首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Carbohydrate binding proteins, known as lectins, bind to specific sugar groups on most membranes. We used fluorescent and light microscopy to study the interaction of various lectins with the membranes of microglia cultured from neonatal rat or fetal mouse cerebral cortices. Microglia stained intensely with GS-1, RCA, WGA, and ConA and slightly with DBA, UEA, BPA, and SBA. No staining was seen with GS-2, MPA, or PNA. Staining was specific for microglia in the mixed glial cultures and was dose dependent. In addition, microglial lectin binding could be reduced or blocked by competitive inhibition using specific sugars. Treatment of the microglia with agents such as dimethylsulfoxide (DMSO), interleukin-1 (IL-1), interferon (IFN), or lipopolysaccharide (LPS) did not eliminate lectin staining, although the degree of staining was altered. Positive staining of the microglia was also associated with a functional change for at least one lectin, i.e., ConA. Superoxide anion production by microglia was increased in the presence of ConA. Overall, binding of the lectins GS-1, RCA, WGA, and ConA can be used as an identifying tool for microglia in glial cultures, but intensity of staining varies depending on their functional state.  相似文献   

2.
Genetic models for CNS inflammation   总被引:10,自引:0,他引:10  
The use of transgenic technology to over-express or prevent expression of genes encoding molecules related to inflammation has allowed direct examination of their role in experimental disease. This article reviews transgenic and knockout models of CNS demyelinating disease, focusing primarily on the autoimmune disease multiple sclerosis, as well as conditions in which an inflammatory response makes a secondary contribution to tissue injury or repair, such as neurodegeneration, ischemia and trauma.  相似文献   

3.
Following tissue damage or invasion by pathogens a number of soluble signals are generated to alert the immune system of the impending danger and initiate inflammation. Some danger signals are released from injured or dying cells. Once released, danger signals activate a autocrine/paracrine network that recruits inflammatory cells, stimulates cytokine production, promotes dendritic cell maturations and increases the antigen (Ag) presenting efficiency. These events also occurs in the central nervous system (CNS) where cytokines and cytokine-releasing cells have a central role in spreading inflammation. P2 receptors of microglia are the focus of increasing interest, especially after they were shown to mediate chemotaxis, cytokine release and cell death in microglia. We propose that P2 receptors may function in microglia as sensors of the ATP/UTP concentration in the pericellular space, and therefore as sensors of danger signals in the CNS. Furthermore, microglia itself can release ATP when stimulated by inflammatory stimuli. Thus extracellular nucleotides may be included in the family of the early inflammatory mediators acting via P2 receptors to spread inflammation in the CNS.
References 1. Ferrari D., Villalba M., Chiozzi P., Falzoni S., Ricciardi-Castagnoli P. and Di Virgilio F. (1996) Mouse microglia cells express a plasma membrane pore gated by extracellular ATP. J. Immunol. 156 , 1531–1539.
2. Ferrari D., Chiozzi P., Falzoni S., Hanau S. and Di Virgilio F. (1997) Purinergic modulation of interleukin-1B release from microglia cells stimulated with bacterial endotoxin. J. Exp. Med. 185 , 579–582.  相似文献   

4.
Following tissue damage or invasion by pathogens a number of soluble signals are generated to alert the immune system of the impending danger and initiate inflammation. Some danger signals are released from injured or dying cells. Once released, danger signals activate a autocrine/paracrine network that recruits inflammatory cells, stimulates cytokine production, promotes dendritic cell maturations and increases the antigen (Ag) presenting efficiency. These events also occurs in the central nervous system (CNS) where cytokines and cytokine‐releasing cells have a central role in spreading inflammation. P2 receptors of microglia are the focus of increasing interest, especially after they were shown to mediate chemotaxis, cytokine release and cell death in microglia. We propose that P2 receptors may function in microglia as sensors of the ATP/UTP concentration in the pericellular space, and therefore as sensors of danger signals in the CNS. Furthermore, microglia itself can release ATP when stimulated by inflammatory stimuli. Thus extracellular nucleotides may be included in the family of the early inflammatory mediators acting via P2 receptors to spread inflammation in the CNS. References
1. Ferrari D., Villalba M., Chiozzi P., Falzoni S., Ricciardi‐Castagnoli P. and Di Virgilio F. (1996) Mouse microglia cells express a plasma membrane pore gated by extracellular ATP. J. Immunol. 156 , 1531–1539. 2. Ferrari D., Chiozzi P., Falzoni S., Hanau S. and Di Virgilio F. (1997) Purinergic modulation of interleukin‐1B release from microglia cells stimulated with bacterial endotoxin. J. Exp. Med. 185 , 579–582.  相似文献   

