首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Periostin, a matricellular protein in the fasciclin family, is expressed in tissues subjected to constant mechanical stress. Periostin modulates cell-to-extracellular matrix interactions and can bind to collagen, fibronectin, tenascin-C and several integrins. Our objective was to evaluate whether periostin is expressed in the human intervertebral disc. Immunohistochemical localization of periostin was carried out in tissue of human lumbar discs and lumbar discs of the sand rat (Psammomys obesus). Human discs also were examined for periostin gene expression. Immunohistochemical localization demonstrated periostin in the cytoplasm of annulus and nucleus cells, and occasionally in the surrounding pericellular and interterritorial extracellular matrix. Periostin distribution in the human disc was distinctive. Outer annulus contained the highest proportion of periostin-positive cells (88.8%), whereas inner annulus contained only 61.4%. The nucleus pulposus contained the fewest periostin-positive cells (18.5%). There was a significant negative correlation between the percentage of cells positive for periostin in the inner annulus and subject age. Periostin gene expression in the human disc also was confirmed using molecular microarray analysis. Because work by others has shown that periostin plays an important role in the biomechanical properties of other connective tissues (skin, tendon, heart valves), future research is needed to elucidate the role of periostin in disc, loading, aging and degeneration.  相似文献   

2.
3.
4.
Since the discovery of the TP63 gene in 1998, many studies have demonstrated that ΔNp63, a p63 isoform of the p53 gene family, is involved in multiple functions during skin development and in adult stem/progenitor cell regulation. In contrast, TAp63 studies have been mostly restricted to its apoptotic function and more recently as the guardian of oocyte integrity. TAp63 endogenous expression is barely detectable in embryos and adult (except in oocytes), presumably because of its rapid degradation and the lack of antibodies able to detect weak expression. Nevertheless, two recent independent studies have demonstrated novel functions for TAp63 that could have potential implications to human pathologies. The first discovery is related to the protective role of TAp63 on premature aging. TAp63 controls skin homeostasis by maintaining dermal and epidermal progenitor/stem cell pool and protecting them from senescence, DNA damage and genomic instability. The second study is related to the role of TAp63, expressed by the primitive endoderm, on heart development. This unexpected role for TAp63 has been discovered by manipulation of embryonic stem cells in vitro and confirmed by the severe cardiomyopathy observed in brdm2 p63-null embryonic hearts. Interestingly, in both cases, TAp63 acts in a cell-nonautonomous manner on adjacent cells. Here, we discuss these findings and their potential connection during development.  相似文献   

5.

Background

Data on long-term complications in adult patients with congenital heart disease (ACHD) and a prosthetic valve are scarce. Moreover, the influence of prosthetic valves on quality of life (QoL) and functional outcome in ACHD patients with prosthetic valves has not been studied.

Objectives

The primary objective of the PROSTAVA study is to investigate the relation between prosthetic valve characteristics (type, size and location) and functional outcome as well as QoL in ACHD patients. The secondary objectives are to investigate the prevalence and predictors of prosthesis-related complications including prosthesis-patient mismatch.

Methods

The PROSTAVA study, a multicentre cross-sectional observational study, will include approximately 550 ACHD patients with prosthetic valves. Primary outcome measures are maximum oxygen uptake during cardiopulmonary exercise testing and QoL. Secondary outcomes are the prevalence and incidence of valve-related complications including prosthesis-patient mismatch. Other evaluations are medical history, physical examination, echocardiography, MRI, rhythm monitoring and laboratory evaluation (including NT-proBNP).

Implications

Identification of the relation between prosthetic valve characteristics in ACHD patients on one hand and functional outcome, QoL, the prevalence and predictors of prosthesis-related complications on the other hand may influence the choice of valve prosthesis, the indication for more extensive surgery and the indication for re-operation.  相似文献   

6.
Critical steps in coronary vascular formation include the epithelial-mesenchyme transition (EMT) that epicardial cells undergo to become sub-epicardial; the invasion of the myocardium; and the differentiation of coronary lineages. However, the factors controlling these processes are not completely understood. Epicardial and coronary vascular precursors migrate to the avascular heart tube during embryogenesis via the proepicardium (PE). Here, we show that in the quail embryo fibroblast growth factor receptor (FGFR)-1 is expressed in a spatially and temporally restricted manner in the PE and epicardium-derived cells, including vascular endothelial precursors, and is up-regulated in epicardial cells after EMT. We used replication-defective retroviral vectors to over-express or knock-down FGFR-1 in the PE. FGFR-1 over-expression resulted in increased epicardial EMT. Knock-down of FGFR-1, however, did not inhibit epicardial EMT but greatly compromised the ability of PE progeny to invade the myocardium. The latter could, however, contribute to endothelia and smooth muscle of sub-epicardial vessels. Correct FGFR-1 levels were also important for correct coronary lineage differentiation with, at E12, an increase in the proportion of endothelial cells amongst FGFR-1 over-expressing PE progeny and a decrease in the proportion of smooth muscle cells in antisense FGFR-1 virus-infected PE progeny. Finally, in a heart explant system, constitutive activation of FGFR-1 signaling in epicardial cells resulted in increased delamination from the epicardium, invasion of the sub-epicardium, and invasion of the myocardium. These data reveal novel roles for FGFR-1 signaling in epicardial biology and coronary vascular lineage differentiation, and point to potential new therapeutic avenues.  相似文献   

