoylase. Its regulation of enzyme synthesis seemed to be more highly controlled than what was observed in the related species Ps. fluorescens. SIGNIFICANCE AND IMPACT OF THE STUDY: This investigation found that pyrimidine biosynthesis is controlled in Ps. reptilivora. This could prove helpful to future studies exploring its pathogenicity.  相似文献   

10.
The concentration of uridine in the media of cultured L1210 cells was maintained within the concentration range found in plasma (1 to 10 microM) to determine if such concentrations are sufficient to satisfy the pyrimidine requirements of a population of dividing cells and to determine if cells utilize de novo and/or salvage pathways when exposed to plasma concentrations of uridine. When cells were incubated in the presence of N-(phosphonacetyl)-L-aspartate to block de novo biosynthesis, plasma concentrations of uridine maintained normal cell growth. De novo pyrimidine biosynthesis, as determined by [14C]sodium bicarbonate incorporation into uracil nucleotides, was affected by the low concentrations of uridine found in the plasma. Below 1 microM uridine, de novo biosynthesis was not affected; between 3 and 5 microM uridine, de novo biosynthesis was inhibited by approximately 50%; and above 12 microM uridine, de novo biosynthesis was inhibited by greater than 95%. Inhibition of de novo biosynthesis correlated with an increase in the uracil nucleotide pool. The de novo pathway was much more sensitive to the uracil nucleotide pool size than was the salvage pathway, such that when de novo biosynthesis was inhibited by greater than 95% the uracil nucleotide pool continued to expand and the cells continued to take up [14C]uridine. Thus, the pyrimidine requirements of cultured L1210 cells can be met by concentrations of uridine found in the plasma and, when exposed to such physiologic concentrations, L1210 cells decrease their dependency on de novo biosynthesis and utilize their salvage pathway. Circulating uridine, therefore, may be of physiologic importance and could be an important determinant in anti-pyrimidine chemotherapy.  相似文献   

11.
12.
Pyrimidine biosynthesis was active in Pseudomonas citronellolis ATCC 13674 and appeared to be regulated by pyrimidines. When wild-type cells were grown on succinate in the presence of uracil, the de novo enzyme activities were depressed while only four enzyme activities were depressed in the glucose-grown cells. On either carbon source, orotic acid-grown cells had diminished aspartate transcarbamoylase, dihydroorotase or OMP decarboxylase activity. Pyrimidine limitation of glucose-grown pyrimidine auxotrophic cells resulted in de novo enzyme activities, except for transcarbamoyolase activity, that were elevated by more than 5-fold compared to their activities in uracil-grown cells. Since pyrimidine limitation of succinate-grown mutant cells produced less enzyme derepression, catabolite repression appeared to be a factor. At the level of enzyme activity, aspartate transcarbamoylase activity in P. citronellolis was strongly inhibited by all effectors tested. Compared to the regulation of pyrimidine biosynthesis in taxonomically-related species, pyrimidine biosynthesis in P. citronellolis appeared more highly regulated.  相似文献   

13.
AIMS: To investigate the regulation of de novo pyrimidine biosynthesis in the bacterium Pseudomonas resinovorans ATCC 14235. METHODS AND RESULTS: The pyrimidine biosynthetic pathway enzymes were measured in cell extracts from P. resinovorans ATCC 14235 and from an auxotroph lacking orotate phosphoribosyltransferase activity. Pyrimidine biosynthetic pathway enzyme activities in ATCC 14235 were affected by the addition of pyrimidine bases to the culture medium. The de novo enzyme activities of the phosphoribosyltransferase mutant strain increased after pyrimidine starvation indicating possible repression of the pathway by a pyrimidine-related compound. Aspartate transcarbamoylase activity in ATCC 14235 was inhibited in vitro by ATP, UTP and pyrophosphate. CONCLUSIONS: Pyrimidine biosynthesis in P. resinovorans was regulated at the level of enzyme synthesis and at the level of activity for aspartate transcarbamoylase. Its regulation of enzyme synthesis seemed to be similar to what has been observed in the taxonomically related species Pseudomonas oleovorans. SIGNIFICANCE AND IMPACT OF THE STUDY: This study found that pyrimidine biosynthesis is regulated in P. resinovorans. This could prove helpful to future studies investigating polyhydroxyalkanoate production by the bacterium.  相似文献   

14.
The intracellular parasitic protist Trypanosoma cruzi is the causative agent of Chagas disease in Latin America. In general, pyrimidine nucleotides are supplied by both de novo biosynthesis and salvage pathways. While epimastigotes-an insect form-possess both activities, amastigotes-an intracellular replicating form of T. cruzi-are unable to mediate the uptake of pyrimidine. However, the requirement of de novo pyrimidine biosynthesis for parasite growth and survival has not yet been elucidated. Carbamoyl-phosphate synthetase II (CPSII) is the first and rate-limiting enzyme of the de novo biosynthetic pathway, and increased CPSII activity is associated with the rapid proliferation of tumor cells. In the present study, we showed that disruption of the T. cruzi cpsII gene significantly reduced parasite growth. In particular, the growth of amastigotes lacking the cpsII gene was severely suppressed. Thus, the de novo pyrimidine pathway is important for proliferation of T. cruzi in the host cell cytoplasm and represents a promising target for chemotherapy against Chagas disease.  相似文献   