5.
6.
《TARGETS》2002,1(3):95-101
Neuroproteomics is the application of proteomics to the study of the CNS and its disorders. Proteomic technologies can be applied to the discovery of targets for drugs to treat neurological disorders. Diseases that are particularly suitable for this approach are those with protein pathology, such as Alzheimer's disease. Important receptors for CNS drugs include proteins such as G-protein-coupled receptors, N-methyl-d-aspartate receptors and protein kinases. Molecular diagnostics can be based on proteins detected in the cerebrospinal fluid and these same proteins can serve as drug targets. Proteomics complements pharmacogenomics and will facilitate the development of personalized medicines for neurological disorders.  相似文献   

7.
Novel glucocorticoid effects on acute inflammation in the CNS   总被引:10,自引:0,他引:10  
The CNS can mount an inflammatory reaction to excitotoxic insults that contributes to the emerging brain damage. Therefore, anti-inflammatory drugs should be beneficial in neurological insults. In contrast, glucocorticoids (GCs), while known for their anti-inflammatory effects, can exacerbate neurotoxicity in the hippocampus after excitotoxic insults. We investigated the effect of GCs on the inflammatory response after a neurological insult. Intact control (INT; intact stress response GC profile), adrenalectomized/GC-supplemented (ADX; low basal GC profile) and GC-treated (COR; chronically high GC profile) rats were injected with kainic acid into the hippocampal CA3 region. Lesion size was determined 8-72 h later. The inflammatory response was characterized using immunohistochemistry, RNAse protection assay and ELISA. The INT and COR rats developed larger CA3 lesions than ADX rats. We found that GCs surprisingly caused an increase in relative numbers of inflammatory cells (granulocytes, monocytes/macrophages and microglia). Additionally, mRNA and protein (IL-1beta and TNF-alpha) levels of the pro-inflammatory cytokines IL-1alpha, IL-1beta and TNF-alpha were elevated in COR rats compared with INT and ADX rats. These data strongly question the traditional view of GCs being uniformly anti-inflammatory and could further explain how GCs worsen the outcome of neurological insults.  相似文献   

8.
Following trauma or ischemia to the central nervous system (CNS), there is a marked increase in the expression of cell cycle-related proteins. This up-regulation is associated with apoptosis of post-mitotic cells, including neurons and oligodendrocytes, both in vitro and in vivo. Cell cycle activation also induces proliferation of astrocytes and microglia, contributing to the glial scar and microglial activation with release of inflammatory factors. Treatment with cell cycle inhibitors in CNS injury models inhibits glial scar formation and neuronal cell death, resulting in substantially decreased lesion volumes and improved behavioral recovery. Here we critically review the role of cell cycle pathways in the pathophysiology of experimental stroke, traumatic brain injury and spinal cord injury, and discuss the potential of cell cycle inhibitors as neuroprotective agents. Special issue dedicated to Dr. Moussa Youdim.  相似文献   

9.
Gap junctions facilitate direct cytoplasmic communication between neighboring cells, facilitating the transfer of small molecular weight molecules involved in cell signaling and metabolism. Gap junction channels are formed by the joining of two hemichannels from adjacent cells, each composed of six oligomeric protein subunits called connexins. Of paramount importance to CNS homeostasis are astrocyte networks formed by gap junctions, which play a critical role in maintaining the homeostatic regulation of extracellular pH, K+, and glutamate levels. Inflammation is a hallmark of several diseases afflicting the CNS. Within the past several years, the number of publications reporting effects of cytokines and pathogenic stimuli on glial gap junction communication has increased dramatically. The purpose of this review is to discuss recent observations characterizing the consequences of inflammatory stimuli on homocellular gap junction coupling in astrocytes and microglia as well as changes in connexin expression during various CNS inflammatory conditions.  相似文献   