7.
8.
《Organogenesis》2013,9(1):108-125
Primary cilia are unique sensory organelles that coordinate a wide variety of different signaling pathways to control cellular processes during development and in tissue homeostasis. Defects in function or assembly of these antenna-like structures are therefore associated with a broad range of developmental disorders and diseases called ciliopathies. Recent studies have indicated a major role of different populations of cilia, including nodal and cardiac primary cilia, in coordinating heart development, and defects in these cilia are associated with congenital heart disease. Here, we present an overview of the role of nodal and cardiac primary cilia in heart development.  相似文献   

9.
Primary cilia are unique sensory organelles that coordinate a wide variety of different signaling pathways to control cellular processes during development and in tissue homeostasis. Defects in function or assembly of these antenna-like structures are therefore associated with a broad range of developmental disorders and diseases called ciliopathies. Recent studies have indicated a major role of different populations of cilia, including nodal and cardiac primary cilia, in coordinating heart development, and defects in these cilia are associated with congenital heart disease. Here, we present an overview of the role of nodal and cardiac primary cilia in heart development.  相似文献   

10.
Work-related musculoskeletal disorders (WMSDs), also known as repetitive strain injuries of the upper extremity, frequently cause disability and impairment of the upper extremities. Histopathological changes including excess collagen deposition around myofibers, cell necrosis, inflammatory cell infiltration, and increased cytokine expression result from eccentric exercise, forced lengthening, exertion-induced injury, and repetitive strain–induced injury of muscles. Repetitive tasks have also been shown to result in tendon and neural injuries, with subsequent chronic inflammatory responses, followed by residual fibrosis. To identify mechanisms that regulate tissue repair in WMSDs, we investigated the induction of periostin-like factor (PLF) and periostin, proteins induced in other pathologies but not expressed in normal adult tissue. In this study, we examined the level of PLF and periostin in muscle, tendon, and nerve using immunohistochemistry and Western blot analysis. PLF increased with continued task performance, whereas periostin was constitutively expressed. PLF was located in satellite cells and/or myoblasts, which increased in number with continued task performance, supporting our hypothesis that PLF plays a role in muscle repair or regeneration. Periostin, on the other hand, was not present in satellite cells and/or myoblasts. (J Histochem Cytochem 57:1061–1073, 2009)  相似文献   

11.
Heart failure (HF) has become a global public health problem due to its unclear pathogenesis. Our previous studies have found that RNA oxidation is associated with the occurrence and development of a variety of chronic diseases in the elderly, but whether RNA oxidation is related to the pathogenesis of HF remains unclear. Male Dahl salt-sensitive rats (DSSR) were divided into 8% NaCl groups and 0.3% NaCl groups. The blood pressure of DSSR, HE staining of cardiac tissue, cardiac function index of colour Doppler echocardiography and plasma N-terminal probrain Natriuretic Peptide (NT-ProBNP) were used to evaluate the model making. The levels of 8-hydroxyguanosine (8-oxoGsn) and 8-hydroxydeoxyguanosine (8-oxodGsn) in myocardium and urine of DSSR were determined by high-performance liquid chromatography–mass spectrometry (LC-MS/MS). The expression of ERK-MAPK pathway and MTH1 was detected by Western blot (WB). Rats in the 8% NaCl group developed heart failure symptoms such as increased blood pressure, myocardial hypertrophy, decreased diastolic function, and increased plasma NT-ProBNP. The content of 8-oxoGsn in urine and heart tissue also increased, which was positively correlated with the related indicators of heart failure. This process is also accompanied by the sequential activation of ERK-MAPK pathway molecules and the increase of MTH1. The mechanism of RNA oxidation and inhibition is related to the occurrence and development of HF, which may be involved through ERK-MAPK pathway.  相似文献   