15.
Developmental variations in the expression of two genes of the de novo pyrimidine biosynthetic pathway have been examined in Dictyostelium discoideum. One gene, DdPYR4, encodes the dihydroorotate dehydrogenase (EC 1.3.3.1); the other, DdPYR5-6, encodes the UMP synthase which in D. discoideum is a bifunctional enzyme harboring both the orotate phosphoribosyl transferase activity (EC 2.4.2.10) and the OMP decarboxylase activity (EC 4.1.1.23). The relative amount of mRNA for both genes has been estimated by hybridization with the previously cloned DNAs and compared with the amount of actin mRNA. The level of both mRNAs is dramatically reduced after 4 h of development and remains at a low level later in development. In contrast to these variations, the specific activity of the enzymes encoded by these genes during development is similar to that measured during exponential growth. These results lead us to propose that DdPYR4 and DdPYR5-6 genes encode for relatively stable proteins and that their synthesis is reduced to maintain a constant level of enzymes in non-growing cells. This mode of regulation could apply to a large number of housekeeping genes.  相似文献   

16.
17.
The de novo pyrimidine biosynthetic enzymes in the denitrifying bacterium Pseudomonas stutzeri ATCC 17588 were assayed and their activities were lower in glucose-grown cells than in succinate-grown cells. When P. stutzeri was grown in the presence of uracil, the de novo enzyme activities in succinate-grown cells were lowered while they remained largely unchanged in glucose-grown cells. A uracil auxotroph of P. stutzeri, deficient for aspartate transcarbamoylase activity, was isolated and its auxotrophic requirement was met by only uracil and cytosine. The inability of pyrimidine ribonucleosides to meet the auxotrophic requirement was related to the limited ability of P. stutzeri to transport uridine and cytidine. Pyrimidine limitation of the auxotroph elevated the de novo enzyme activities indicating that this pathway may be repressible by a uracil-related compound in succinate-grown P. stutzeri cells. Regulation of pyrimidine synthesis in P. stutzeri was similar to that observed for other pseudomonads classified within rRNA homology group I.  相似文献   

18.
The maximum catalytic activities of carbamoyl-phosphate synthase II, a limiting enzyme for pyrimidine nucleotide synthesis, are very much less than those of glutaminase, a limiting enzyme for glutamine utilization, in lymphocytes and macrophages; and the flux through the pathway for pyrimidine formation de novo is only about 0.4% of the rate of glutamine utilization by lymphocytes. The Km of synthase II for glutamine is about 16 microM and the concentration of glutamine necessary to stimulate lymphocyte proliferation half-maximally is about 21 microM. This agreement suggests that the importance of glutamine for these cells is provision of nitrogen for biosynthesis of pyrimidine nucleotides (and probably purine nucleotides). However, the glutamine concentration necessary for half-maximal stimulation of glutamine utilization (glutaminolysis) by the lymphocytes is 2.5 mM. The fact that the rate of glutamine utilization by lymphocytes is markedly in excess of the rate of the pathway for pyrimidine nucleotide synthesis de novo and that the Km and 'half-maximal concentration' values are so different, suggests that the glutaminolytic pathway is independent of the use of glutamine nitrogen for pyrimidine synthesis.  相似文献   

19.
Pyrimidines are particularly important in dividing tissues as building blocks for nucleic acids, but they are equally important for many biochemical processes, including sucrose and cell wall polysaccharide metabolism. In recent years, the molecular organization of nucleotide biosynthesis in plants has been analyzed. Here, we present a functional analysis of the pyrimidine de novo synthesis pathway. Each step in the pathway was investigated using transgenic plants with reduced expression of the corresponding gene to identify controlling steps and gain insights into the phenotypic and metabolic consequences. Inhibition of expression of 80% based on steady-state mRNA level did not lead to visible phenotypes. Stepwise reduction of protein abundance of Asp transcarbamoylase or dihydro orotase resulted in a corresponding inhibition of growth. This was not accompanied by pleiotropic effects or by changes in the developmental program. A more detailed metabolite analysis revealed slightly different responses in roots and shoots of plants with decreased abundance of proteins involved in pyrimidine de novo synthesis. Whereas in leaves the nucleotide and amino acid levels were changed only in the very strong inhibited plants, the roots show a transient increase of these metabolites in intermediate plants followed by a decrease in the strong inhibited plants. Growth analysis revealed that elongation rates and number of organs per plant were reduced, without large changes in the average cell size. It is concluded that reduced pyrimidine de novo synthesis is compensated for by reduction in growth rates, and the remaining nucleotide pools are sufficient for running basic metabolic processes.  相似文献   

20.
Pyrimidine synthesis in Burkholderia cepacia ATCC 25416   总被引:1,自引:0,他引:1  
K. LI AND T.P. WEST. 1995. Pyrimidine synthesis in the food spoilage agent Burkholderia cepacia ATCC 25416 was investigated. The five de novo pathway enzymes of pyrimidine biosynthesis were found to be active in B. cepacia ATCC 25416 and growth of this strain on uracil had an effect on the de novo enzyme activities. The in vitro regulation of aspartate transcarbamoylase activity in B. cepacia ATCC 25416 was studied and its activity was inhibited by PPi, ATP, GTP, CTP and UTP. The enzymes cytidine deaminase, uridine phosphorylase and cytosine deaminase were found to be active in the salvage of pyrimidines in ATCC 25416. Overall, de novo pyrimidine synthesis in B. cepacia ATCC 25416 was regulated at the level of enzyme activity and its pyrimidine salvage enzymes differed from those found in B. cepacia ATCC 17759.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号