10.
Microglia subpopulations were studied in mouse experimental autoimmune encephalomyelitis and toxoplasmic encephalitis. CNS inflammation was associated with the proliferation of CD11b(+) brain cells that exhibited the dendritic cell (DC) marker CD11c. These cells constituted up to 30% of the total CD11b(+) brain cell population. In both diseases CD11c(+) brain cells displayed the surface phenotype of myeloid DC and resided at perivascular and intraparenchymatic inflammatory sites. By lacking prominent phagocytic organelles, CD11c(+) cells from inflamed brain proved distinct from other microglia, but strikingly resembled bone marrow-derived DC and thus were identified as DC. This brain DC population comprised cells strongly secreting IL-12p70, whereas coisolated CD11c(-) microglia/brain macrophages predominantly produced TNF-alpha, GM-CSF, and NO. In comparison, the DC were more potent stimulators of naive or allogeneic T cell proliferation. Both DC and CD11c(-) microglia/macrophages from inflamed brain primed naive T cells from DO11.10 TCR transgenic mice for production of Th1 cytokines IFN-gamma and IL-2. Resting microglia that had been purified from normal adult brain generated immature DC upon exposure to GM-CSF, while CD40 ligation triggered terminal maturation. Consistently, a functional maturation of brain DC was observed to occur following the onset of encephalitis. In conclusion, these findings indicate that in addition to inflammatory macrophage-like brain cells, intraparenchymatical DC exist in autoimmune and infectious encephalitis. These DC functionally mature upon disease onset and can differentiate from resident microglia. Their emergence, maturation, and prolonged activity within the brain might contribute to the chronicity of intracerebral Th1 responses.  相似文献   

11.
12.
13.
Chronic neurodegeneration is a major worldwide health problem, and it has been suggested that systemic inflammation can accelerate the onset and progression of clinical symptoms. A possible explanation is that systemic inflammation "switches" the phenotype of microglia from a relatively benign to a highly aggressive and tissue-damaging phenotype. The current study investigated the molecular mechanism underlying this microglia phenotype "switching." We show in mice with chronic neurodegeneration (ME7 prion model) that there is increased expression of receptors that have a key role in macrophage activation and associated signaling pathways, including TREM-2, Siglec-F, CD200R, and FcγRs. Systemic inflammation induced by LPS further increased protein levels of the activating FcγRIII and FcγRIV, but not of other microglial receptors, including the inhibitory FcγRII. In addition to these changes in receptor expression, IgG levels in the brain parenchyma were increased during chronic neurodegeneration, and these IgG levels further increased after systemic inflammation. γ-Chain-deficient mice show modified proinflammatory cytokine expression in the brain after systemic inflammation. We conclude that systemic inflammation during chronic neurodegeneration increases the expression levels of activating FcγR on microglia and thereby lowers the signaling threshold for Ab-mediated cell activation. At the same time, IgG influx into the brain could provide a cross-linking ligand resulting in excessive microglia activation that is detrimental to neurons already under threat by misfolded protein.  相似文献   

14.
Inflammation of the prostate may represent a mechanism for hyperplastic changes to occur in the prostate. There are a variety of growth factors and cytokines that may lead to a proinflammatory process within the prostate. There are several proposed mechanisms that lead to both the intrinsic and extrinsic basis of inflammation. Prostatic inflammation may represent an important factor in influencing prostatic growth and progression of symptoms. This article reviews the recent literature on inflammation leading to chronic prostatic diseases, such as benign prostatic hyperplasia.  相似文献   

15.
Metallothionein (MT) is a protein that can be induced by inflammatory mediators and participates in cytoprotection. However, its role in antigen-related inflammation remains to be established. We determined whether intrinsic MT protects against antigen-related airway inflammation induced by ovalbumin (OVA) in MT-I/II null (MT [-/-]) mice and in corresponding wild-type (WT) mice. MT (-/-) mice and WT mice were intratracheally challenged with OVA (1 mug per body) biweekly four times. Twenty-four hours after the last OVA challenge, significant increases were shown in the numbers of total cells, eosinophils, and neutrophils in bronchoalveolar lavage fluid from MT (-/-) mice than in those from WT mice. The protein level of interleukin-1beta (IL-1beta) was significantly greater in MT (-/-) mice than in WT mice after OVA challenge. Immunohistochemical analysis showed that the formations of 8-oxy-deoxyguanosine and nitrotyrosine in the lung were more intense in MT (-/-) mice than in WT mice after OVA challenge. These results indicate that endogenous MT is a protective molecule against antigen-related airway inflammation induced by OVA, at least partly, via the suppression of enhanced lung expression of IL-1beta and via the antioxidative properties. Our findings suggest that MT may be a therapeutic target for the treatment of antigen-related airway inflammatory diseases such as bronchial asthma.  相似文献   