12.
13.
Stem cell-based therapy is currently tested in several trials of chronic heart failure. The main question is to determine how its implementation could be extended to common clinical practice. To fill this gap, it is critical to first validate the hypothesis that the grafted stem cells primarily act by harnessing endogenous repair pathways. The confirmation of this mechanism would have three major clinically relevant consequences: (i) the use of cardiac-committed cells, since even though cells primarily act in a paracrine manner, such a phenotype seems the most functionally effective; (ii) the optimization of early cell retention, rather than of sustained cell survival, so that the cells reside in the target tissue long enough to deliver the factors underpinning their action; and (iii) the reliance on allogeneic cells, the expected rejection of which should only have to be delayed since a permanent engraftment would no longer be the objective. One step further, the long-term objective of cell therapy could be to use the cells exclusively for producing factors and then to only administer them to the patient. The production process would then be closer to that of a biological pharmaceutic, thereby facilitating an extended clinical use.  相似文献   

14.
Summary A floating collagen matrix culture of neonatal rat heart myocardial cells shows rhythmic contractions which are dependent on localization of cells, cell density, and collagen concentration. The rhythmic contractions of the collagen matrix can be registered by a device scanning the optical density at the edge of the gel and have been observed over a temperature range from 9° to 40° C. The results of the present study underline the usefulness of myocardial cell populated collagen matrixes for studies on coherent contractions of heart cell cultures.  相似文献   

15.
果蝇心脏早期发育与脊椎动物乃至人具有相似的分子机理,自90年代以来,通过P转位子诱变方法已鉴定出20多个与果蝇早期发育相关基因,这为揭示人体心脏发育的基因调控机理提供了重要的依据。  相似文献   

16.
We aim to study the amelioration effect of adenovirus5-mediated human hepatocyte growth factor gene transfer on postinfarction heart failure in swine model. Twelve Suzhong young swine were randomly divided into 2 groups of 6 pigs each: Ad5-HGF group and mock-vector Ad5 group. Four weeks after ligation of the left anterior descending coronary artery, Ad5-HGF was intracoronarily transferred into the myocardium. Simultaneously, gate cardiac perfusion imaging was performed to evaluate the heart function. Three weeks later, gate cardiac perfusion imaging was performed again, then the hearts were removed and sectioned for immunohistochemical examination to illustrate the effects of Ad5-HGF on infarcted myocardium. The expression of HGF was examined by ELISA. The results were: (1) compared with the mock-vector Ad5 group, high expression of human HGF was observed in the myocardium of Ad5-HGF group; (2) in the Ad5-HGF group, the number of CD117+ cells co-expressing c-Met per mm2 was significantly larger; (3) the improvement in LVEF was greater in the Ad5-HGF group than in the mock-vector Ad5 group. We concluded that: (1) high expression of human HGF was observed in the myocardium through intracoronary gene transfection; (2) HGF can improve the mobilization of CD117+/c-Met+ stem cells into ischemic myocardium. The amelioration effect of HGF on postinfarction heart failure could not be limited to stimulating angiogenesis, anti-apoptosis, anti-fibrosis, but was also involved in the recruitment of stem cells into myocardium.  相似文献   

17.
18.
19.
The present communication describes improved methods for isolating and plating beating heart cells from neonatal rats using collagenase and collagen-coated petri dishes. The amplitude and frequency of contraction are continuously and simultaneously measured under well defined conditions and during prolonged periods of time with a highly sensitive and thermostated instrument. Additions, e.g. drugs and toxic agents, are made through an accessory pump system that involves extensive dilution of the added compound with medium; aliquots of medium can be withdrawn for estimation of metabolites. The system described is reliable and relatively inexpensive and allows a more extensive use of isolated heart cells, especially in studies of heart functions where small changes in amplitude and frequency of beating during prolonged periods of time are important.  相似文献   

20.
Molecular and functional characteristics of heart-valve interstitial cells   总被引:1,自引:0,他引:1  
The cells that reside within valve cusps play an integral role in the durability and function of heart valves. There are principally two types of cells found in cusp tissue: the endothelial cells that cover the surface of the cusps and the interstitial cells (ICs) that form a network within the extracellular matrix (ECM) within the body of the cusp. Both cell types exhibit unique functions that are unlike those of other endothelial and ICs found throughout the body. The valve ICs express a complex pattern of cell-surface, cytoskeletal and muscle proteins. They are able to bind to, and communicate with, each other and the ECM. The endothelial cells on the outflow and inflow surfaces of the valve differ from one another. Their individual characteristics and functions reflect the fact that they are exposed to separate patterns of flow and pressure. In addition to providing a structural role in the valve, it is now known that the biological function of valve cells is important in maintaining the integrity of the cusps and the optimum function of the valve. In response to inappropriate stimuli, valve interstitial and endothelial cells may also participate in processes that lead to valve degeneration and calcification. Understanding the complex biology of valve interstitial and endothelial cells is an important requirement in elucidating the mechanisms that regulate valve function in health and disease, as well as setting a benchmark for the function of cells that may be used to tissue engineer a heart valve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号