16.
We have previously shown that T lymphocytes and interferon-gamma are involved in hypercholesterolemia-induced leukocyte adhesion to vascular endothelium. This study assessed the contribution of interleukin 12 (IL-12) to these hypercholesterolemia-induced inflammatory responses. Intravital videomicroscopy was used to quantify leukocyte adhesion and emigration and oxidant stress (dihydrorhodamine oxidation) in unstimulated cremasteric venules (wall shear rate > or =500 s-1) of wild-type (WT) C57Bl/6, lymphocyte-deficient [recombinase-activating gene knockout (RAG1-/-)], and IL-12-deficient (p35-/- and p40-/-; p35 and p40 are the two subunits of active IL-12) mice on either a normal (ND) or high-cholesterol (HC) diet for 2 wk. RAG1-/--HC mice received splenocytes from WT-HC (WT --> RAG1-/-), p35-/--HC (p35-/- --> RAG1-/-), or p40-/--HC (p40-/- --> RAG1-/-) mice. Compared with WT-ND mice, WT-HC mice exhibited exaggerated leukocyte adherence and emigration as well as increased dihydrorhodamine oxidation. The enhanced leukocyte recruitment was absent in the RAG1-/--ND, p35-/--ND, and p40-/--ND groups. Hypercholesterolemia-induced leukocyte adherence and emigration were attenuated in RAG1-/--HC vs. WT-HC mice but were similar to ND mice. Furthermore, compared with WT-HC animals, p35-/--HC and p40-/--HC mice showed significantly lower leukocyte adhesion and tissue oxidant stress responses, but these values were comparable to ND mice. Leukocyte adherence and emigration in WT --> RAG1-/- mice were similar to responses of WT-HC mice. However, p35-/- --> RAG1-/- mice had lower levels of adherence and emigration vs. the WT --> RAG1-/- and WT-HC groups. Elevated levels of leukocyte adherence and emigration were restored by approximately 50% toward WT-HC levels in p40-/- --> RAG1-/- mice. These findings implicate IL-12 in the inflammatory responses observed in the venules of hypercholesterolemic mice.  相似文献   

17.
18.
We have examined the pathological lesions and sites of infection in mice inoculated with a highly neurovirulent recombinant wild mouse ecotropic retrovirus (FrCasE). The spongiform lesions appeared initially as swollen postsynaptic neuronal processes, progressing to swelling in neuronal cell bodies, all in the absence of detectable gliosis. Infection of neurons in regions of vacuolation was not detected. However, high level infection of cerebellar granule neurons was observed in the absence of cytopathology, wherein viral protein was found associated with both axons and dendrites. Infection of ramified and amoeboid microglial cells was associated with cytopathology in the brain stem, and endothelial cell-pericyte infection was found throughout the CNS. No evidence of defective retroviral expression was observed. These results are consistent with an indirect mechanism of retrovirus-induced neuropathology.  相似文献   

19.
In the healthy brain, quiescent microglia continuously remodel their shape by extending and retracting highly motile processes. Despite a seemingly random sampling of their environment, microglial processes specifically interact with subsets of synaptic structures, as shown by recent imaging studies leading to proposed reciprocal interactions between microglia and synapses under non-pathological conditions. These studies revealed that various modalities of microglial dynamic behavior including their interactions with synaptic elements are regulated by manipulations of neurotransmission, neuronal activity and sensory experience. Conversely, these observations implied an unexpected role for quiescent microglia in the elimination of synaptic structures by specialized mechanisms that include the phagocytosis of axon terminals and dendritic spines. In light of these recent discoveries, microglia are now emerging as important effectors of neuronal circuit reorganization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号